GRC

Oscillation/rotation drive
Oscil Size 5/10/20/30/50/80

Overview

The table rotary actuator with rack and pinion realizes high load, direct mounting and high position accuracy thanks to a bearing guide.

High load/high accuracy positioning.

The table rotary actuator GRC series realizes high load, direct mounting and high position accuracy thanks to a bearing guide.

1 Excellent flexibility in design

 New industry-first ${ }_{\text {Torques }}^{\text {GRC. }} \mathbf{0 . 5 \mathrm { N } \cdot \mathrm { m })}$ compact. Unprecedented miniature size5/10/20/30/50/80 sizes available.
Standard and high accuracy are available with the same dimensions.

Model changes for lines (standard or high
accuracy) can be conducted quickly.

| Basic |
| :--- | :--- |
| GRC |

90° and 180° specifications are available.

A more compact form can be achieved by selecting a 90° oscillation angle.
GRC series variation

	Basic GRC	High accuracy GRC-K
With switch	0	
Size (torque value at 0.5 MPa$)$		
$5(0.5 \mathrm{~N} \cdot \mathrm{~m})$		-
$10(1.0 \mathrm{~N} \cdot \mathrm{~m})$		
$20(2.0 \mathrm{~N} \cdot \mathrm{~m})$		
$30(3.0 \mathrm{~N} \cdot \mathrm{~m})$		
$50(5.2 \mathrm{~N} \cdot \mathrm{~m})$		
$80(8.1 \mathrm{~N} \cdot \mathrm{~m})$		
Oscillating angle		
90°		
180°		
Option		
Shock absorber stopper		

Comes with an angle adjustment bolt with rubber cushion for adjusting the oscillation angle.

Rack and pinion

Select among 3 surfaces for piping port leadout directions.Large hollow diameter keeps piping and wiring simple.

Positioning spigots for the table top (4 positions) and the body bottom (1 position) are available.

Stable operation with external stopper

Smooth stopping is possible without backlash due to the external stopper and shock absorber (optional).

$1.5 \mathrm{~s} / 90^{\circ}$ low speed operation

The large pinion diameter and long piston stroke length achieve low speed operation.

Applications

Series variation
 Table rotary actuator GRC Series

Variation	Model No. JIS symbol		Size			
			5	10	20	30
Basic	$\overline{\text { GRC }}$	$D \neq$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
High accuracy	GRC-K	$-{ }_{F}$		\bigcirc	\bigcirc	\bigcirc
Fine speed	GRC-F	D_{i}	\bigcirc	\bigcirc	\bigcirc	\bigcirc
High accuracy/fine speed	GRC-KF	D_{p}		\bigcirc	\bigcirc	\bigcirc

		Max. oscillating angle (${ }^{\circ}$)		Option			$\begin{aligned} & \frac{1}{ㄹ} \\ & \stackrel{y y}{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbb{\infty} \\ & \stackrel{\varnothing}{\circ} \end{aligned}$
50	80	90	180	A1	A2	A3		
-	-	-	-	\bigcirc	\bigcirc	\bigcirc	O	1302
\bullet	\bullet	-	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1302
\bullet	\bullet	-	\bullet	\bigcirc	\bigcirc	\bigcirc	©	1316
-	\bullet	-	-	\bigcirc	\bigcirc	\bigcirc	O	1316

Note: Refer to page 1310 for external shock absorber.

Table rotary actuator Basic/high accuracy

GRC/GRC-K Series

Size: 5/10/20/30/50/80

JIS symbol

RoHS
CAD

Specifications
$1 \mathrm{MPa} \approx 145.0 \mathrm{psi}, 1 \mathrm{MPa}=10 \mathrm{bar}$

Item			GRC-5	$\begin{gathered} \text { GRC-10 } \\ \text { GRC-K-10 } \end{gathered}$	$\begin{gathered} \text { GRC-20 } \\ \text { GRC-K-20 } \end{gathered}$	$\begin{gathered} \text { GRC-30 } \\ \text { GRC-K-30 } \end{gathered}$	$\begin{gathered} \text { GRC-50 } \\ \text { GRC-K-50 } \end{gathered}$	$\begin{gathered} \text { GRC-80 } \\ \text { GRC-K-80 } \end{gathered}$
Size			5	10	20	30	50	80
Theoretical torque *1 N ${ }^{\text {* }} \mathrm{m}$			0.5	1.0	2.0	3.0	5.2	8.1
Actuation			Rack and pinion mechanism					
Working fluid			Compressed air					
Max. working pressure MPa			1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)					
Min. working pressure ${ }^{* 2}$ MPa	Basic		0.10 ($\sim 15 \mathrm{psi}, 1 \mathrm{bar}$)					
	High accuracy		-	0.15 ($\approx 22 \mathrm{psi}, 1.5 \mathrm{bar})$		0.10 ($\sim 15 \mathrm{psi}, 1 \mathrm{bar}$)		
	With external shock absorber		0.25	0.20	0.15 ($\approx 22 \mathrm{psi}, 1.5 \mathrm{bar}$)			
Proof pressure MPa			1.6 ($2330 \mathrm{psi}, 16 \mathrm{bar}$)					
Ambient temperature ${ }^{\circ} \mathrm{C}$			$0\left(32^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$ (no freezing)					
Port size			M5				Rc1/8	
Cushion	Basic/high accuracy		Rubber cushion					
	With external shock absorber		Shock absorber					
	Shock absorber model No.		NCK-0.3		NCK-0.7		NCK-1.2	NCK-2.6
Allowable absorbed energy	Basic/high accuracy		0.005	0.008	0.03		0.04	0.11
	With external shock absorber *7		0.46	0.59	1.15	1.71	2.33	2.78
Shock absorber stroke length mm			3.5	3.5	5	5	5.5	6.5
Lubrication			Not required (use turbine oil ISO VG32 if necessary for lubrication)					
Volumetric capacity *3 cm^{3}		90°	1.3	3.5	7.0	10.5	18.1	28.3
		180°	3.4	6.6	13.4	20.0	34.4	53.7
Oscillating angle adjusting range *4	Basic/high accuracy	90°	0° to 100°					
		180°	90° to 190°					
	With external shock absorber	90°	$90^{\circ} \pm 6^{\circ}$					
		180°	$180^{\circ} \pm 6^{\circ}$					
Oscillating time adjusting range ${ }^{*} *^{*} 8 \quad \mathrm{~s} / 90^{\circ}$			0.2 to 1.5					
Table deflection (reference value) *6		Basic	$\pm 0.17^{\circ}$			$\pm 0.23{ }^{\circ}$	$\pm 0.26{ }^{\circ}$	$\pm 0.32^{\circ}$
		High accuracy	-	$\pm 0.026^{\circ}$				

*1: The theoretical torque is value at working pressure 0.5 MPa .
*2 : To push through the rubber cushion integrated in basic and high accuracy, 0.3 MPa and over working pressure is required.
*3 : Volumetric capacity is value within oscillating angle adjusting range when max. oscillating angle.
*4 : Oscillating angle adjusting range is value when adjusted by both side stopper bolts (shock absorber).
*5 : Oscillating time adjusting range is value at working pressure 0.5 MPa
*6 : Displacement of table at 100 mm away from the center of rotation is shown in technical data (page 1327).
*7 : The values in the table indicate the absorbed energy at the maximum oscillation speed. The absorbed energy varies depending on the oscillation speed. Refer to the graph of "Absorbed energy and oscillating time" on page 1324 for details.
*8 : For the type with shock absorber, the time until the unit hits the end of shock absorber (end of rod). (Not the oscillating time until the unit reaches the stroke end of the shock absorber.)

Switch specifications
1-color/2-color display

Item	Proximity 2-wire				Proximity 3-wire			
	T1H/T1V	T2H/T2V	T2YH/T2YV	T2WH/T2WV	T3H/T3V	T3PH/T3PV	T3YH/T3YV	T3WH/T3WV
Applications	For programmable controller, relay, compact solenoid valve	Dedicated for programmable controller			For programmable controller, relay			
Output method	- -				NPN output	PNP output	NPN output	
Pwr. supp. V.	- -				10 to 28 VDC			
Load voltage	85 to 265 VAC	10 to 30 VDC		24 VDC $\pm 10 \%$	30 VDC or less			
Load current	5 to 100 mA	5 to $20 \mathrm{~mA}{ }^{*} 3$)			100 mA or less		50 mA or less	
Indicator lamp	LED (Lit when ON)	$\begin{gathered} \text { LED } \\ \text { (Lit when ON) } \end{gathered}$	$\begin{gathered} \text { Red/green } \\ \text { LED } \\ \text { (Lit when ON) } \end{gathered}$	$\begin{gathered} \text { Red/green } \\ \text { LED } \\ \text { (Lit when ON) } \end{gathered}$	LED (Lit when ON)	$\begin{gathered} \hline \text { Yellow } \\ \text { LED } \\ \text { (Lit when ON) } \end{gathered}$		green D (ON)
Leakage current	$\begin{array}{\|c} \hline 1 \mathrm{~mA} \text { or less at } \\ 100 \text { VAC } \\ 2 \mathrm{~mA} \text { or less at } \\ 200 \text { VAC } \\ \hline \end{array}$	1 mA or less			$10 \mu \mathrm{~A}$ or less			
Weight g	$\begin{aligned} & 1 \mathrm{~m}: 33 \\ & 3 \mathrm{~m}: 87 \\ & 5 \mathrm{~m}: 142 \end{aligned}$	$1 \mathrm{~m}: 18$ $3 \mathrm{~m}: 49$ $5 \mathrm{~m}: 80$		$1 \mathrm{~m}: 18$ 3 m:49 $5 \mathrm{~m}: 80$	$1 \mathrm{~m}: 18$ 3 m:49 $5 \mathrm{~m}: 80$			$1 \mathrm{~m}: 18$ $3 \mathrm{~m}: 49$ $5 \mathrm{~m}: 80$

*1 : Refer to Ending Page 1 for detailed switch specifications and dimensions.
*2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.
*3 : The max. load current is 20 mA at $25^{\circ} \mathrm{C}$. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA at $60^{\circ} \mathrm{C}$)

Min. oscillating angle with switch

| Size | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{8 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T type proximity
 2-color display | 20° | 15° | 17.5° | 12.5° | 12.5° | 12.5° |

Theoretical torque table
(Unit: $\mathrm{N} \cdot \mathrm{m}$)

Size	Working pressure (MPa)									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
5	-	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	-	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
20	-	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
30	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0
50	1.0	2.1	3.1	4.1	5.2	6.2	7.3	8.3	9.3	10.4
80	1.6	3.2	4.9	6.5	8.1	9.7	11.3	13.0	14.6	16.2

Product weight

(Unit: kg)

Oscillating angle	90°		180°		Outer mount shock absorber weight	Switch weight (per switch)
Model No.	Basic	High accuracy	Basic	High accuracy		
GRC- 5	0.39	-	0.43	-	0.20	0.02
GRC-10	0.48	0.50	0.56	0.58	0.30	
GRC-20	0.78	0.80	0.88	0.90	0.40	
GRC-30	1.05	1.30	1.25	1.50	0.50	
GRC-50	1.80	2.10	2.10	2.40	0.60	
GRC-80	2.30	2.60	2.70	3.00	0.70	

Clean-room specifications (Catalog No. CB.0333A)

Anti-dust generation structure for use in cleanrooms

Specifications for rechargeable battery (Catalog No. CC-1226A)

- Design compatible with rechargeable battery manufacturing process.

GRC $-\cdots \cdots-$	P73	GRC-K $-\cdots \cdots$	P73
GRC $-\cdots \cdots-$	P53	GRC-K $-\cdots \cdots$	P53

GRC P4*

GRC/GRC-K ${ }_{\text {series }}$

APrecautions for model No. selection
*1 : Port position of basic/high accuracy is provided on the side surface. Other ports are plugged.
*2 : The external shock absorber cannot be retrofitted onto the basic/high accuracy. Select the A3 type as an option if retrofiting.
*3 : If an external shock absorber is retrofit on the A3 type, the features will be the same as the A1 type. Consult CKD for A2 type.
[Example of model No.]
GRC-10-180-T2V-D-A1
Double acting

A Model No.	Basic
B Size	: 10
C) Port thread	: Rc thread
D Oscillating angle	: 180°
E Switch model No	Proximity/2-wire radial lead wire/lead wire 1 m
(F) Switch quantity	: 2
(G) Option	External shock absorber mounting position (1)

Outer mount shock absorber installation drawing
GRC-*-A1 (Installation position (1))

GRC-*-A2
(Installation position (2))

GRC-*-A3 (Installation position (3))

How to order
Without switch (built-in magnet for switch)

GRC -10 - 90	Code	Description		
With switch (built-in magnet for switch)	A Model No.			
(RC) 30	GRC	Basic		
GRC $-30-180 \cdot T 2 H^{*}=R-A 2$	GRC-K	High accuracy		
(A) Model No.	B Size (0.5 MPa)			
	Model No.	Theoretical torque	GRC	GRC-K
	5	$0.5[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	-
	10	$1.0[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	\bigcirc
	20	2.0 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
	30	3.0 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
	50	$5.2[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	\bigcirc
	80	8.1 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
	C Port thread			
C Port thread	Blank	Rc thread		
	NN	NPT thread ($\varnothing 50$ and over) (made-to-order product)		
	GN	G thread ($\varnothing 50$ and over) (made-to-order product)		
D Oscillating angle	(Oscillating angle			
	90	90°		
	180	180°		

How to order

How to order switch

- Switch body only

How to order repair parts kit
Set of repair parts (packing, etc.)

How to order external shock absorber set
Sets of plate, shock absorber and lever

- Used when retrofitting external shock absorber onto A3 type

LCM
LCR
LCG
LCC
STM
STG
STS
STR
UC

UCA2

Size	
Weightg	
5	2
10	4
20	
30	
50	8
80	

How to order shock absorber set for adjustable angle

- Sets of shock absorber and stopper

Applicable shock absorber model No.

Model	Shock absorber model No. Weight g	
GRC-5	NCK-00-0.3	12
GRC-10	NCK-00-0.3	
GRC-20	NCK-00-0.7	20
GRC-30	NCK-00-0.7	
GRC-50	NCK-00-1.2	40
GRC-80	NCK-00-2.6	70

GRC/GRC-K sories

```
- GRC (basic)
- GRC-K (high accuracy)
```


Cross-section view of the high accuracy

Parts list

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Hexagon socket head cap screw	Stainless steel		13	Hexagon socket set screw	Stainless steel	
2	Table	Aluminum alloy	Alumite	14	Steel ball	Stainless steel	
3	Bearing cover	Aluminum alloy (hi accuracy uses SS)	Alumite	15	Cylinder gasket	Nitrile rubber	
4	Ball bearing (1)	Alloy steel		16	Piston packing	Nitrile rubber	
5	Shaft	Alloy steel		17	Wear ring	Acetal resin	
6	Cylinder body	Aluminum alloy	Hard alumite	18	Magnet	Plastic (5.10 is special alloy.)	
7	Ball bearing (2)	Alloy steel		19	Piston	Stainless steel	
8	Hexagon socket head cap screw	Stainless steel		20	Cushion rubber	Urethane rubber	
9	Head cover (1)	Aluminum alloy	Alumite	21	Seal washer	Steel + nitrile rubber	Zinc plated
10	Gasket	Nitrile rubber		22	Hexagon nut	Steel	Nickeling
11	Hexagon socket head cap screw	Stainless steel		23	Stopper bolt	Alloy steel	Nickeling
12	Head cover (2)	Aluminum alloy	Alumite	24	Plain washer	Stainless steel	

Internal structure and parts list

Internal structure and parts list

- GRC- \square-A (with external shock absorber)

Note: The figure shows 90° specifications. 180° specifications use the same material, etc.

Parts list

No. Part name	Material	Remarks	
1	Hexagon socket head cap screw	Stainless steel	
2	Lever	Carbon steel or alloy steel	Nickel/phosphorous plating
3	Connector	Steel	Nickeling
4	Plate	Aluminum alloy	Alumite
5	Hexagon socket head cap screw	Stainless steel	
6	Hexagon socket head cap screw	Stainless steel	
7	Hexagon head bolt	Stainless steel	
8	Stopper	Stainless steel	
9	Shock absorber		
10	Hexagon nut	Steel	Nickeling

Repair parts kit

Kit No.	Repair parts No.
GRC-5K	(10) 1517
GRC-10K	
GRC-20K	
GRC-30K	
GRC-50K	
GRC-80K	

*1: Specify the kit No. when ordering repair parts.
*2: Avoid disassembly/repair, since high accuracy uses highly controlled precision parts.
When repairing high accuracy, consult with CKD.

GRC/GRC-K series

Dimensions
CAD
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSKIM2
JSG
JSC3/SCC
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
NecthroChive
ShkAbs
FJ
FK
SpdContr
Ending

Size	AA	AB	BA	BB	BC	CA	CB	CC	DA	DB	EA	EB	EC	FA	FB	G	HA	HB
5	M4 depth 7	24	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { M deph } \\ \hline .5 \end{array}$	26	48	Spot face $\varnothing 9.5$ depth 5.4	5.2	$\underset{\substack{\text { M6 } \\ \text { depth } 12}}{ }$	35	42	11	2	3 depth 3.5	36	48	M5	43	13
10	M5 deph 7	30	M5 deph 7	32	54	Spot face $\varnothing 11$ depth 6.5	6.6	$\underset{\substack{\text { M8 } \\ \text { depth } 12}}{\text { chem }}$	40	46	14	2	3 depth 3.5	41	54	M5	46	13
20	M6 dept 9	36	M6 dept 8	42	62	Spot face $\varnothing 11$ depth 6.5	6.9	$\underset{\substack{\text { M8 } \\ \text { depth } 12}}{ }$	47	55	17	2	4 depth 4.5	48	64	M5	53	16
30	M6t depth 9	44	M6 depth 8	52	74	Spot face $\varnothing 14$ depth 8.6	8.7	$\underset{\substack{\text { M10 } \\ \text { depth } 15}}{\text { cen }}$	58	67	21	2	4 depth 4.5	59	78	M5	55	18
50	M8 depth 13	50	$\begin{array}{\|c} \hline \text { M8 depth } \\ 12 \end{array}$	60	88	Spot face $\varnothing 17.5$ depth 10.8	10.5	$\begin{gathered} \mathrm{M1L}^{2} \\ \text { depph } 18 \end{gathered}$	66	74	24	2	5 depth 5.5	69	92	Rc1/8	71	23
80	M8 depth 13	54	${ }_{\substack{\text { M } \\ 12}}^{\text {M depth }}$	66	94	Spot face $\varnothing 17.5$ depth 10.8	10.5	$\underset{\substack{\text { M12 } \\ \text { depth } 18}}{\substack{\text { che }}}$	69	80	26	2	5 depth 5.5	76	101	Rc1/8	80	25

Size	SA		SB	TA	TB	TC	UA	UB	V	W	X	LD		RD	
	90°	180°										90°	180°	90°	180°
5	73	90	14	6.5	M6×1	8.7	16.6	16	3	10	12.6	21.5	25.5	22.5	25.5
10	83	107	15	4.9	M 8×0.75	4.9	17.1	19.4	4	11	13.1	24.5	30.5	26	30.5
20	96	125	17	6.1	M10×1	5.7	17.6	24	5	13	13.6	31	37.5	31	37.5
30	121	165	25	6.1	M10×1	3.8	17.6	34	5	13	13.6	38.5	49.5	40	49.5
50	144	192	29.5	7	M12×1	3.5	24.6	35	6	14	20.6	48.5	61	51	61
80	150	198	29.5	7	M12×1	3.5	27.1	36	6	14	23.1	51.5	64	54	64

GRC-5

Position of 4-BA and 2-CA differ for GRC-5 only.

A section details

Switch mounting position

HC	HD	HE	JA	JB	JC	JD	JE	JF		JG	JH	K	MA	MB	NA	NB	NC	PA	PB	Q
30	7	6	15	18	16	21	11.5	65	82	5.6	29	42	17	2	4	5.5	2.4	12	3.5	8
33	7	6	15	19	20	21.5	12	75	99	5.6	37	48	22	2	8	5.5	2.4	18	2.5	8
37	9	7	14.5	20.5	27	22	13	86	115	5.6	47	58	27	2	11	6.5	3.9	20	2.5	10
37	9	9	14.5	20.5	37	22	13	111	155	5.6	57	68	32	2	13	7.5	2.9	26	2.5	10
48	13	10	21.5	27.5	36	32.5	17.5	129	177	8.1	58	75	37	4	14	10.5	5.3	28	4.5	15
55	13	12	24	30	40	35	19	135	183	8.1	58	80	40	3	17	9.5	4.4	36	3.5	15

GRC ${ }_{\text {series }}$

GRC-5-*-A1/A2
Note: The drawing is for A1 type (mounting position (1))

180° specifications

90° specifications
Note: Dimensions of rotary actuator main body are the same as the basic; however, the body cannot be fixed using the 4 screw holes on the top. As well, positioning pin hole position on tabletop differs according to external shock absorber mounting position.

GRC-5-*-A1

GRC-5**-A2

GRC ${ }_{\text {series }}$

GRC-50-*-A1/A2
Note: The drawing is for A1 type (mounting position (1))

Note: Dimensions of rotary actuator main body are the same as the basic; however, the body cannot be fixed using the 4 screw holes on the top. As well, positioning pin hole position on tabletop differs according to external shock absorber mounting position. (Refer to GRC-5-*-A1/A2.)

With external shock absorber

- GRC-80-*-A1/A2

Note: The drawing is for A1 type (mounting position (1))

GRC ${ }_{\text {series }}$

Dimensions: For retrofitting of external shock absorber size 5 to 80

- GRC-*-A3

When external shock absorber set is installed. (ז - 〕 〕 shows external shock absorber set.)
Note: If an external shock absorber is retrofit on the A3 type, the features will be the same as the A1 type.
Consult with CKD for A2 type. (Refer to page 1310 for mounting position)

MEMO

LCM
LCR
LCG
LCW
LCX
STM
STG
STSISTL
STR2
UCA2
ULK*
JSKIM2
JSG
JSC3JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
Meethrochuk
ShkAbs
FJ
FK
SpdContr
Ending

Specifications

Item		GRC-F-5	GRC-F-10 GRC-KF-10	GRC-F-20 GRC-KF-20	GRC-F-30 GRC-KF-30	GRC-F-50 GRC-KF-50	GRC-F-80 GRC-KF-80
Size		5	10	20	30	50	80
Theoretical torque *1 $\mathrm{N} \cdot \mathrm{m}$		0.5	1.0	2.0	3.0	5.2	8.1
Actuation		Rack and pinion mechanism					
Working fluid		Compressed air					
Max. working pressure $\quad \mathrm{MPa}$		1.0 ($1150 \mathrm{psi}, 10 \mathrm{bar}$)					
Min. working pressureMPa	Basic	0.10 ($\sim 15 \mathrm{psi}, 1 \mathrm{bar}$)					
	High accuracy	-	0.15 ($\sim 22 \mathrm{psi}, 1.5 \mathrm{bar}$)		0.10 ($\sim 15 \mathrm{psi}, 1 \mathrm{bar}$)		
	With external shock absorber	0.25	0.20	0.15 ($\approx 22 \mathrm{psi}, 1.5 \mathrm{bar})$			
Proof pressure $\quad \mathrm{MPa}$	MPa	1.6 ($\approx 230 \mathrm{psi}, 16 \mathrm{bar}$)					
Ambient temperature ${ }^{\circ} \mathrm{C}$		$5\left(41^{\circ} \mathrm{F}\right)$ to 60 ($140^{\circ} \mathrm{F}$)					
Allowable absorbed energy	Basic/high accuracy	0.005	0.008	0.03		0.04	0.11
	With external shock absorber *3	0.46	0.59	1.15	1.71	2.33	2.78
Cushion	Basic/high accuracy	Rubber cushion					
	With external shock absorber	Shock absorber					
	Shock absorber model No.	NCK-0.3		NCK-0.7		NCK-1.2	NCK-2.6
Oscillating angle adjusting range *2	Basic/high accuracy 90° specifications	0° to 100°					
	Basic/igh accuracy 180 ${ }^{\circ}$ specifications	90° to 190°					
	With external shock absorber	$90^{\circ} \pm 6^{\circ}$					
		$180^{\circ} \pm 6^{\circ}$					
Oscillating time adjusting range $\mathrm{S} / 90^{\circ}$		0.2 to 25					
		M5				Rc1/8	
Lubrication		Lubrication not possible					

*1 : The theoretical torque is value at working pressure 0.5 MPa .
*2 : The angle adjusting range applies when adjusted with the stopper bolts (shock absorbers) on both sides.
If a shock absorber is provided, the fine speed specifications will not apply to the shock absorber section.
*3: The values in the table indicate the absorbed energy at the maximum oscillation speed. The absorbed energy varies depending on the oscillation speed. Refer to the graph of "Absorbed energy and oscillating time" on page 1324 for details.

Switch specifications

- 1-color/2-color display

Item	Proximity 2-wire				Proximity 3-wire			
	T1H/T1V	T2H/T2V	T2YH/T2YV	T2WH/T2WV	T3H/T3V	T3PH/T3PV	T3YH/T3YV	T3WH/T3WV
Applications	For programmable controller, relay, compact solenoid valve	Dedicated for programmable controller			For programmable controller, relay			
Output method					NPN output	PNP output	NPN output	
Pwr. supp. V.	-				10 to 28 VDC			
Load voltage	85 to 265 VAC	10 to 30 VDC		24 VDC $\pm 10 \%$	30 VDC or less			
Load current	5 to $100 \mathrm{~mA} \mathrm{(*3)}$	5 to 20 mA (*3)			100 mA or less		50 mA or less	
Indicator lamp	LED (Lit when ON)	LED (Lit when ON)	$\begin{gathered} \text { Red/green } \\ \text { LED } \\ \text { (Lit when ON) } \end{gathered}$	$\begin{array}{\|c} \hline \text { Red/green } \\ \text { LED } \\ \text { (Lit when ON) } \\ \hline \end{array}$	LED (Lit when ON)	Yellow LED (Lit when ON)	Red	green D ON)
Leakage current	1 mA or less at 100 VAC 2 mA or less at 200 VAC	1 mA or less			$10 \mu \mathrm{~A}$ or less			
Weight g	$1 \mathrm{~m}: 33$	$1 \mathrm{~m}: 18$	$1 \mathrm{~m}: 33$	$1 \mathrm{~m}: 18$	$1 \mathrm{~m}: 18$		$1 \mathrm{~m}: 33$	$1 \mathrm{~m}: 18$
	$3 \mathrm{~m}: 87$	$3 \mathrm{~m}: 49$	$3 \mathrm{~m}: 87$	$3 \mathrm{~m}: 49$	$3 \mathrm{~m}: 49$$5 \mathrm{~m}: 80$		$3 \mathrm{~m}: 87$	$3 \mathrm{~m}: 49$
	$5 \mathrm{~m}: 142$	$5 \mathrm{~m}: 80$	$5 \mathrm{~m}: 142$	$5 \mathrm{~m}: 80$			$5 \mathrm{~m}: 142$	$5 \mathrm{~m}: 80$

*1 : Refer to Ending Page 1 for detailed switch specifications and dimensions.
*2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.
*3 : The max. load current is 20 mA at $25^{\circ} \mathrm{C}$. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA at $60^{\circ} \mathrm{C}$)

Dimensions

Dimensions are the same as the basic GRC Series or the high load GRC-K Series. Refer to pages

 1308 to 1314.How to order

How to order

Without switch (built-in magnet for switch)

- With switch (built-in magnet for switch)

A. Precautions for model No. selection
*1 : Port position of basic/high accuracy is provided on the side surface. Other ports are plugged.
*2 : The external shock absorber cannot be retrofitted onto the basic/high accuracy. Select the A3 type as an option if retrofitting.
*3: If an external shock absorber is retrofit on the A3 type, the features will be the same as the A1 type. Consult CKD for A2 type.
*4 : For discrete switches and options, refer to page 1305.
[Example of model No.]
GRC-F-10-180-T2V-D-A1
Double acting

A Model No.	$:$ Basic
B Size	$: 10$
C Port thread	$:$ Rc thread
(D) Oscillating angle	$: 180^{\circ}$
E Switch model No. : Proximity/2-wire radial lead wire/	
	lead wire 1 m
F Switch quantity	$: 2$
($)$ Option	$:$ External shock absorber
	mounting position (1)

Outer mount shock absorber installation drawing

Installation position (1)
GRC- \square-A1

Installation position (2) GRC- \square-A2

Retrofitting of external shock absorber
GRC- \square-A3

Code	Description		
A Model No.			
GRC-F	Basic		
GRC-KF	High accuracy		
B Size			
Model No.	Theoretical torque	GRC-F	GRC-KF
5	$0.5[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	-
10	$1.0[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	\bigcirc
20	2.0 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
30	3.0 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
50	$5.2[\mathrm{~N} \cdot \mathrm{~m}]$	\bigcirc	\bigcirc
80	8.1 [$\mathrm{N} \cdot \mathrm{m}$]	\bigcirc	\bigcirc
C Port thread			
Blank	Rc thread		
NN	NPT thread ($\varnothing 50$ and over) (made-to-order product)		
GN	G thread ($\varnothing 50$ and over) (made-to-order product)		

(D) Oscillating angle

90	90°
180	180°

E Switch model No.

Axial lead wire	Radial lead wire	$\begin{array}{\|l} \hline \stackrel{\rightharpoonup}{4} \\ \text { 岂 } \\ \hline \end{array}$	Voltage		Indicator	Lead wire
			AC	DC		
T1H*	T1V*		\bigcirc		1-color display	2-wire
T2H*	T2V*			\bigcirc		2-wire
T3H*	T3			\bigcirc		3-wire
T3PH*	T3PV*			\bigcirc	1-color display	3-wire
T2WH*	T2WV*			\bigcirc		2-wire
T2YH*	T2YV*			\bigcirc	2-color display	2-wire
T3WH*	T3WV*			\bigcirc		3-wire
T3YH*	T3YV*			\bigcirc		3-wire

* Lead wire length

Blank	1 m (standard)
$\mathbf{3}$	3 m (option)
$\mathbf{5}$	5 m (option)

(F) Switch quantity

F Switch quantity	
\mathbf{R}	With clockwise rotation detection 1 piece
L	With counterclockwise rotation detection 1 piece
\mathbf{D}	2

A	With outer mount shock absorber
A1	Installation position (1)
A2	Installation position (2)
A3	External shock absorber retrofiting (Installation groove machined)

Clean-room specifications (Catalog No. CB-033SA)

Anti-dust generation structure for use in cleanrooms

Specifications for rechargeable battery

Design compatible with rechargeable battery manufacturing process.
GRC - \cdot - $\mathbf{P 4}^{*}$

LCR

Select based on the following procedures.

Step 1 Oscillating time confirmation

If the oscillating time is set outside of the specified range, the actuator's operation may become unstable, or the actuator could be damaged. Always set the oscillating time within the specified oscillating time adjusting range.

	When used at $9 \mathbf{9 0}^{\circ}$	When used at $\mathbf{1 8 0}$
Oscillating time (s)	0.2 to 1.5	0.4 to 3.0

Step 2 Size (torque) selection
Selection method is roughly categorized into three load. In each case, the required torque must be calculated. If the load is a compound load, add each torque to calculate the required torque.
Select size from theoretical torque table or actual torque diagram per working pressure to meet required torque.
(1) Static load (Ts)

When static pushing force is required for clamp, etc.

$$
\mathrm{Ts}=\mathrm{Fs} \times \mathrm{L}
$$

Ts: Required torque ($\mathrm{N} \cdot \mathrm{m}$)
Fs : Required force (N)
L : Length from center of rotation to pressure cone apex (m)
(2) Resistance load (T_{R})

When force including frictional force, gravity or other
external force is applied

$$
T_{R}=K \times F_{R} \times L
$$

T_{R} : Required torque ($\mathrm{N} \cdot \mathrm{m}$)
K : Slack coefficient Non-fluctuating load coefficient $\mathrm{K}=2$

$$
\text { lWhen load fluctuates } \quad \mathrm{K}=5
$$

F_{R} : Required force (N)
$\mathrm{L}:$ Length from center of rotation to pressure cone apex (m)
(3) Inertia load (TA)

When the object is rotated

$$
\begin{aligned}
& T_{A}=5 \times I \times \dot{\omega} \\
& \dot{\omega}=\frac{2 \theta}{t^{2}}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{A}}:$ Required torque $(\mathrm{N} \cdot \mathrm{m})$
I : Moment of inertia ($\mathrm{kg} \cdot \mathrm{m}^{2}$)
$\dot{\omega}$: Maximum angular speed ($\mathrm{rad} / \mathrm{s}^{2}$)
θ : Oscillating angle (rad)
t : Oscillating time (s)
Calculate moment of inertia using moment of inertia and oscillation time (page 1324) or figure for moment of inertia calculation (page 1325).

Step 3 Allowable energy confirmation

When using an inertial load, if the load's kinetic energy exceeds the allowable value at the oscillating end, the actuator could be damaged. Select one within allowable energy according to Table 1. If energy is too large, stop load with external shock absorber, etc.

$$
\begin{aligned}
& E=\frac{1}{2} \times 1 \times \omega^{2} \\
& \omega=\frac{2 \theta}{t}
\end{aligned}
$$

E : Kinetic energy (J)
I: Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
ω : Angular speed at the end of oscillation (rad/s)
θ : Oscillating angle (rad)
t : Oscillating time (s)
Calculate moment of inertia using moment of inertia and oscillation time (page 1324) or figure for moment of inertia calculation (page 1325).

Selection guide: selection method

Selection method

Step 4 Allowable load confirmation

If load applies to table, load is to be within allowable value on Table 2.
If combined load is applied, total of ratio for allowable value per load is to be 1.0 or less.
Load is categorized with the following 3 types.
(1) Thrust load (axial load)

(2) Radial load (lateral load)

(3) Moment load

Substitute result to following formula, and check after each load is calculated.

$$
\frac{W_{s}}{W_{s \max }}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M_{\max }} \leq 1.0
$$

Ws : Thrust load (N)
$W_{R} \quad$: Radial load (N)
M : Moment load ($\mathrm{N} \cdot \mathrm{m}$)
$W_{\text {smax }}$: Allowable thrust load (N)
$W_{\text {Rmax }}$: Allowable radial load (N)
$\mathrm{M}_{\max }$: Allowable moment load (N•m)

Allowable value per allowable absorbed energy value and load is shown in the following table

Size		5	10		20	30	50	80
Basic/high accuracy		0.005	0.008		0.03		0.04	0.11
With external shock absorber		0.46	0.59		1.15	1.71	2.33	2.78
Table 2 Allowable load value					$W_{\text {Smax }}$	$W_{R \max } M_{\max }$		
Size		5	5	10	20	30	50	80
Thrust load Wsmax [N]	Basic		50	80	140	200	450	580
	High accuracy		-	120	220	440	550	650
Radial load	Basic		30	80	150	200	320	400
$W_{\text {Rmax }}[\mathrm{N}]$	High accuracy		-	100	160	240	380	480
Moment load	Basic		1.5	2.5	4.0	5.5	10.0	13.0
$M_{\text {max }}[\mathrm{N} \cdot \mathrm{m}]$	High accuracy		-	3.0	5.0	7.0	12.0	15.0

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD

Selection example (1)

When rectangular parallelepiped load is applied

[Operation conditions]

Pressure	$: 0.5(\mathrm{MPa})$
Oscillating angle	$: 90^{\circ}$
Oscillating time	$: 0.6(\mathrm{~s})$
Load	(material : aluminum alloy)

[Rectangular parallelepiped] : $0.5(\mathrm{~kg})$

Step 1 Oscillating time confirmation

Oscillating time is 0.6 ($\mathrm{s} / 90^{\circ}$) according to operation conditions.
Since oscillating time is within adjusting range 0.2 to $1.5\left(\mathrm{~s} / 90^{\circ}\right)$, go to next step.

Step 2 Size (torque) selection

First, calculate moment of inertia (I) due to inertia load. [Rectangular parallelepiped]

$$
\begin{equation*}
\mathrm{I}=0.5 \times \frac{0.06^{2}}{6}=3 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \tag{1}
\end{equation*}
$$

Then calculate the maximum angular speed ($\dot{\omega}$).
On conditions $\theta=90^{\circ}=\frac{\pi}{2}(\mathrm{rad}), \quad \mathrm{t}=0.6(\mathrm{~s})$
Therefore,

$$
\begin{equation*}
\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}=\frac{\pi}{0.6^{2}}=8.73\left(\mathrm{rad} / \mathrm{s}^{2}\right) . \tag{2}
\end{equation*}
$$

Therefore, inertia load (T_{A}) from (1) and (2)
$\mathrm{T}_{\mathrm{A}}=5 \times 3 \times 10^{-4} \times 8.73$

$$
\begin{equation*}
=0.0131(\mathrm{~N} \cdot \mathrm{~m}) \tag{3}
\end{equation*}
$$

According to (3) value and operational conditions and torque at $0.5(\mathrm{MPa})$ GRC-5-90 (A)
can be selected.

Step 3 Allowable energy confirmation

Check if value is within allowable energy after kinetic energy is calculated.
Calculate the angular speed at the end of oscillation ω.
On conditions $\theta=90^{\circ}=\frac{\pi}{2}(\mathrm{rad}), \quad \mathrm{t}=0.6(\mathrm{~s})$
Therefore,
$\omega=\frac{2 \theta}{\mathrm{t}}=\frac{\pi}{0.6}=5.24(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is

$$
\begin{align*}
E & =\frac{1}{2} \times 3 \times 10^{-4} \times 5.24^{2} \\
& =0.00412(\mathrm{~J}) \tag{4}
\end{align*}
$$

From (4) and (A) selected at Step 2
GRC-5-90
can be selected.

Step 4 Allowable load confirmation

Finally, check if value is within allowable load range after load value that applies to table is calculated.
[Thrust load]
Thrust load (Ws),
$\mathrm{Ws}=0.5 \times 9.8=4.9(\mathrm{~N})$
[Radial load]
Since no radial load is applied,
$\mathrm{W}_{\mathrm{R}}=0(\mathrm{~N})$
[Moment load]
Since no moment load is applied,
$\mathrm{M}=0(\mathrm{~N} \cdot \mathrm{~m})$
According to (5), (6), (7), (B),

$$
\begin{align*}
& \frac{W_{s}}{W_{s \max }}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M_{\max }} \\
& \quad=\frac{4.9}{50}+\frac{0}{30}+\frac{0}{1.5}=0.098 \leq 1.0 \tag{C}
\end{align*}
$$

According to (B) and (C), total load value is within allowable load value.

[^0]
Selection example (2)

> According to (5), (6), (7), (B),

$$
\begin{aligned}
& \frac{W_{s}}{W_{s \max }}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M_{\max }} \\
& \quad=\frac{92.2}{450}+\frac{0}{320}+\frac{12.8}{10}=1.48>1.0
\end{aligned}
$$

Increase by one size and recalculate with GRC-80-90 since moment load is exceeding allowable value.

$$
\begin{aligned}
& \frac{W_{s}}{W_{s \max }}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M \max } \\
& \quad=\frac{92.2}{580}+\frac{0}{400}+\frac{12.8}{13}=1.14>1.0
\end{aligned}
$$

Since total load value is still exceeding allowable value, select high accuracy, and calculate

$$
\begin{equation*}
=\frac{92.2}{650}+\frac{0}{480}+\frac{12.8}{15}=0.99 \leq 1.0 \tag{C}
\end{equation*}
$$

According to (C), total load value is within the allowable load value,so GRC - K - 80-90-A1,A2
can be selected.

Selection example (3)

When load is applied to rectangle plate with rotary shaft horizontal

(Distance from center of rotation to rectangle plate load center)
[Operation conditions]

$$
\text { Pressure } \quad: 0.5(\mathrm{MPa})
$$

Oscillating angle : 180°
Oscillating time : 0.5(s)
Load (material: aluminum alloy)
[Rectangle plate] $\quad: 0.2(\mathrm{~kg})$
[Rectangular parallelepiped] : 0.5 (kg)

Step 1 Oscillating time confirmation

Oscillating time is $0.5\left(\mathrm{~s} / 180^{\circ}\right)$ according to operation conditions. Since oscillating time is within adjusting range 0.4 to 3.0 ($\mathrm{s} / 180^{\circ}$), go to next step.

Step 2 Size (torque) selection

This is a gravitational resistance load and inertial load, so calculate the resistance load (T_{R}) and moment of inertia (I).
[Resistance load]
Resistance load varies per rotation of table.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}=0.2 \times 9.8=1.96(\mathrm{~N}) \\
& \mathrm{R}=0.105(\mathrm{~m})
\end{aligned}
$$

Therefore,

$$
T_{R}=5 \times 1.96 \times 0.105=1.03(\mathrm{~N} \cdot \mathrm{~m}) \ldots . . .(1)
$$

[Inertia load]
[Rectangle plate]

$$
\begin{aligned}
l_{1}= & 0.2 \times \frac{0.15^{2}}{12}+0.2 \times 0.105^{2} \\
& =2.58 \times 10^{-3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
\end{aligned}
$$

[Rectangular parallelepiped section]
$\mathrm{t}_{2}=0.5 \times \frac{0.06^{2}}{6}=3 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Therefore, total moment of inertia (I) is as follows.

$$
\begin{equation*}
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=2.88 \times 10^{-3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \tag{2}
\end{equation*}
$$

\qquad
Then calculate the maximum angular speed (ω).
On conditions $\theta=180^{\circ}=\pi(\mathrm{rad}), \mathrm{t}=0.5(\mathrm{~s})$

Therefore,

$$
\begin{equation*}
\dot{\omega}=\frac{2 \theta}{\mathrm{t}^{2}}=\frac{2 \pi}{0.5^{2}}=25.13\left(\mathrm{rad} / \mathrm{s}^{2}\right) . \tag{3}
\end{equation*}
$$

Therefore, inertia load (T_{A}) from (2) and (3)
$\mathrm{T}_{\mathrm{A}}=5 \times 2.88 \times 10^{-3} \times 25.13$

$$
\begin{equation*}
=0.362(\mathrm{~N} \cdot \mathrm{~m}) \tag{4}
\end{equation*}
$$

\qquad
According to (1), (4), total torque (T)
$\mathrm{T}=1.03+0.362=1.39(\mathrm{~N} \cdot \mathrm{~m})$
According to (5) value and operational conditions, from torque at $0.5(\mathrm{MPa})$

GRC-20-180
can be selected.

Step 3 Allowable energy confirmation

Check if value is within allowable energy after kinetic energy is calculated.
Calculate the angular speed at the end of oscillation ω.
On conditions $\theta=180^{\circ}=\pi(\mathrm{rad}), \mathrm{t}=0.5(\mathrm{~s})$
Therefore,
$\omega=\frac{2 \theta}{\mathrm{t}}=\frac{2 \pi}{0.5}=12.57(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is

$$
\begin{align*}
\mathrm{E}= & \frac{1}{2} \times 2.88 \times 10^{-3} \times 12.57^{2} \\
= & 0.23(\mathrm{~J}) \quad \ldots \ldots \ldots \ldots . . \tag{6}
\end{align*}
$$

From (6) and (A) selected at Step 2

$$
\begin{equation*}
\text { GRC - } 20-180-\mathrm{A} 1, \mathrm{~A} 2 \tag{B}
\end{equation*}
$$

can be selected.

Step 4 Allowable load confirmation

Finally, check if value is within allowable load range after load value that applies to table is calculated.
[Thrust load]
Since no thrust load is applied, thrust load (Ws)

$$
\begin{equation*}
W s=0(N) \tag{7}
\end{equation*}
$$

[Radial load]
Total weight

$$
0.2+0.5=0.7(\mathrm{~kg})
$$

Therefore,

$$
\begin{equation*}
W_{R}=0.7 \times 9.8=6.9(N) \tag{8}
\end{equation*}
$$

[Moment load]
Moment load (M) from the figure below

$$
\begin{aligned}
& M=0.03 \times(0.2+0.5) \times 9.8 \\
& =0.21(\mathrm{~N} \cdot \mathrm{~m}) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .
\end{aligned}
$$

According to (7), (8), (9), (B),
$\frac{W_{s}}{W_{s \max }}+\frac{W_{R}}{W_{R \max }}+\frac{M}{M_{\max }}$

$$
=\frac{0}{150}+\frac{6.9}{140}+\frac{0.21}{4.0}=0.101 \leq 1.0 \ldots \ldots . .(C)
$$

According to (B) and (C), total load value is within the allowable load value.
GRC - 20-180-A1, A2
can be selected.

1. Energy absorbing performance and oscillating time

(1) For rubber cushion, relations between moment of inertia and oscillating time are shown in the line graph below. Always use within the lower right range of the graph as the shaft, etc., could break. Use for selection reference, etc.

- Basic/high accuracy

Size 5, 10, 20
Size 30, 50, 80
(2) The relation of the absorbed energy and oscillating time when an external shock absorber is installed is shown with the following line graph. Always use within the lower left range of the graph since the shaft, etc., could break. Use for selection reference, etc.

Absorbed energy and oscillating time

Size 5, 10, 20

2．Figure for moment of inertia calculation

When rotary shaft passes through the workpiece

	shaft passes through the	kpiece				LCG
$\begin{aligned} & \text { 颜 } \\ & \frac{3}{5} \end{aligned}$	Sketch	Requirements	Moment of inertia $\mathrm{lkg} \cdot \mathrm{m}^{2}$	Readius of rotation $\mathbf{K}_{1}{ }^{2}$	Remarks	LCW
$\begin{aligned} & 9 \\ & \stackrel{0}{0} \\ & \stackrel{10}{\circ} \\ & \frac{\pi}{0} \end{aligned}$		Diameter $d(m)$ Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{8}$	$\frac{\mathrm{d}^{2}}{8}$	－No mounting direction For sliding use， contact CKD．	STM STG STSISTL STR2 UCA2 ULK JSK／M2
Circular stepped plate		Diameter $d_{1}(m)$ $d_{2}(m)$ Weight d_{1} section $M_{1}(\mathrm{~kg})$ d_{2} section $M_{2}(\mathrm{~kg})$	$\mathrm{I}=\frac{1}{8}\left(\mathrm{M}_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{M}_{2} \mathrm{~d}_{2}{ }^{2}\right)$	$\frac{\mathrm{d}_{1}{ }^{2}+\mathrm{d} 2^{2}}{8}$	Ignore when the d_{2} section is extremely small compared to the d_{1} section	JSG JSC3ISC4 USSD UFCD USC UB JSB3
		Bar length $R(m)$ Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{3}$	$\frac{\mathrm{R}^{2}}{3}$	－Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical	LMB LML HCM HCA LBC CAC4 UCAC2 CAC－N
$\begin{aligned} & \text { 응 } \\ & \text { 을 } \\ & \frac{ㄷ ㅡ ㄹ ~}{10} \end{aligned}$		Bar length R_{1} R_{2} Weight M_{1} M_{2}	$\mathrm{I}=\frac{\mathrm{M}_{1} / \mathrm{R}_{1}{ }^{2}}{3}+\frac{\mathrm{M}_{2} / \mathrm{R}_{2}{ }^{2}}{3}$	$\frac{\mathrm{R}_{1}{ }^{2}+\mathrm{R}_{2}{ }^{2}}{3}$	－Mounting direction is horizontal －Oscillating time changes when the mounting direction is vertical	UCAC－N RCS2 RCC2 PCC SHC MCP GLC MFC
		Bar length $R(\mathrm{~m})$ Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{12}$	$\frac{\mathrm{R}^{2}}{12}$	－No mounting direction	BBS RRC GRC RV3＊ NHS HRL LN Hand
		Plate length a_{1} Side length a_{2} Weight b_{1} M_{1} M_{2}	$I=\frac{M_{1}}{12}\left(4 a_{1}^{2}+b^{2}\right)+\frac{M_{2}}{12}\left(4 a_{2}^{2}+b^{2}\right)$	$\frac{\left(4 a_{1}{ }^{2}+b^{2}\right)+\left(4 a_{2}{ }^{2}+b^{2}\right)}{12}$	－Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical	Chuk MechndChuk ShkAbs FJ FK SpdContr Ending
		Side length $a(m)$ $b(m)$ Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$	$\frac{a^{2}+b^{2}}{12}$	－No mounting direction －For sliding use， contact CKD．	
		Shape of concentrated load Length to center of gravity of concentrated load R_{1} Arm length $R_{2}(\mathrm{~m})$ Concentrated load weight $\mathrm{M}_{1}(\mathrm{~kg})$ Arm weight $\mathrm{M}_{2}(\mathrm{~kg})$	$I=M_{1}\left(R_{1}{ }^{2}+k_{1}{ }^{2}\right)+\frac{M_{2} R_{2}{ }^{2}}{3}$	Calculate $\mathrm{k}_{1}{ }^{2}$ according to shape of concentrated load	Mounting direction is horizontal When M_{2} is extremely small compared to M_{1} ，it may be calculated as $\mathrm{M}_{2}=0$	

How to convert load JL to rotary actuator shaft rotation when using with gear

$\begin{aligned} & \text { 㐫 } \\ & \stackrel{心 ㇒}{心} \end{aligned}$		Gear Rotary side（tooth number）a Load side（geartooth number）b －Load inertia moment $\mathrm{N} \cdot \mathrm{m}$	Load moment of inertia for the rotary actuator＇s shaft rotation $I H=\left(\frac{a}{b}\right)^{2} \mathrm{~L}$	When gear shape is larger，gear moment of inertia should be considered．

LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndiChuk
ShkAbs
FJ
FK
SpdContr Ending Rotary shaft offsets from workpiece

$\begin{aligned} & \frac{8}{6} \\ & \frac{\text { Bis }}{5} \end{aligned}$	Sketch	Requirements	Moment of inertia I kg•m²	Remarks
		Side length $a(m)$ Distance from rotary $b(m)$ shaft to load center $R(m)$ Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+M R^{2}$	- Same for cube
		Side length $h_{1}(m)$ - Distance from rotary $h_{2}(m)$ shaft to load center $R(m)$ Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{~h}_{1}{ }^{2}+\mathrm{h}^{2}\right)+\mathrm{MR}^{2}$	Cross section is for cube only
¢		Diameter $d(\mathrm{~m})$ Distance from rotary shaft to load center $R(\mathrm{~m})$ Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{16}+\mathrm{MR}^{2}$	
		Diameter $\mathrm{d}_{1}(\mathrm{~m})$ $\mathrm{d}_{2}(\mathrm{~m})$ Distance from rotary shaft to load center $R(m)$ Weight $\mathrm{M}(\mathrm{kg})$	$\mathrm{I}=\frac{\mathrm{M}}{16}\left(\mathrm{~d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}\right)+\mathrm{MR}^{2}$	

* To find moment of inertia, first convert load, jig, etc., to simple shapes with modeling, then calculate values. For the combined load, calculate each inertial moment and their total.

Technical data

3. Table deflection (reference value)

LCM
LCR

Table deflection of GRC-K (high accuracy)

4. Effective torque diagram

Note that torque at oscillation end is half of the value in the graph below.
(The torque is as shown in the table when the end stopper is an external stopper (shock absorber, etc.).)

Technical data

5. Oscillating angle adjustment method

- Basic/high accuracy

180° specifications

90° specifications

With external shock absorber (GRC-*-A1)

180° specifications

LCM
LCR

GRC ${ }_{\text {series }}$

LCM
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechnolChuk
ShkAbs
FJ
FK
SpdContr
Ending

With external shock absorber (GRC-*-A2)

Pneumatic components

Safety Precautions

Be sure to read this section before use.
Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Design/selection

1. Common

A CAUTION

■ Generally, select the model so that the output torque is twice or more than that required by the load.
The GRC Series uses a double piston, so if the oscillating angle is adjusted by the stopper bolt, torque at the oscillation end will be half the effective torque.

■ Even if the required torque load is low during oscillation motion, the load inertia may lead to actuator damage. Upon consideration of moment of inertia, kinetic energy and oscillating time, be sure to use with the allowable energy or less.

■ Note that when an external shock absorber is connected, torque is reduced by the return force of the spring built into the shock absorber at the oscillating end.

The external shock absorber absorbs the kinetic energy of the workpiece at the oscillation end, buffering the impact. A smooth stop may not be achieved under certain load conditions.

2. Fine speed GRC-F

CAUTION

- Use without lubrication. (Lubrication not possible) Applying lubrication may cause changes in characteristics.

■ Assemble the speed controller near the rotary actuator.
When installed at a distant place from the rotary actuator, the adjustment becomes unstable.
Use the SC-M3/M5, SC3W, SCD-M3/M5 or SC3U Series speed controller.

At the higher air pressure and the lower load factor, the speed generally becomes more stable.
Use at a 50% or less load factor.
Stable speed control is achieved with a meter-out circuit.
 PULL : Meter-out

Avoid use in places subject to vibrations.
The product will be adversely affected by vibration and operation will become unstable.

1. Common

A CAUTION

- Do not apply additional processing to the product. If modified, the product's strength will decrease, possibly causing product damage. This may result in injury or damage to operator, components, or equipment.
- Do not widen the fixed orifice on the piping port by re-machining, etc. If the fixed orifice is widened, the actuator operation speed and impact will increase, damaging the actuator. Moreover, be sure to attach a speed controller during piping before use.
- Select among 3 surfaces for piping port. Ports other than the side piping port are plugged when the product is shipped. When changing the piping port, interchange these plugs. When changing ports for the GRC-5 to 30, apply the recommended adhesive to plugs. When changing ports for GRC- 50 or 80, apply recommended adhesive or wrap sealing tape around plugs. Failure to do so may lead to air leakage.
[Recommended adhesive]
LOCTITE 222 [Loctite Japan Corp.]
ThreeBond 1344 [ThreeBond Co., Ltd]

- The relationship of piping ports and oscillation direction is shown below.

R: Clockwise rotation (right)
L: Counterclockwise rotation (left)
■ An angle adjustment screw (stopper bolt or shock absorber) for adjustment of the oscillating angle is provided as standard equipment. When the product is shipped, the angle adjustment screw is adjusted randomly within the oscillation adjusting range. Readjust this to the required angle before use.

- Adjust the angle to within the adjusting range specified for the product.
If used outside of the adjusting range, the product may be damaged or malfunction. Refer to product specifications (page 1302) and oscillating angle adjustment (page 1329).

■ The adjustment angle per rotation of the angle adjusting screw (stopper bolt of shock absorber) is shown below.

Basic/high accuracy

With external shock absorber

Table 1

Size	Stopper bolt adjustment angle per rotation	Shock absorber adjustment angle per rotation
5	8.7°	1.1°
10	4.9°	1.0°
20	5.7°	1.1°
30	3.8°	0.9°
50	3.5°	0.7°
80	3.5°	0.9°

Observe steps (1) to (5) when adjusting the angle. If adjustments are not made this way, the seal washer will be damaged after one or two adjustments.
[Angle adjustment procedure]
(1) First loosen the hexagon nut as shown in Fig. 1.
(2) Second, remove the seal washer from the head cover by hand as shown in Fig.2.

(3) Turn the stopper bolt, hexagon nut, and seal washer together as shown in Fig.3, and adjust the angle. Check that the rubber section of the seal
 washer does not bite into the thread part.
(4) After adjusting the angle, move the seal washer near to the head cover by hand as shown in Fig. 4.

(5) Tighten securely with the hexagon nut as shown in Fig. 5. Check that the rubber section of the seal washer does not bite into the thread part.

After adjusting the angle, securely tighten the hexagon nut with the tightening torque in Table 2. If tightening torque is not adhered to then the hex nut could loosen in the course of usage, resulting in external leakage.

■ When replacing the stopper bolt for angle adjustment (the hex bolt if an external shock absorber is used) with a sealed washer, be sure that the hex nut (hex bolt if an external shock absorber is used) is tightened to the correct torque according to Table 2. Failure to do so may lead to air leakage.

Table 2

Size	Tightening torque (N•m)	
	Basic/high accuracy	With external shock absorber
5	$5.9 \pm 10 \%$	$3.4 \pm 10 \%$
10	$9.4 \pm 10 \%$	$4.9 \pm 10 \%$
20	$11.8 \pm 10 \%$	$6.9 \pm 10 \%$
30	$11.8 \pm 10 \%$	$6.9 \pm 10 \%$
50	$22.1 \pm 10 \%$	$8.8 \pm 10 \%$
80	$22.1 \pm 10 \%$	$8.8 \pm 10 \%$

Make sure the tightening torque of the shock absorber nut is in accordance with Table 3. If the tightening torque exceeds the value below, the shock absorber may be damaged.

Table 3

Size	5	10	20	30	50	80
Tightening torque $N \cdot m$	1.47	1.96	5.14	8.58		

- When retrofitting A3 types with an external shock absorber, the tightening torque for the mounting hex socket bolt or lever mounting hex socket bolt is shown in Table 4.

External shock absorber mounting bolt
Table 4

Size	Lever mounting bolt	$\begin{array}{c}\text { External shock } \\ \text { absorber mounting bolt }\end{array}$
	Tightening torque (N•m)	Tightening torque (N•m)

GRC ${ }_{\text {series }}$

\qquad
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSKM2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2 CAC-N

A rubber cushion is built into GRC types. (Basic, high accuracy) If less than 0.3 MPa of pressure is used, the rubber cushion may not function correctly. If oscillating end accuracy is required, use at pressure of 0.3 MPa or higher.
Back pressure may remain if using with all ports closed, potentially failing to push fully against the rubber cushion.

Pay attention to the proximity of cylinders, etc.
When installing two or more rotary actuators with switches in parallel, or if there is a magnetic substance such as a steel plate nearby, provide the following distances from the cylinder body surface. (The dimensions are the same for all sizes.)
Mutual magnetic interference may cause the switch to malfunction.

CKD's shock absorber is a repair part.
Replace it when the energy absorption performance has degraded or the operation is not smooth.

[^0]: GRC - 5-90

