

MONO RAIL

About Rollon

Development of global business

1975 Parent company, Rollon S.r.I., founded in Italy

1991 Founding of Rollon GmbH in Germany

Expansion of headquarters to new 4,000 m² factory

Assembly starts in Germany

Quality management certified to ISO 9001

1998 Rollon B.V. in the Netherlands and Rollon Corporation in the USA are founded

Expansion of German branch to new 1,000 m² plant

1999 Founding of Rollon S.A.R.L. in France
Environmental management certified to ISO 14001

2000 Rollon s.r.o. founded in Czech Republic

2001 Expansion of headquarters to new 12,000 m² manufacturing plant

2007 Restructuring of the GmbH and alignment of production in Germany to customer-specific adaptations

Takeover of the assets of a manufacturer of linear rail systems

2008 Expansion of sales network in Eastern Europe and Asia

Continual expansion and optimization of the portfolio

Founded in 1975, Rollon manufactured high-precision linear roller bearings for the machine tool industry. Early on, Rollon started manufacturing linear bearings based on the bearing-cage design. In 1979, the Compact Rail self-aligning linear bearings joined the Telescopic Rail industrial drawer slides and Easy Rail linear bearings and became the basis of the strong foundation on which the company is building upon today. Continuing optimization of these core products still remains one of the most important goals at Rollon. The development of the patented Compact Rail linear bearing, which uses different proprietary rail profiles and high-precision radial ball bearing sliders, enables the compensation of height and angle mounting defects in applications, and is only one example of the continuing efforts to innovative the development of our existing product families. In the same manner, we continually introduce innovative new product familiesdisplaying our continuing product development and optimization in the industry. These include:

- 1994 Light Rail full and partial extension telescopic in lightweight design
- 1996 Uniline belt driven linear actuators
- 2001 Ecoline economical aluminum linear actuators
- 2002 X-Rail inexpensive formed steel linear guides
- 2004 Curviline curved monorail profile rail guide with roller carriages
- 2007 Monorail miniature sizes and full sized

Each further innovation of our linear bearings is built upon the our extensive knowledge of the nine product families in production today as well as on the current market demands. Rollon is the ultimate linear technology for any application needs.

Content

1 Product explanation	
Profile rails for the highest degree of precision	5
2 Technical data	
Performance characteristics and notes	8
Load capacities	9
3 Product dimensions	
MRS series –	
carriage with flange	10
MRS series –	
carriage without flange	11
MRT series –	
carriage with flange	12
MRT series –	
carriage without flange	13
MRZ series –	
carriage without flange	14
MRRF series –	
rails mounted from below	15

4 Accessories	
Safety equipment and covers	16
Metal cover strip, Flush cap	18
Clamping elements	19
Manual clamp HK	20
Pneumatic clamp MK / MKS	21
Adapter plate	22
5 Technical instructions	
Precision	23
Radial clearance / preload	24
Anticorrosive protection, Lubrication	25
Lubrication nipple	26
Friction / displacement resistance	27
Loading	28
Service life	29
Installation instructions	30
Installation examples	35

Ordering key
Ordering key with explanations and hole pattern

Portfolio

Product explanation

Mono Rails are profile rails for the highest degree of precision

Fig. 1

The running grooves are ground in semicircular profile and have a contact angle of 45° in X-arrangement so that the same load capacity is guaranteed in all principle directions. Use of large steel balls enables high load and moment capacities. All carriages in size 55 are equipped with ball chains.

The most important characteristics:

- X-arrangement with 2-point contact of the raceways
- Uniform loading capacity in all main directions
- High ability for self-regulating
- Small differential slip in comparison to 4-point contact
- Very quiet running and low operating noise
- Low maintenance due to advanced lubrication chamber
- Small displacement force in preload compared to 4-point contact
- Mono Rail profile rails meet the market standard and can replace linear rails of the same design from other manufacturers while maintaining the main dimensions

Preferred areas of application:

- Construction and machine technology (safety doors, feeding)
- Packaging machines
- Special purpose machinery
- Logistics (e.g., handling units)
- Medical technology (e.g., X-ray equipment, hospital gurneys)

MRS / MRT

Standard carriage with flange in two different heights. MRT is the lower version.

Fig. 2

MRS...W / MRZ...W / MRT...W

Carriage without flange, also called block. Available in three different heights. MRT is the lower version; MRZ is the intermediate size.

Fig.3

MRS...L

Carriage in long version for holding larger loads. MRS...L is the version with flange.

Fig. 4

MRS...LW / MRT...LW

Carriage in long version without flange. Available in two different heights. MRT is the lower version.

Fig. 5

MRT...S

Carriage with flange in short version for lower loads with equally high precision.

Fig.6

MRT...SW

Carriage without flange in short version for lower loads with equally high precision.

Fig. 7

MRR...F

Guide rail MRR...F for bolting from below with threaded holes. Design with smooth surface without bevels.

Fig. 8

Technical data

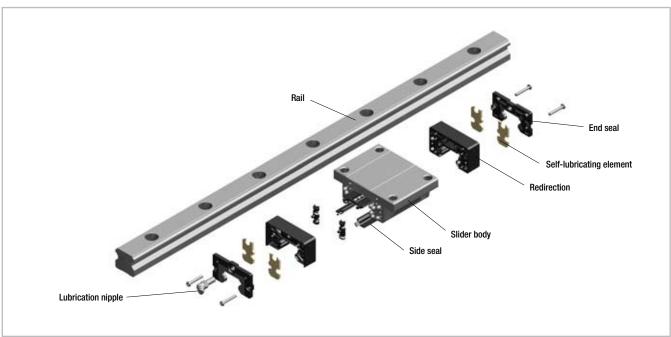


Fig. 9

Performance characteristics:

Available sizes: 15, 20, 25, 30, 35, 45, 55

 Max. operating speed: 3.5 m/s (137.79 in/s) (depending on application)

 Max. operating temperature: +80 °C (+176 °F) (depending on application)

 Available rail lengths up to approx. 4,000 mm (157.5 in) (see Ordering key, Table 31)

■ Four preload classes: G1, K0, K1, K2

■ Three precision classes: N, H, P

Remarks:

- Combining rails is possible (joining)
- The fixing holes on the carriages with flange can also be used as through holes for fastening from below. Here, the reduction in size of the screw diameter must be observed
- Various surface coatings on request, e.g. black coating, hard chrome plating, nickel plating
- Manual and pneumatic clamping elements available as accessories.
 Depending on the height of the carriage, additional adapter plates must be used
- Dimensions H₂ and L of the carriage change when using metal deflectors and other seals. Refer to Sec. 4 Accessories, pg. 16f
- The carriages in size 55 are equipped with ball chains
- Primary lubricated systems have an increased displacement resistance

Load capacities

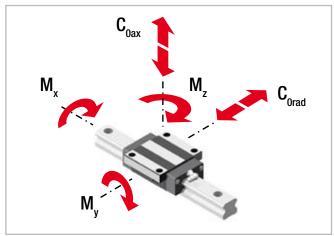
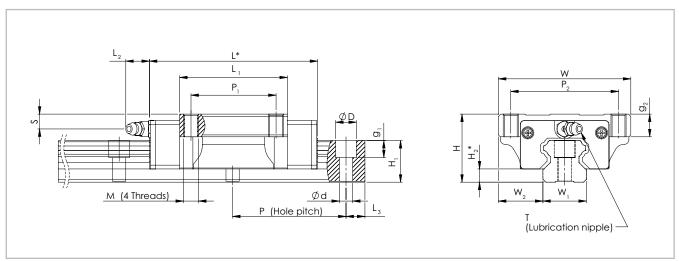


Fig. 10

Туре		pacities V]	S	tatic moment [Nm]	S
	dyn. C	stat. C _{0rad} stat. C _{0ax}	M _x	M _y	M _z
MRS15 MRS15W MRT15W	8500	13500	100	68	68
MRT15SW	5200	6800	51	18	18
MRS20 MRS20W MRT20W	14000	24000	240	146	146
MRT20SW	9500	14000	70	49	49
MRS20L MRS20LW	16500	30000	300	238	238
MRS25 MRT25 MRS25W MRT25W MRZ25W	19500	32000	368	228	228
MRT25S MRT25SW	12500	17500	175	69	69
MRS25L MRS25LW MRT25LW	26000	46000	529	455	455


Tab. 1

Туре	Load ca [N		S	tatic moment [Nm]	S
	dyn. C	stat. C _{0rad} stat. C _{0ax}	M _x	M _y	M _z
MRS30 MRS30W MRT30W	28500	48000	672	432	432
MRT30SW	17500	24000	336	116	116
MRS30L MRS30LW MRT30LW	36000	64000	896	754	754
MRS35 MRS35W MRT35W	38500	62000	1054	620	620
MRT35SW	25000	36500	621	209	209
MRS35L MRS35LW MRT35LW	48000	83000	1411	1098	1098
MRS45 MRS45W MRT45W	65000	105000	2363	1378	1378
MRS45L MRS45LW MRT45LW	77000	130000	2925	2109	2109
MCS55 MCS55W MCT55W	123500	190000	4460	3550	3550
MCS55L MCS55LW MCT55LW	155000	249000	5800	6000	6000

Tab. 2

Product dimensions

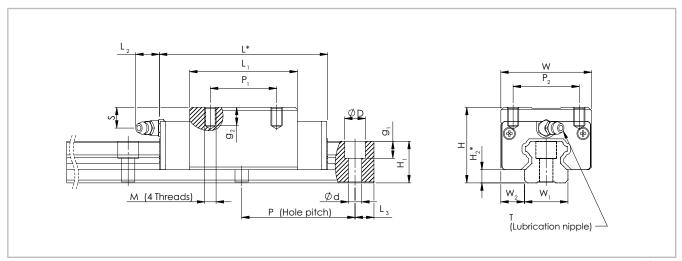
MRS series - carriage with flange

 * Dimensions H2 and L change when using metal deflectors and other seals (see pg. 17, tab. 12)

Fig. 11

Туре			/stem mm]					SI	ider N [mm					Weight [kg]				Rail M [mm				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	M	g ₂	L,	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MRS15	24	47	16	4,6	69	38	30	M5	8	40	5	Ø3	4,3	0.19	15	14		4.5	7.5	5.3		1.4
MRS20	30	63	21.5	5	81.2	53	40	M6	9	48.8			7	0.4	20	18		6	9.5	8.5		2.6
MRS20L	30	03	21.0	3	95.7	33	40	IVIO	9	63.4			,	0.52	20	10	60	0	9.0	0.0		2.0
MRS25	36	70	23.5	7	91	57	45	M8		57			7.8	0.57	23	22		7	11	9		3.6
MRS25L	30	70	23.3	1	113	37	40	IVIO	12	79.1	12	M6 x 1	7.0	0.72	23	22		,		9	20	3.0
MRS30	42	90	31	9	114	72	52		12	72	12	IVIO X I	7	1.1	28	26						5.2
MRS30L	42	90	31	9	135.3	12	32	M10		94.3			,	1.4	20	20	80	9	14	12		5.2
MRS35	48	100	33	9,5	114	82	62	IVITO	13	80			8	1.6	34	29	00	9	14	12		7.2
MRS35L	40	100	33	9,5	139.6	02	02		13	105.8			0	2	34	29						1.2
MRS45	60	120	37.5	14	142.5	100	80	M12	15	105	17	M8 x 1	8.5	2.7	45	38	105	14	20	17	22.5	12.3
MRS45L	00	120	37.3	14	167	100	-00	IVIIZ	10	129.8	-17	IVIO X I	0.0	3.6	40	30	103	14	20	17	22.0	12.3

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)


Tab. 3

Туре			/stem mm]					SI	ider N [mm]					Weight [kg]				Rail M [mm				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	M	g ₂	L ₁	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MCS55	70	140	40 E	10.7	181.5	116	95	Mta	21	131	12	M8 x 1	20	5.4	53	20	120	16	23	20	30	115
MCS55L	70	140	43,5	12,7	223.7	110	90	M14	21	173	12	IVIO X I	20	7.1	53	38	120	10	23	20	30	14.5

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 4

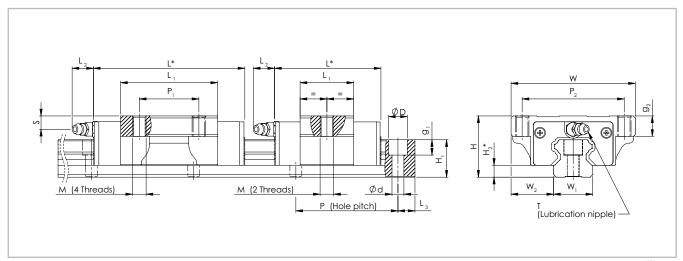
MRS series - carriage without flange

^{*} Dimensions H2 and L change when using metal deflectors and other seals (see pg. 17, tab. 12)

Fig. 12

Туре			stem nm]						Slider N [mm					Weight [kg]			l	Rail MF [mm]				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	M	g ₂	L,	L ₂	T	S		W ₁	H,	Р	d	D	g ₁	L ₃ *	
MRS15W	28	34	9.5	4,6	69	26	26	M4	6.4	40	5	Ø3	8,3	0.21	15	14		4.5	7.5	5.3		1.4
MRS20W	30	44	12	5	81.2	32	36	M5	8	48.8			7	0.31	20	18		6	9.5	8.5		2.6
MRS20LW	30	44	12	5	95.7	32	50	IVIO	O	63.4			,	0.47	20	10	60	U	9.5	0.0		2.0
MRS25W	40	48	12.5	7	91	35	35	M6	9.6	57			11.8	0.45	23	22		7	11	9		3.6
MRS25LW	40	40	12.0	,	113	33	50	IVIO	3.0	79.1	12	M6 x 1	11.0	0.56	23	22		,	11	9	20	3.0
MRS30W	45	60	16	9	114	40	40			72	12	IVIO X I	10	0.91	28	26						5.2
MRS30LW	40	00	10	9	135.3	40	60	M8	12.8	94.3			10	1.2	20	20	80	9	14	12		5.2
MRS35W	55	70	18	9,5	114	50	50	IVIO	12.0	80			15	1.5	34	29	00	J	14	12		7.2
MRS35LW	- 55	70	10	9,0	139.6	30	72			105.8			10	1.9	- 34	29						1.2
MRS45W	70	86	20.5	14	142.5	60	60	M10	16	105	17	M8 x 1	18.5	2.3	45	38	105	14	20	17	22.5	12.3
MRS45LW	70	00	20.3	14	167	00	80	IVITU	10	129.8	17	IVIO X I	10.0	2.8	40	30	103	14	20	17	22.0	12.3

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)


Tab. 5

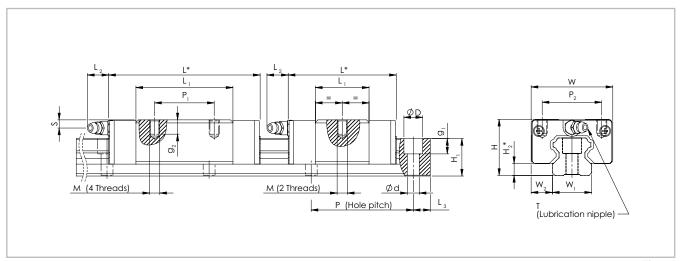
Туре		_	stem nm]					;	Slider N [mm]					Weight [kg]			ı	Rail MC [mm]	R			Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	M	g ₂	L ₁	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MCS55W	80	100	00 E	10.7	181.5	75	75	M12	19	131	12	M8 x 1	30	5.2	53	20	120	16	23	20	30	1 / E
MCS55LW	60	100	23.5	12.7	223.7	10	95	IVI I Z	19	173	12	IVIO X I	30	6.7	53	38	120	16	23	20	30	14.5

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 6

MRT series - carriage with flange

 * Dimensions $\rm H_{2}$ and L change when using metal deflectors and other seals (see pg. 17, tab. 12)


Fig. 13

Туре		_	stem nm]						Slider N [mm					Weight [kg]			I	Rail MR [mm]				Weight [kg/m]
	Н	W	W_2	H ₂	L	P ₂	P ₁	M	g ₂	L,	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MRT25	33	70	0E	7	91	60	35	M8	0	57	10	Me v 1	4.0	0.5	23	22	60	7	11	0	20	2.6
MRT25S	33	3 73 25 7	65	60	-	IVIO	9	31.5	12	M6 x 1	4.8	0.33	23	22	60	1	11	9	20	3.6		

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 7

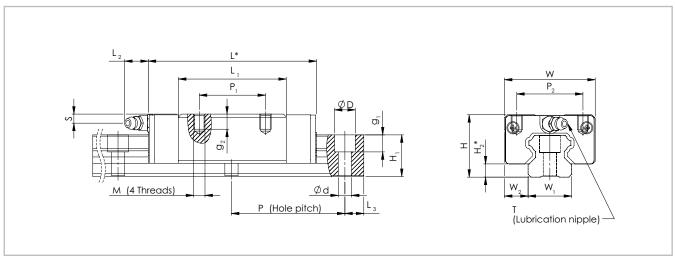
MRT series - carriage without flange

 $^{^{\}star}$ Dimensions $\rm H_{2}$ and L change when using metal deflectors and other seals (see pg. 17, tab. 12)

Fig. 14

Туре			/stem mm]					\$	Slider M [mm]					Weight [kg]				Rail MF [mm]				Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	T	S		W ₁	Н,	Р	d	D	g ₁	L ₃ *	
MRT15W	0.4	0.4	0.5	4.0	69	00	26	144	F.0	40	_	~n	4.0	0.17	4.5	1.4		4.5	7.5	F 0		- 4
MRT15SW	24	34	9.5	4.6	50.6	26	-	M4	5.6	21.6	5	Ø3	4.3	0.1	15	14		4.5	7.5	5.3		1.4
MRT20W	00	40	44	_	81.2	32	32	МЕ	7	48.8			_	0.26	20	10		0	0.5	0.5		0.0
MRT20SW	28	42	11	5	60.3	32	-	M5	7	28			5	0.17	20	18	60	6	9.5	8.5		2.6
MRT25W					91		35			57				0.38								
MRT25SW	33	48	12.5	7	65.5	35	-	M6	8.4	31.5			4.8	0.21	23	22		7	11	9		3.6
MRT25LW					113		50			79.1				0.53							20	
MRT30W					114		40			72	12	M6 x 1		0.81								
MRT30SW	42	60	16	9	80	40	-			38.6			7	0.48	28	26						5.2
MRT30LW					135.3		60	M8	11.2	94.3				1.06			80	9	14	12		
MRT35W					114		50	IVIO	11.2	80				1.2			00	9	14	12		
MRT35SW	48	70	18	9.5	79.7	50	-			45.7			8	0.8	34	29						7.2
MRT35LW					139.6		72			105.8				1.6								
MRT45W	60	86	20.5	14	142.5	60	60	M10	14	105	17	M8 x 1	8.5	2.1	45	38	105	14	20	17	22.5	12.3
MRT45LW	60	80	20.5	14	167	bU	80	WHU	14	129.8	17	IVIÖ X I	8.5	2.6	45	38	105	14	20	17	22.5	12.3

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)


Tab. 8

Туре		_	stem nm]					S	lider M [mm]	СТ				Weight [kg]			R	ail MC [mm]	R			Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MCT55W	68	100	23.5	12.7	181.5	75	75	M12	15	131	13	M8 x 1	18	5	53	38	120	16	23	20	30	14.5
MCT55LW	00	100	23.3	12.7	223.7	75	95	IVIIZ	10	173	13	IVIO X I	10	6.6	55	30	120	10	23	20	30	14.5

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 9

MRZ series - carriage without flange

^{*} Dimensions H2 and L change when using metal deflectors and other seals (see pg. 17, tab. 12)

Fig. 15

Туре			rstem mm]						Slider N [mm]					Weight [kg]			R	ail MR [mm]	R			Weight [kg/m]
	Н	W	W ₂	H ₂	L	P ₂	P ₁	М	g ₂	L,	L ₂	T	S		W ₁	H ₁	Р	d	D	g ₁	L ₃ *	
MRZ25W	36	48	12.5	7	90.3	35	35	M6	10	57	15.6	M6x1	7.8	0.4	23	22	60	7	11	9	20	2.6
MRZ25LW	30	48	12.5	1	113	33	50	IVIO	8	79.1	13.0	IVIOXI	1.8	0.5	23	22	00	1	11	9	20	3.6

 $^{^{\}star}$ Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 10

MRR...F series - rails mounted from below

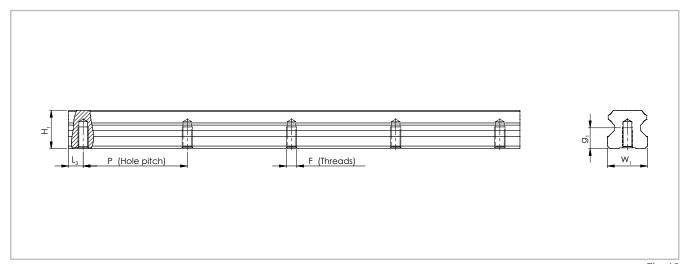


Fig. 16

Rail type	W ₁ [mm]	H ₁ [mm]	L ₃ * [mm]	P [mm]	F	g ₁ [mm]
MRR15F	15	14			M5	8
MRR20F	20	18		60	M6	10
MRR25F	23	22	20		IVIO	12
MRR30F	28	26		80	M8	15
MRR35F	34	29		00	IVIO	17
MRR45F	45	38	22.5	105	M12	24

^{*} Only applies when using max. rail lengths (see Ordering key, tab. 31)

Tab. 11

Accessories

Safety equipment and covers

End seal

Carriages of Mono Rail profile rails are equipped with end seals for contamination protection as standard.

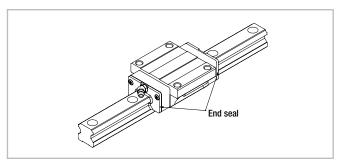


Fig. 17

Side seal

To prevent permeation of foreign matter from below, the carriages for this area are offered with appropriate seals.

No side seals are available for carriages in long or short version (... S / S... W and ... L / L... W).

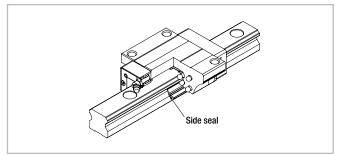


Fig. 18

Double seal

To improve the protection from contamination at higher loads the carriage can be provided with double end seals.

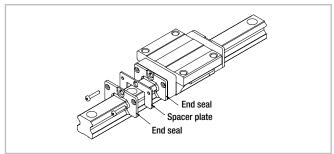


Fig. 19

Metal deflector (non-contacting)

Metal cuttings or coarse contamination can damage the end seals of the carriage. Metal deflector covers protect seal lips against damage.

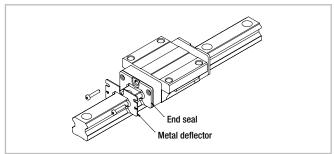


Fig. 20

Seal variants:

- A: Carriage with end and side seal
- C: Carriage with end and side seals and metal deflector
- D: Carriage with double end seal and side seal
- E: Carriage with double end seal and side seal and metal deflector

Changes of floor clearance and length changes of the carriages when using the corresponding seal variants

Seal variant		A, C, D, E,	Α	С	D	E
Slider type ¹	Slider type ¹ Size		Changed length L* [mm]			
	15	2.5	73	75	79	83
***	20	2.9	85	87	91	95.2
MRS MRSW	25	4.9	94.7	97.7	101.4	106.6
MRT	30	6.9	117	119	127	131
MRTW	35	7.6	118	120	128	132.6
	45	12.05	146.7	148.7	157.4	161.9
MCS MCSW MCT MCTW	55	-	-	192	191	200
	20	-	-	99.5	103.5	107.7
MRSL	25	-	-	117.7	121.4	126.6
MRSLW	30	-	-	138.3	146.3	150.3
MRTLW	35	-	-	143.6	151.6	156.2
	45	-	-	171.2	179.9	184.4
MCSL MCSLW MCTLW	55	-	-	234.2	233.2	242.2
	15	-	-	54.6	58.6	62.6
	20	-	-	64.1	68.1	72.3
MRTS MRTSW	25	-	-	70.2	73.9	79.1
······································	30	-	-	83	91	95
	35	-	-	83.7	91.7	96.3

Tab. 12

 $^{^{1}}$ No side seals are available for carriages in long or short version (...S / S...W and ...L / L...W)

^{*} For comparison see Chapter 3 Product dimensions, pg. 10ff

Metal cover strip

A rail cover strip made of corrosion resistant steel is available to improve the seal after guide rail installation. The metal cover strip is 0.3 mm wide and can have a maximum length of 50 m.

Size	Width [mm]
15	10
20	13
25	15
30	20
35	24
45	32
55	38

Tab. 13

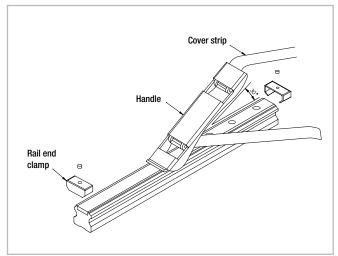


Fig. 21

Flush cap

Metal debris and other foreign substance can collect in the fixing holes of the rails and thus end up the carriage.

To prevent penetration of contamination in the carriage, the fixing holes should be capped with perforated caps flush with the rail surface.

Flush caps are made of wear and oil resistant synthetic resin. Various sizes of perforated caps for the counter sunk holes for hexagon socket bolts M3 to M22 are included as standard in the scope of supply.

Flush caps are driven in flush with the rail surface with light hammer taps using a flat piece of metal (see fig. 22).

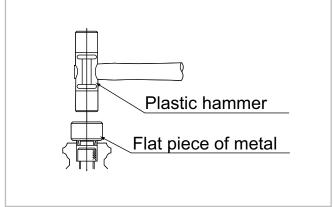


Fig. 22

Clamping elements

Mono Rail profile rails can be secured with manual or pneumatic clamping elements. Areas of application are:

- Table cross beams and sliding beds
- Width adjustment, stops
- Positioning of optical equipment and measuring tables

Manual clamp elements HK

The HK series is a manually activated clamping element.

Contact profiles press synchronously on the free surfaces of the profile rail by using the freely adjustable clamping lever.

The floating mounted contact profiles guarantee symmetrical introduction of force on the guide rail.

Special characteristics of the clamping elements HK:

- Simple and safe design
- Floating contact profile
- Precise positioning
- Holding force up to 2,000 N

Variants:

An additional adapter plate must be used depending on the height of the carriage (see pg. 23, tab. 16).

Activation:

Standard with hand lever, further activation options, e.g. using DIN 912 screw, possible on request.

Pneumatic clamp elements MK / MKS

The patented wedge slide gear puts into effect high holding forces. The pressurised medium moves the wedge slide gear in the longitudinal direction.

Contact profiles press with high force on the free surfaces of the profile rail by the resulting cross movement. MK is an element that closes with pneumatic pressure. The custom design MKS closes with spring energy storage and is opened via air impingement.

Special characteristics of clamp elements MK / MKS:

- Short shape
- High clamp forces
- Precise positioning
- High axial and horizontal rigidity

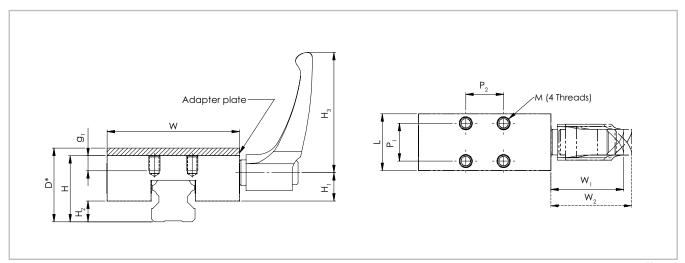
Areas of application of MK:

- Positioning axes
- Setting vertical axes
- Positioning lifting gear
- Clamping machine tables

Variants:

An additional adapter plate must be used depending on the height of the carriage (see pg. 23, tab. 17).

Connection options:


The basic MK / MKS series versions are equipped with air connections on both sides, i.e. the factory default settings air connections and the ventilation filter can be exchanged to the opposite side surfaces.

Custom design MKS opens with impingement of an air pressure of > 5.5 bar.

Areas of application of MKS:

- Clamping with drop in pressure (Normally Open)
- Clamping without power required (Normally Closed)

Manual clamp HK

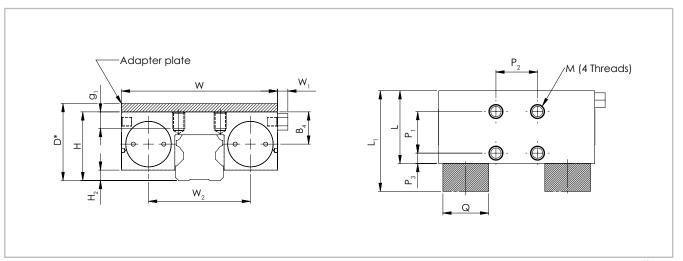

 * Changed dimensions when using the adapter plate, see pg. 22, tab. 16 $\,$

Fig. 23

Туре	Size	Holding force	Tightening torque	Dimensions [mm]				M							
		[N]	[Nm]	Н	H ₁	H ₂	H ₃	W	W ₁	W ₂	L	P ₁	P ₂	g ₁	
HK1501A	15			24	12.5	6.5		47			25	17	17	5	M4
HK2006A	20		5	28	17.5	5	44	60	30.5	33.5	0.4	15	15	6	NAE
HK2006A	20	1200		30	17.5	7		60			24	15	15	0	M5
HK2501A	O.F.		7	36	15	12	63	70	20 E	41.5	30	20	20		
HK2514A	25		7	33	15	11.5	03	70	38.5	41.5	30	20	20	8	M6
HK3001A	30			42	21.5	12		90			39	22	22		
HK3501A	35	2000	15	48	21.3	16	78	100	46.5	50.5	39	24	24	10	M8
HK4501A	45	2000		60	26.5	18		120			44	26	26	14	M10
HK5501A	55		22	70	31	21	95	140	56.5	61.5	49	30	30	16	M14

Tab. 14

Pneumatic clamp MK / MKS

 $^{^{\}star}$ Changed dimensions when using the adapter plate, see pg. 22, tab. 17

Fig. 24

Туре	Size	MK holding force	MKS holding force	ng [mm]					M								
		[N]	[N]	Н	H ₂	W	W ₁	W ₂	B ₄	L ₁ *	L	P ₁	P ₂	P ₃	Q [Ø]	g ₁	
MK / MKS 1501A	15	650	400	24	0.5	55	0	34	12	58	00	15	15	15.5	16	4.5	M4
MK / MKS 2001A	20	1000	600	28	2.5	66	6	43	14.4	61	39	00	00	F	20	5	M5
MK / MKS 2501A	25	1200	750	36	8	75		49	15.5	56	35	20	20	5	22	8	M6
MK / MKS 3001A	30	1750	1050	42	7	90		58	00.5	68	00	22	22	8.5	25	10	
MK / MKS 3501A	35	2000	1250	48	11.5	100	5	68	20.5	67	39	24	24	7.5	28	10	M8
MK / MKS 4501A	45	0050	1450	60	16.5	120		78.8	26.8	00	40	26	26	11.5	00	15	Mac
MK / MKS 5501A	55	2250	1450	70	21.5	128		87	30.5	82	49	30	30	9.5	30	18	M10

^{*} Only for model MKS

Adapter plate

For HK clamps

Clamp	Size	Slider type	Adapter plate	D
HK1501A	15	MRS, MRTW, MRTSW	-	24
пкізша	10	MRSW	PHK 15-4	28
HK2006A	20	MRTS, MRTW, MRTSW	-	28
ΠΝΖΟΟΟΑ	20	MRS, MRSL, MRSW, MRSLW	-	30
HK2514A		MRT, MRTS, MRTW, MRTSW, MRTLW	-	33
HK2501A	25	MRS, MRSL,	-	36
HK23UIA		MRSW, MRSLW	PHK 25-4	40
HK3001A	30	MRS, MRSL, MRTW, MRTSW, MRTLW	-	42
UV9001A	30	MRSW, MRSLW	PHK 30-3	45
HK3501A	35	MRS, MRSL, MRTW, MRTSW, MRTLW	-	48
HINGONIA	30	MRSW, MRSLW	PMK 35-7	55
111/4F04 A	45	MRS, MRSL, MRTW, MRTLW	-	60
HK4501A	45	MRSW, MRSLW	PHK 45-10	70
On request		MRTW, MRTLW	-	68
IIVEEO4 A	55	MRS, MRSL	-	70
HK5501A		MRSW, MRSLW	PHK 55-10	80
				Tab. 16

For MK / MKS clamps

Clamp	Size	Slider type	Adapter plate	D
MK / MKS	15	MRS, MRTW, MRTSW	-	24
1501A	13	MRSW	PMK 15-4	28
MK / MKS	20	MRTS, MRTW, MRTSW	-	28
2001A	20	MRS, MRSL, MRSW, MRSLW	PMK 20-2	30
On request		MRT, MRTS, MRTW, MRTSW, MRTLW	-	33
MK / MKS	25	MRS, MRSL, MRZ	-	36
2501A		MRSW, MRSLW	PMK 25-4	40
MK / MKS	30	MRS, MRSL, MRTW, MRTSW, MRTLW	-	42
3001A	30	MRSW, MRSLW	PMK 30-3	45
MK / MKS	35	MRS, MRSL, MRTW, MRTSW, MRTLW	-	48
3501A	30	MRSW, MRSLW	PMK 35-7	55
MK / MKS	45	MRS, MRSL, MRTW, MRTLW	-	60
4501A	40	MRSW, MRSLW	PMK 45-10	70
On request		MRTW, MRTLW	-	68
MK / MKS	55	MRS, MRSL	-	70
5501A		MRSW, MRSLW	PMK 55-10	80

Tab. 17

Technical instructions

Precision

Precision means the guide accuracy or the maximal deviation of the carriage based on the side and support surfaces during the movement along the rails.

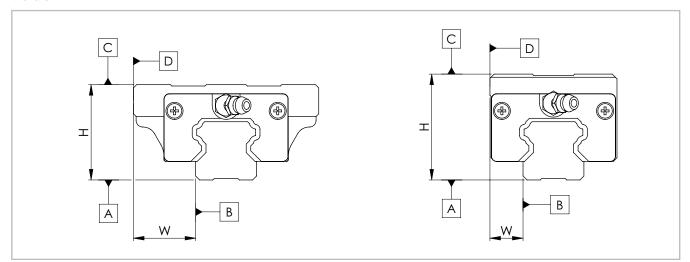


Fig. 25

	Precision class [mm]				
	Normal [N]	High [H]	Precise [P]		
Height tolerance H Side tolerance W	± 0.1	± 0.04	0 to -0.04		
Guide accuracy of raceway C based on surface A	ΔC see graph in fig. 26				
Guide accuracy of raceway D based on surface B	ΔD see graph in fig. 26				

Tab. 18

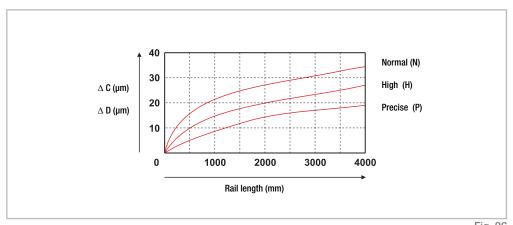


Fig. 26

Radial clearance / preload

Radial clearance describes the value for the radial movement of the carriage at a constant vertical load, while the carriage moves in longitudinal direction.

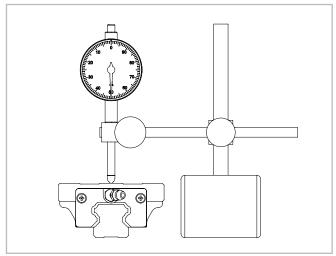


Fig. 27

Preload is defined as an effective load on the rolling element in the interior of the carriage in order to remove an existing clearance or to increase the rigidity.

The Mono Rail profile rails are available in the four different preload classes G1, K0, K1 and K2 (see tab. 19). The preload influences the rigidity, precision and torque resistance and also affects the service life and displacement force.

The radial clearance for the respective preload classes are listed in table 20.

Degree of preload	Preload class	Preload
With clearance	G1	0
No clearance	K0	0
Small preload	K1	0,02 x C*
Average preload	K2	0,05 x C*

^{*} C is the dynamic load capacity, see pg. 9, tab. 1f

Tab. 19

Size	Radial clearance of the preload classes [μm]						
	G1	K0	K1	K2			
	Impact free movement, compensation of assembly tolerances	Impact free and easy movement	Small moments, one rail application, low vibrations	Average vibrations and moments, light impacts			
15	+4 to +14	-4 to +4	-12 to -4	-20 to -12			
20	+5 to +15	-5 to +5	-14 to -5	-23 to -14			
25	+6 to +16	-6 to +6	-16 to -6	-26 to -16			
30	+7 to +17	-7 to +7	-19 to -7	-31 to -19			
35	+8 to +18	-8 to +8	-22 to -8	-35 to -22			
45	+10 to +20	-10 to +10	-25 to -10	-40 to -25			
55	+12 to +22	-12 to +12	-29 to -12	-46 to -29			

Tab. 20

Anticorrosive protection

There are numerous application-specific surface treatments available for profile rails of the Mono Rail product family, for example, black coating (X), hard chrome plating (XC) or nickel plating (NIC), also with FDA-approval

for use in the food industry. For more information please contact Application Technology.

Lubrication

Profile rails must generally be lubricated before commissioning. They can be lubricated with oil or grease.

The correct lubricant selection has a large influence on the service life and the function of the profile rail, insufficient lubrication and tribocorrosion can ultimately lead to total failure.

As well as reducing friction and wear, lubricants also serve as sealant, noise damper and corrosion protection for the linear guide. Different lubricants for special applications are available upon request.

Example: Lubricant with FDA approval for use in the food industry. For more information please contact Application Technology.

Important instructions for lubrication

- Mono Rail profile rails must be lubricated for operation.
- The carriage must be moved back and forth during lubrication.
- The lubricant is inserted through a lubrication nipple.
- There should be a thin film of lubricant on the rail surface at all times.
- Please inform us in advance if the guides are to be used in acid or base containing environments or in clean rooms.
- Primary lubricated systems have an increased displacement resistance.
- Please contact Application Technology if the oil lubrication is used for vertical use.
- If the stroke is < 2 or > 15 times the carriage length, the lubrication intervals should be shortened.

Grease Iubrication

We recommend the use of a lithium emulsified lubricant NLGI Class 2 for lubrication.

Oil lubrication

We recommend a synthetic oil for operating temperatures between 0 $^{\circ}$ C and +70 $^{\circ}$ C. For application-specific custom lubrication, please contact Application Technology.

Relubrication

- Relubrication of the system must be done before the lubricant used is dirty or shows discolouration.
- Relubrication is performed at operating temperature. The carriage must be moved back and forth during relubrication.
- If the stroke is < 2 or > 15 times the carriage length, the lubrication intervals should be more often.

Lubrication intervals

Operating speed, stroke length and ambient conditions influence the selection of time between lubrication intervals. Establishing a safe lubrication interval is based exclusively on the experienced practiced values determined on site. However, a lubrication interval should not be longer than one year in any case.

Initial lubrication and relubrication Self-lubricating

The carriages of the following sizes have a self-lubrication element to extend lubrication intervals.

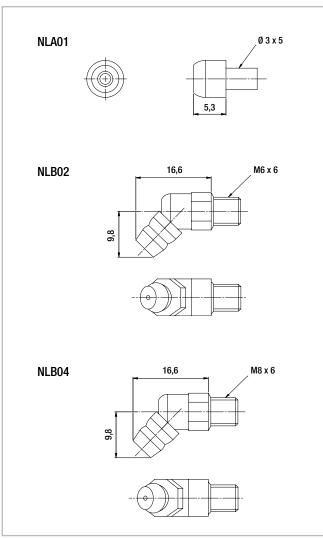
Size	Initial lubrication grease	Relubrication	Initial lubrication oil
	[cm³]	[cm³]	[cm³]
15	1.3	1.1	1.5
20	2.3	2	2.5
25	2.8	2.5	3.5
30	3.5	3	4.5
55	5.5	4	5.5

The given lubrication quantities apply to preload K1 and speeds \leq 1 m/s

Tab. 21

Not self-lubricating

The carriages of sizes 35 and 45 are not self-lubricating due to the design.


Size	Initial lubrication grease	Relubrication [cm³]	Initial lubrication oil
35	3.5	3	3.5
45	4.5	3.5	4.5

The given lubrication quantities apply to preload K1 and speeds $\leq 1 \text{ m/s}$

Tab. 22

Lubrication nipple

The following lubrication nipples are part of the standard delivery:

Lubrication nipple	Size
NLA01	15
	20
NLB02	25
NLDU2	30
	35
NI DOA	45
NLB04	55

Tab. 23

Other lubrication nipples, such as lubrication adapters with hose inlet or with quick-coupling, are available on request. Please observe that the thread lengths (see fig. 28) can be changed when using additional deflectors and end seals. For more information please contact Application Technology.

Fig. 28

Friction / displacement resistance

Mono Rail profile rails have a low friction characteristic and thus low displacement resistance. The low start-up friction (breakaway force) is almost identical to the moving friction (running resistance).

The displacement resistance is dependent upon several factors:

- Friction of the sealing system
- Friction of the balls with each other
- Friction between balls and redirection
- Rolling resistance of the balls in the running grooves
- Resistance of lubricant in the carriage
- Resistance by contamination in the lubricant
- Preload for increase of rigidity
- Moment load

Resistance of the seals

Туре	f [N]
MRS15	0.15
MRS20	0.2
MRS25	0.35
MRS30	0.7
MRS35	8.0
MRS45	0.9
MCS55	1.0

Tab. 24

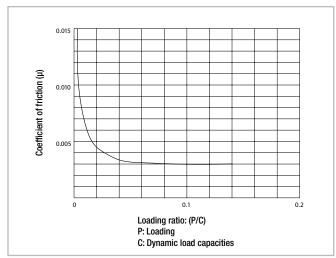


Fig. 29

Displacement resistance

The following formula is used for general approximate calculation of the displacement resistance. Please note that the level of preload or the viscosity of the lubricant used can also influence the displacement resistance.

$$F_{m} = \text{Displacement resistance (N)}$$

$$F = \text{Load (N)}$$

$$\mu = \text{Coefficient of friction}$$

$$f = \text{Resistance of the seals (N)}$$

Fig. 30

Mono Rail profile rails have a coefficient of friction of approx.

$$\mu = 0.002 - 0.003$$
.

Loading

The given static load capacity for each carriage represents the maximum permissible load value, which if exceeded causes permanent deformations of the raceways and adverse effects of the running properties.

Checking the load must be done as follows:

- through determination of the simultaneously occurring forces and moments for each carriage
- by comparison of these values with the corresponding load capacities.

The ratio of the actual load to maximum permissible load may be as large as the reciprocal of the accepted safety factor, S_n , at the most.

$$\frac{P_{0rad}}{C_{0rad}} \le \frac{1}{S_0}$$

$$\frac{P_{\text{0ax}}}{C_{\text{0ax}}} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \leq \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 31

The above formulas are valid for a single load case.

If two or more forces are acting simultaneously, please check the following formula:

$$\frac{P_{\text{Orad}}}{C_{\text{Orad}}} + \frac{P_{\text{Oax}}}{C_{\text{Oax}}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

 P_{Orad} = effective radial load (N)

 C_{Orad} = permissible radial load (N)

 P_{0ax} = effective axial load (N) C_{0ax} = permissible axial load (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_{x} , M_{v} , M_{z} = maximum permissible moments

in the different loading directions (Nm)

Fig. 32

Safety factor

Operating conditions	S _o
Normal operation	1 ~ 2
Loading with vibration or shock effect	2 ~ 3
Loading with strong vibration or impacts	≥3

Tab. 25

The safety factor $S_{\scriptscriptstyle 0}$ can lie on the lower given limit if the occurring forces can be determined with sufficient precision. If shock and vibration are present, the higher value should be selected. For dynamic applications higher safety is required. Please contact the Application Engineering Department.

Service life

Calculation of service life:

The dynamic load capacity C is a conventional variable used for calculating the service life. This load corresponds to a nominal service life of 50 km. The relationship between calculated service life $L_{\rm km}$ (in km), dynamic load capacity C (in N) and equivalent load P (in N) is given in the formula to the right:

The equivalent load P corresponds in its effects to the sum of the forces and moments working simultaneously on a slider. If these different load components are known, P results from the equation to the right:

$L_{km} = (\frac{C}{P} \cdot \frac{f_c}{f_i})^3 \cdot 50 \text{ km}$	$f_c = contact factor$ $f_i = application coefficient$
--	---

Fig. 33

 $P = |P_{0ax}| + |P_{0rad}| + (\frac{|M_1|}{M_x} + \frac{|M_2|}{M_y} + \frac{|M_3|}{M_z}) \cdot C_{0rad}$

Fig. 34

Contact factor f_c

The contact factor $\rm f_c$ refers to applications in which several carriages pass the same rail section. If two or more carriages are moved over the same point on a rail, the static and dynamic loading values must be multiplied with the numbers from the table below:

Number of carriages	1	2	3	4	5
f _c	1	0.81	0.72	0.66	0.61

Tab. 26

Application coefficient f

The application coefficient f_i can be understood as the dynamic safety factor. Refer to the table below for the values:

Operational conditions	Speed	f _i
Neither external impacts nor vibrations	Low speed V \leq 15 m/min.	1 - 1.5
Light impacts or vibrations	Average speed $15 < V \le 60$ m/min.	1.5 - 2
Average and high external impacts or vibrations	High speed $V > 60$ m/min.	2 - 3.5

Tab. 27

Installation instructions

The given radii and shoulder heights in the table must be observed when assembling rails and carriages on the stop edges to ensure perfect seating of carriages or raceways.

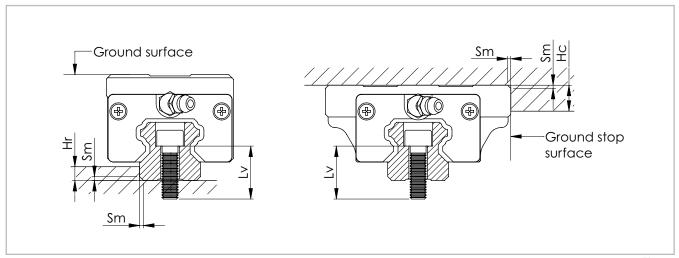


Fig. 35

Size	Maximum level of incline Sm [mm]	Maximum height of rail shoulder Hr [mm]	Maximum height of rail shoulder when using the side seal Hr* [mm]	Maximum height of slider shoulder Hc [mm]	Required bolt lengths (rails) Lv [mm]
15	0.8	4	1.9	5	M4 x 16
20	0.0	4.5	2.4	6	M5 x 20
25		6	3.9	7	M6 x 25
30	1.2	8	-	8	M9 v 20
35		8.5	6.6	9	M8 x 30
45	1.6	12	10.5	11	M12 x 40
55	1.6	13	-	12	M14 x 45

 $^{^{\}star}$ For use of various seals, see pg. 16, fig. 17ff

Tab. 28

Assembly precision

The maximum permissible deviations of the rail surfaces for assembly are given in the following drawing (see fig. 36) and the table below (see tab. 29):

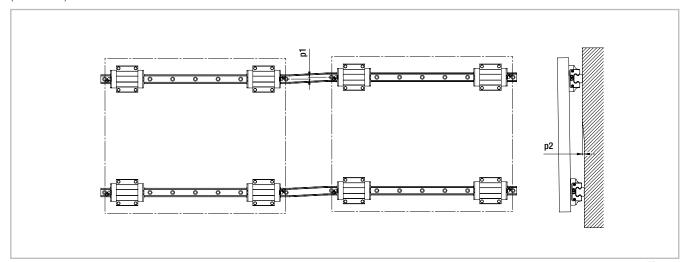


Fig. 36

Size	Permissil	ble tolerand [μι	ce for paral m]	lelism p1	Permissible tolerance for parallelism p2 [µm]			
	K2	K1	K0	G1	K2	K1	K0	G1
15	-	18	05 05	-			100	
20	18	20	25	35	50	85	130	190
25	20	22	30	42	70			195
30	27	30	40	55	90	110	170	250
35	30	35	50	68	120	150	210	290
45	35	40	60	85	140	170	250	350
55	45	50	70	95	170	210	300	420

Tab. 29

The bolt sizes to be used and optimum tightening torques for rail assembly are listed in the table below (see tab. 30).

Bolt	Tightening torque M _t [Nm]							
	Steel Cast iron Aluminium							
M4	4	3	2					
M5	9	6	4					
М6	14	9	7					
M8	30	20	15					
M12	118	78	59					
M14	157	105	78					

Tab. 30

Composite rails

Guide rails longer than the one part maximum length (see Ordering key, tab. 31), are put together from two or more rails.

When putting guide rails together, be sure that the register marks shown in fig. 37 are positioning correctly.

These are fabricated axisymmetric for parallel application of composite guide rails, unless otherwise specified.

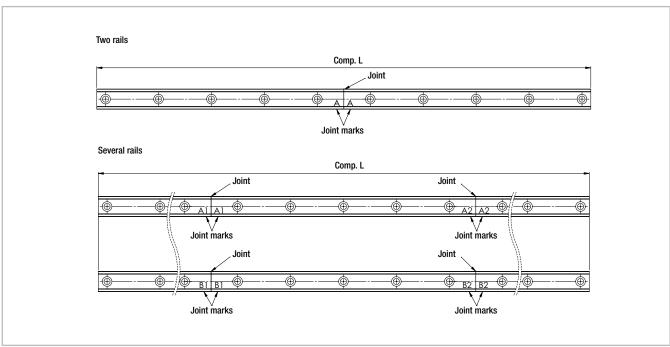


Fig. 37

Assembly process

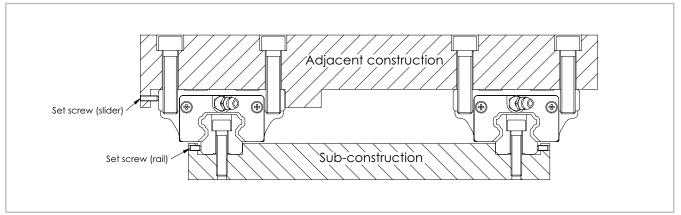


Fig. 38

Fixing guide rails:

(1) Whet the assembly surface with a whetstone and also remove burrs, unevenness and dirt (see fig. 39).

Note: All linear guides are preserved with anticorrosion oil at the factory. This protection must be removed before installation.

In doing so, please ensure that the surfaces are coated with low-viscosity oil for the purpose of further protection against corrosion.

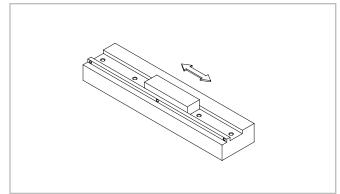


Fig. 39

(2) Carefully lay the guide rail on the assembly surface (see fig. 40) and slightly tighten the fixing screws so that the guide rail lightly touches the assembly surface

(align the guide rail along the shoulder edge of the assembly surface, see fig. 41).

Note: The fixing screws of the linear guide must be clean. Check if the fixing holes are located in the correct place when you insert the bolts. A forced tightening of a fixing screw in an offset hole can negatively affect accuracy.

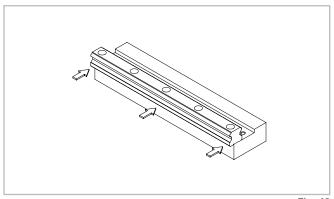


Fig. 40

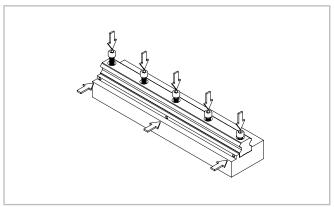


Fig. 41

(3) Tighten the thrust bolts on the guide rail until there is close contact on the side stop surface (see fig. 42).

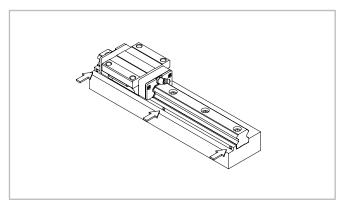


Fig. 42

(4) Tighten the fixing screws with a torque wrench to the prescribed torque (see pg. 31, tab. 30).

Note: For a high degree of accuracy, the fixing screws of the guide rail must be tightened in sequence outward from the centre (see fig. 43).

(5) Assemble the other rails in the same manner to complete the installation of the guide rails.

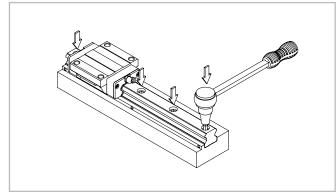
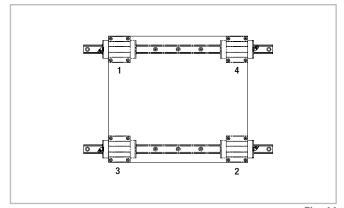


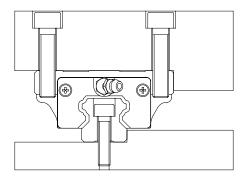
Fig. 43

Table assembly:

- (6) Set the table carefully on the carriage and tighten the fixing screws only lightly.
- (7) Press the carriage on the main guide side with the thrust bolts against the shoulder edge of the table and position the table.
- (8) Tighten the fixing screws on the main side and the lateral side completely tight to finish the installation. Note:

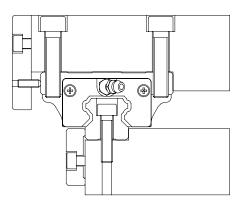
To attach the table uniformly, tighten the fixing screws diagonally (see fig. 44). This method saves time when straightening the guide rail and makes the manufacture of positioning pins unnecessary, which considerably reduces assembly time.



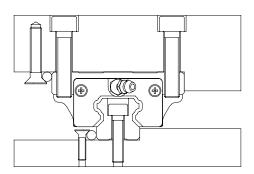

Fig. 44

Installation examples

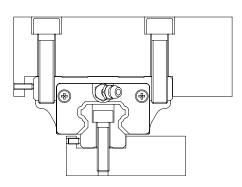
The following drawings illustrate some assembly examples for rail/carriage combinations corresponding to the structure of various machine frames:


Example 1:

Assembly of carriage and rail on shoulder edges


Example 3:

Securing carriage and rail using set pressure plates


Example 5:

Securing carriage and rail using bolts

Example 2:

Securing carriage and rail using set screws

Example 4:

Securing carriage and rail using taper gibs

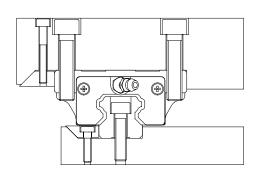
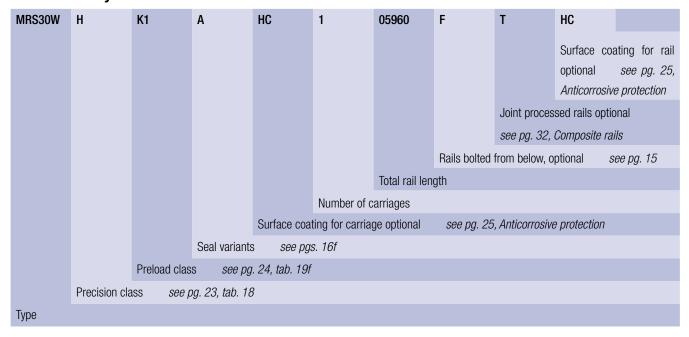



Fig. 45

35

Ordering key

Rail / slider system

Ordering example: MRS30W-H-K1-A-HC-1-05960F-T-HC Rail composition: 1x3100+1x2860 (only for joint processed rails)

Hole pattern: 20-38x80-40//40-35x80-20 (please always indicate the hole pattern separately)

Notes on ordering: The rail lengths are always indicated as $5\ \mbox{digits}$ with $0\ \mbox{prefixes}$

Rail

MRR	20	6860	N	F	T	НС	
						Surface coat	ting for rail optional
						see pg. 25,	Anticorrosive protection
					Joint proces	sed rails optic	onal see pg. 32, Composite rails
				Rails bolted	from below, o	ptional s	ree pg. 15
			Precision cla	ass <i>see p</i>	ng. 23, tab. 18	}	
		Total rail len	gth				
	Size						
Rail type							

Ordering example: MRR20-06850-NF-T-HC

Rail composition: 1x2920+1x3940 (only for joint processed rails)

 $\label{eq:hole pattern: 10-48x60-30/30-65x60-10} \ \ \text{(please always specify the hole pattern separately)}$

Notes on ordering: The rail lengths are always indicated as 5 digits with 0 prefixes

Carriage

MRS35	N	K0	Α	НС		
				Surface coa	ting for carriage optional	see pg. 25, Anticorrosive protection
			Seal variants	s see pg	s. 16f	
		Preload clas	s <i>see pg</i>	. 24, tab. 19f		
	Precision cla	ass <i>see p</i>	g. 23, tab. 18	3		
Туре						

Ordering example: MRS35-N-K0-A-HC

Hole pattern

Rail

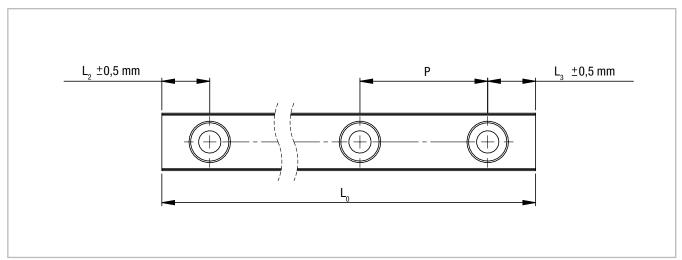


Fig. 46

Size	Hole pitch P [mm]	L _{2min} , L _{3min} [mm]	L _{2max} *, L _{3max} [mm]	L _{0max} [mm]
15				
20	60	7	20	4000
25				
30	80	8.5		3960
35	00	6.0		3900
45	105	11.5	22.5	3930
55	120	13	30	3900

 $^{^{\}star}$ Only applies when using max. rail lengths

Tab. 31

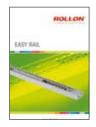
Portfolio

COMPACT RAIL

Rugged roller sliders with innovative self adjustment

MINIATURE MONO RAIL

Miniature format profile guideways with unique ball design


CURVILINE

Curvilinear rails for constant and variable radii

TELESCOPIC RAIL

Smooth-running telescopic linear bearing drawer slides with low deflection under heavy loads

EASY RAIL

Compact, versatile linear bearings

X-RAIL

Roller embossed stainless steel profiles for the use in rough environments

UNILINE

Steel-reinforced, belt-driven linear actuators with hardened steel linear bearings and precision radial ball bearing rollers

LIGHT RAIL

Full and partial extension, lightweight drawer slides

Fold out ordering key

To make this product catalog as simple as possible for you to use, we have included the following easy-to-read chart.

Your advantages:

- Description and ordering designations easy to read at one glance
- Simplified selection of the correct product
- Links to detailed descriptions in the catalog

ROLLON GmbH

Bonner Strasse 317-319 D-40589 Düsseldorf

Tel.: (+49) 211 95 747 0 Fax: (+49) 211 95 747 100 E-Mail: info@rollon.de

www.rollon.de

ROLLON S.A.R.L.

Les Jardins d'Eole, 2 allée des Séquoias

F-69760 Limonest

Tel.: (+33) (0)4 74 71 93 30 Fax: (+33) (0)4 74 71 95 31 E-Mail: infocom@rollon.fr

www.rollon.fr

ROLLON B.V.

Ringbaan Zuid 8 6905 DB Zevenaar

Tel.: (+31) 316 581 999 Fax: (+31) 316 341 236 E-Mail: info@rollon.nl www.rollon.nl

ROLLON Corporation

101 Bilby Road. Suite B
Hackettstown, NJ 07840
Tel.: (+1) 973 300 5492
Fax: (+1) 908 852 2714
E-Mail: info@rolloncorp.com
www.rolloncorp.com

All addresses of our global sales partners can also be found in the internet at www.rollon.com