Overview

This is a compact rack and pinion rotary actuator. Torque: 0.7, 3.1, 5.6 N•m

Series variation

Product introduction

- Max. oscillating angle 270°

Torques of $0.7,3.1,5.6 \mathrm{~N} \cdot \mathrm{~m}$ (working pressure 0.5 MPa) and oscillating angles of $90^{\circ}, 180^{\circ}, 270^{\circ}$, are included in the series.
Select the ideal model for your application.

- Space saving

Compact and thin design permits installation in a narrow space.

Stable torque/long service life Uses a unique mechanism combining two linear cylinders with rack and pinion gears. Torque is stable even at low pressure, and internal/external leakages are the same as that of the linear cylinder. Furthermore, long service life is achieved.

Cushion needle direction can be changed RRC-32 and 63 only are 3-directional.

No lubrication
No-lubrication usage is possible. Total operation costs will be reduced.

Cushion provided as standard Rubber cushion or air cushion is provided as standard.

Series variation

O: Standard, ©: Option, \bigcirc : Made to order, \quad : Not available
LCM
LCG
LCX

| STM |
| :--- | :--- |
| STG |

S

STG
STS/STL
STR2

STR2
UCA2

| UCA2 |
| :--- | :--- |
| ULK |

JSK/M2
JSG
Max. oscillating angle
$\left({ }^{\circ}\right)$

		Option			$\begin{aligned} & \mathbb{\otimes} \\ & \stackrel{\pi}{\circ} \end{aligned}$
Max. oscillating angle (${ }^{\circ}$)				$\begin{aligned} & \frac{5}{0} \\ & \sum_{3}^{3} \\ & \hline \end{aligned}$	
180	270	A	P6		
\bullet	\bullet	©	\bigcirc	O	1286

元

Rotary actuator Rack \& pinion

RRC Series

Size: 8/32/63
Oscillating angle: $90^{\circ} / 180^{\circ} / 270^{\circ}$
JIS symbol

RoHS
CAD

Specifications

Item	RRC		
Size	8	32	63
Effective torque ${ }^{+1} \mathrm{~N} \cdot \mathrm{~m}$	0.7	3.1	5.6
Actuation	Rack and pinion mechanism		
Working fluid	Compressed air		
Max. working pressure MPa	1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)		
Min. working pressure ${ }^{2} \mathrm{MPa}$	0.1 ($\approx 15 \mathrm{psi}, 1 \mathrm{bar}$)		
Proof pressure MPa	1.6 ($\approx 230 \mathrm{psi}, 16 \mathrm{bar}$)		
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-10\left(14^{\circ} \mathrm{F}\right)$ to 60 (140 ${ }^{\circ} \mathrm{F}$) (no freezing)		
Port size	Rc1/8		
Oscillating angle tolerance ${ }^{\circ}$	$90_{+1}^{+8}, 180_{+1}^{+8}, 270_{+1}^{+8}$		
Cushion	Rubber cushion	Air cushion	
Effective cushion length mm	-	4.8	5.8
Allowable absorbed energy J	0.05	0.21	0.41
	3	12	22
Volumetric 180°	6	24	44
capacity $\mathrm{cm}^{3} \frac{270^{\circ}}{}$	9	36	66
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)		

*1 : Effective torque value is at working pressure 0.5 MPa .
*2 : When using RRC-8 with max. oscillating angle, the working pressure is to be 0.3 MPa and over.
*3 : Adjustable angle is available as an option. Refer to page 1291.

Switch specifications

- 1-color/2-color display

Item	Proximity 2-wire	Proximity 2-wire			Proximity 3-wire				Reed 2-wire					
	$\begin{aligned} & \mathrm{T} 1 \mathrm{H} / \\ & \text { T1V } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \mathrm{H} / \\ & \mathrm{T} 2 \mathrm{~V} \end{aligned}$	T2YH/ T2YV	T2WH/	T3H/	T3PH/ T3PV	T3YH/ T3YV	T3WH/	TOH/T	TOV	T5H/T5V	T8H/T8V		
Applications		Dedicated forprogrammable controller			For programmable controller, relay				For prog control	mmable relay	For programmable controller, relay, IC circuit (no indicator lamp), serial connection	For programmable controller, relay		
Output method	maler				NPN output	PNP output	NPN output\|	N output	+					
Pwr. supp. V.	-				10 to 28 VDC				-					
Load voltage	85 to 265 VAC	10 to 30 VDC ${ }^{24 V D C \pm 10 \%}$			30 VDC or less				12/24 VDC	100/110 VAC	5/12/24 VDC $100 / 110$ VAC	$12 / 24 \mathrm{VDC}$	110 VAC	220 VAC
Load current	5 to 100 mA	5 to $20 \mathrm{~mA}{ }^{*} 3$)			100 mA or less		50 mA or less		5 to 50 mA	7 to 20 mA	50 mA or less 20 mA or less	5 to 50 mA 7	7 to 20 mA	7 to 10 mA
Indicator lamp	LED (Lit when ON)	$\left\lvert\, \begin{gathered} \text { LED } \\ (\text { Lit when ON) } \end{gathered}\right.$	Red/green LED (Litwhen ON)	Red/green LED (Litwhen ON)	$\left\|\begin{array}{c} \text { LED } \\ (\text { Litwhen ON) } \end{array}\right\|$	Yellow LED (Litwhen ON)	Red/green LED (Litwhen ON)	$\begin{array}{\|c\|} \hline \text { Red/green } \\ \text { LED } \\ \text { (Litwhen ON) } \end{array}$	$\begin{array}{r} \text { LE } \\ \text { (Lit wh } \end{array}$	ON)	Without indicator lamp		LED it when ON	
Leakage current	≤ 1 mAat 100 VAC, $\leq 2 m A a t 200$ VaC	1 mA or less			$10 \mu \mathrm{~A}$ or less				0 mA					
Weight g	$\begin{aligned} & 1 \mathrm{~m}: 33 \\ & 3 \mathrm{~m}: 87 \\ & 5 \mathrm{~m}: 142 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m}: 18 \\ & 3 \mathrm{~m}: 49 \\ & 5 \mathrm{~m}: 80 \end{aligned}$	$1 \mathrm{~m}: 33$ $3 \mathrm{~m}: 87$ $5 \mathrm{~m}: 142$	$1 \mathrm{~m}: 18$ $3 \mathrm{~m}: 49$ $5 \mathrm{~m}: 80$	1 m 3 m 5 m	:18 :49 :80	$1 \mathrm{~m}: 33$ $3 \mathrm{~m}: 87$ $5 \mathrm{~m}: 142$	$17 \mathrm{~m}: 18$ $3 \mathrm{~m}: 49$ $5 \mathrm{~m}: 80$	$1 \mathrm{~m}: 18$$3 \mathrm{~m}: 49$$5 \mathrm{~m}: 80$				$\begin{aligned} & 1 \mathrm{~m}: 33 \\ & 3 \mathrm{~m}: 87 \\ & 5 \mathrm{~m}: 142 \end{aligned}$	

*1 : Refer to Ending Page 1 for detailed switch specifications and dimensions
*2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.
*3 : The max. load current is 20 mA at $25^{\circ} \mathrm{C}$. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA at $60^{\circ} \mathrm{C}$)

Oscillating angle	90°	180°	270°	Switch weight (per 1 pc.)	Switch mounting bracket		
Model No.					90°	180°	270°
RRC-8	0.39	0.43	0.49	Refer to the weight in the switch specifications.	0.005		
RRC-32	1.02	1.23	1.45		0.011	0.013	0.015
RRC-63	1.68	2.03	2.37		0.012	0.014	0.016

[^0]How to order
Without switch (built-in magnet for switch)

$$
\text { RRC }-8-90=A
$$

With switch (built-in magnet for switch)

	Code				ion		
RRC - $2=90=T 2 H=R=A$	(A) Size						
	Model No.	Effective	torque				
	8	0.7 [$\mathrm{N} \cdot \mathrm{m}$]					
A Size	32	3.1 [$\mathrm{N} \cdot \mathrm{m}$]					
	63	$5.6[\mathrm{~N} \cdot \mathrm{~m}]$					
1	B Max.	oscillati	ing ang				
B Max. oscillating angle	90	90°					
	180	180°					
	270	270°					
	C Swit	ch mode	No.				
C Switch model No.	Axial lead	Radial lead	Contact			Indicator	Lead
* indicates the lead wire length.	wire	wire	Contact	AC	DC	Indicator	wire
	T0H*	T0V*		\bigcirc	\bigcirc	1-color display	
	T5H*	T5V*	Reed	\bigcirc	\bigcirc	Without indicator lamp	2-wire
	T8H*	T8V*		\bigcirc	\bigcirc	1-color display	
	T1H*	T1V*		\bigcirc		1-color	2-wire
	T2H*	T2V*			\bigcirc		2-wire
	T3H*	T3V*			\bigcirc	display	3-wire
	T2WH*	T2WV*	roximity		\bigcirc		2-wire
	T2YH*	T2YV*	Proximity		\bigcirc	2-color	2-wire
	T3WH*	T3WV*			\bigcirc	display	3-wire
	T3YH*	T3YV*			\bigcirc		3-wire
	T3PH*	T3PV*			\bigcirc	1-color display	3-wire
[Example of model No.]	* Lead	wire leng	th				
[Example of model No.]	Blank	1 m (stand	dard)				
RRC-8-90-T2H-R-A	3	3 m (option)					
Model: Rotary actuator rack \& pinion	5	5 m (optio					
A Size $: 8$ \%	(D) Swit	ch quant	tity				
B Max. oscillating angle : $90^{\circ} \quad$ (Switch quantity	R	With clock	kwise rot	on d	ction	piece	
C Switch model No. : Proximity T2H switch, lead wire 1 m	L	With coun	terclock	se ro	on de	ction 1 piece	
D Switch quantity \quad : With clockwise rotation	D	2					
detection 1 piece	E Option						
E Option : Adjustable angle E Option	A	Adjustable	angle				
	P6	Copper and	nd PTFE				

How to order switch

- Switch body + mounting bracket set (including rail)

- Mounting bracket set (including rail)

Ending

RRC Series

Internal structure and parts list

- Standard

With switch

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Cap (2)	Aluminum alloy		16	Bearing	-	
2	Cap gasket	Nitrile rubber		17	Cover	Aluminum alloy	
3	Body	Aluminum alloy		18	Shaft	Steel	
4	Piston	Stainless steel		19	Key	Steel	
5	Magnet	Plastic		20	Cushion rubber	Urethane rubber	RRC-8 only
6	Piston packing	Nitrile rubber		21	DU bush	-	RRC-8 only
7	Wear ring	Acetal resin		22	Switch	-	
8	Cushion packing	Nitrile rubber	Excluding RRC-8	23	Stop plate	Stainless steel	
9	Needle	Copper alloy	Excluding RRC-8	24	Philipspanheadmadinescrevilagive enster	Steel	
10	Needle gasket	Nitrile rubber	Excluding RRC-8	25	Fixing nut	Stainless steel	
11	Cap (1)	Aluminum alloy		26	Switch rail	Aluminum alloy	
12	U nut	Steel	Excluding RRC-8	27	Hexagon socket set screw	Steel	
13	Hexagon socket set screw	Alloy steel					
14	Phillips flat head machine screw	Steel					
15	Hexagon socket head cap screw	Alloy steel					

Repair parts list

| Model No. | Kit No. | Repair parts No. |
| :---: | :---: | :---: | :---: | :---: |
| RRC-8 | RRC-8K | 2 6 (|
| RRC-32 | RRC-32K | 2 6 7 8 (10 |
| RRC-63 | RRC-63K | |

[^1]Dimensions
Dimen

[^2]
$R R C_{\text {series }}$

RRC-32/63

* The key is attached when shipping.

Code		A		B	C	D	E	F	G	H	I	J	K	L	M	N	P	R	S	T	U	W
	Oscillating angle																					
Model No.	90°	180°	270°																			
RRC-32	153	191	229	84	33	31	20	67	3	44	10	8	13	3	1.8	10	34	29	M5	8	4.5	6
RRC-63	172	216	260	101	38	41.5	21.5	78	4.5	52	12	10	16	4	2.5	13	40	34	M6	9	7	7

RRC-32/63 with switch

*The key is attached when shipping.

Code		A		RD																	
	Oscillating angle			T1*			T2*/T3*			T0*/T5*			T8*			T2Y*/T3Y*			T2W*/T3W*		
				Oscillating angle																	
Model No.	90°	180°	270°																		
RRC-32	153	191	229	56	66	75	58	67	77	57	67	76	51	61	70	56	66	75	59	69	78
RRC-63	172	216	260	64	75	86	65	76	87	65	76	87	59	70	81	64	75	86	67	78	89
	LD																				
Code	T1*			T2*/T3*			T0*/T5*			T8*			T2Y*/T3Y*			T2W*/T3W*					
	Oscillating angle			Oscillating angle			Oscillating angle			Oscillating angle			Oscillating angle			Oscillating angle					
Model No.	90°	180°	270 ${ }^{\circ}$	90°	180°	270 ${ }^{\circ}$	90°	180°	270°												
RRC-32	56	66	75	58	67	77	57	67	76	51	61	70	56	66	75	59	69	78			
RRC-63	64	75	86	65	76	87	65	76	87	59	70	81	64	75	86	67	78	89			

[^3]
Dimensions: Option

Adjustable angle

* The cylinder's oscillating angle
will decrease when the angle
adjustment hex bolt is rotated
clockwise.
L side adjustment
Benge 10°
Boints of oscillation

3 port positions each are provided on the R and L sides, as in the figure above.

Code	Q		AA	Allowable absorbed energy J (For adjustable angle single 10°)	Hexagon head bolt dimension for adjustable angle (Common for R and L)
Model No.	MIN	MAX			
RRC-8	10.7	11.5	4	0.02	M 5×0.5
RRC-32	13.4	15.5	6	0.06	$\mathrm{M} 6 \times 0.75$
RRC-63	13.5	16.0	7	0.13	$\mathrm{M} 6 \times 0.75$

Key dimensional drawing

Model No. Code	A	B	K	D	E
RRC-32	$16{ }_{-0.18}^{0}$	13	1.5	$3_{-0.025}^{0}$	0.2
RRC-63	$20_{-0.21}^{0}$	16	2	$4_{-0.030}^{0}$	0.2

Selection guide of rotary actuator

Step 1	Oscillating time check

Use an oscillating time within the specified range of the table below.

Oscillating angle (degree)	$\mathbf{9 0}$	$\mathbf{1 8 0}$	$\mathbf{2 7 0}$
Model No.	0.015 to 0.151	0.030 to 0.302	0.045 to 0.452
RRC-8	0.038 to 0.377	0.075 to 0.754	0.113 to 1.131
RRC-32	0.073 to 0.440	0.147 to 0.880	0.220 to 1.320
RRC-63			

*The oscillating time in the table is the time for the oscillating to end after movement begins.

Step $2 \quad$ Size selection

When simple static pushing force is required for clamp, etc.

Static load	
(1) Determine the working pressure.	$\mathrm{P}(\mathrm{MPa})$
(2) Determine the required force.	$\mathrm{F}(\mathrm{N})$
(3) Length of arm from rotary	
actuator is determined.	$\ell(\mathrm{m})$

To move load
Resistance load
When applying force (resistance load) including frictional force, gravity or other external forces. (1) Determine the working pressure. (2) Determine the required force. (3) Length of arm from rotary actuator is determined.

(2) Determine the required force

Length of arm from rotary

To move load

Ren

 frictional force, gravity or other external forces.(1) Determine the working pressure. $\mathrm{P}(\mathrm{MPa})$

\Rightarrow| Calculation of required torque |
| :---: |
| $T=\mathrm{Fl}(\mathrm{N} \cdot \mathrm{m})$ |\Rightarrow

Calculation of resistance torque $T_{R}=\mathrm{K} \times \mathrm{F}_{\mathrm{R}} \times \ell(\mathrm{N} \cdot \mathrm{m})$ $\mathrm{K}:$ Slack coefficient If no load fluctuation $\quad \mathrm{K}=2$ If load fluctuates $\quad \mathrm{K}=5$ (When resistance torque caused by gravity operates) If load fluctuates when $\mathrm{K}<5$, the change in angular speed increases.

Determine size of rotary actuator according to output torque graph.

Inertia load

When the object is rotated.
(1) Oscillating angle/oscillating time and working pressure are determined.

Oscillating angle	$\theta(\mathrm{rad})$
Oscillating time	$\mathrm{t}(\mathrm{s})$
Working pressure	$\mathrm{P}(\mathrm{MPa})$
90°	$=1.5708(\mathrm{rad})$
	180°

(2) Calculate the load moment of the inertia according to the load shape and weight. Refer to moment of inertia table for the calculation formula.

$$
\mathrm{I}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

(3) Calculate the max. angular acceleration speed.
(3) $\alpha=\frac{2 \theta}{\mathrm{t}^{2}}\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
θ : Oscillating angle (rad)
t: Oscillating time (s)
$\ell(m)$
\qquad

Step 3 Check of allowable energy

When using an inertial load, keep the load energy lower than the rotary actuator's allowable energy.
(1) Angular speed at oscillation edge $\omega=\frac{2 \theta}{\mathrm{t}}(\mathrm{rad} / \mathrm{s})$
θ : Oscillating angle (rad) t: Oscillating time (s)
(2) Calculation of load inertia energy

$$
\begin{aligned}
& E=\frac{1}{2} \times I \times \omega^{2}(J) \\
& I: \text { Load moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right)
\end{aligned}
$$

(3) Confirm that the load inertia energy E is equal to or less than the allowable energy of the rotary actuator. When exceeding the allowable energy, an external shock absorber, etc., will be required.

Selection guide

Figure for moment of inertia calculation

$\begin{aligned} & \text { 寝 } \\ & \text { 咅 } \\ & \hline \end{aligned}$	Sketch	Requirements	Moment of inertia $\mathrm{l} \mathrm{kg} \cdot \mathrm{m}^{2}$	$\begin{array}{\|c\|c} \begin{array}{c} \text { Radius of } \\ \text { rotation } \end{array} \\ \hline \mathbf{K}^{2} \end{array}$	Remarks
		$\begin{array}{lr}\text { - Diameter } & \mathrm{d}(\mathrm{m}) \\ \text { - Weight } & \mathrm{M}(\mathrm{kg})\end{array}$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{8}$	$\frac{d^{2}}{8}$	- No mounting direction For sliding use, contact CKD.
		- Diameter $d_{1}(\mathrm{~m})$ - Weight d_{1} section $\mathrm{M}_{2}(\mathrm{~m})$ M_{2} section $\mathrm{M}_{2}(\mathrm{~kg})$	$I=\frac{1}{8}\left(M_{1} \mathrm{~d}_{1}{ }^{2}+M_{2} \mathrm{~d}_{2}{ }^{2}\right)$	$\frac{\mathrm{d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}}{8}$	Ignore when the d_{2} section is extremely small compared to the d_{1} section
		$\begin{array}{lr}\text { - Bar length } & R(\mathrm{~m}) \\ \text { - Weight } & \mathrm{M}(\mathrm{kg})\end{array}$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{3}$	$\frac{\mathrm{R}^{2}}{3}$	- Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical
		- Bar length R_{1} R_{2} - Weight M_{1} M_{2}	$\mathrm{I}=\frac{\mathrm{M}_{1} / \mathrm{R}_{1}{ }^{2}}{3}+\frac{\mathrm{M}_{2} / \mathrm{R}_{2}{ }^{2}}{3}$	$\frac{\mathrm{R}_{1}{ }^{2}+\mathrm{R}^{2}{ }^{2}}{3}$	- Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical
		$\begin{array}{lr}\text { - Bar length } & R(\mathrm{~m}) \\ \text { - Weight } & \mathrm{M}(\mathrm{kg})\end{array}$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{12}$	$\frac{\mathrm{R}^{2}}{12}$	- No mounting direction
		Plate length a_{1} Side length a_{2} Weight M_{1} M_{2}	$I=\frac{M_{1}}{12}\left(4 a_{1}^{2}+b^{2}\right)=\frac{M_{2}}{12}\left(4 a_{2}^{2}+b^{2}\right)$	$\frac{\left(4 a 1^{2}+b^{2}\right)+\left(4 a_{2}^{2}+b^{2}\right)}{12}$	Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical
		$\begin{array}{lr}\text { - Side length } & \begin{array}{r}a(m) \\ b(m) \\ \text { - Weight }\end{array} \\ & M(k g)\end{array}$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$	$\frac{a^{2}+b^{2}}{12}$	- No mounting direction - For sliding use, contact CKD.

		- Shape of concentrated load Length to center of gravity of concentrated load $R_{1}(\mathrm{~m})$ - Arm length $R_{2}(\mathrm{~m})$ - Concentrated load weight $\mathrm{M}_{1}(\mathrm{~kg})$ - Arm weight $\mathrm{M}_{2}(\mathrm{~kg})$	$\mathrm{I}=\mathrm{M}_{1}\left(\mathrm{R}^{2}{ }^{2}+\mathrm{k}_{1}{ }^{2}\right)+\frac{M_{2} \mathrm{R}_{2}{ }^{2}}{3}$	Calculate $\mathrm{k}_{1}{ }^{2}$ according to shape of concentrated load	- Mounting direction is horizontal When M_{2} is extremely small compared to M_{1}, it may be calculated as $\mathrm{M}_{2}=0$

When gear

 shape is larger, gear moment of inertia should be considered.
Pneumatic components

Safety Precautions

Be sure to read this section before use.
Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Product-specific cautions: Rotary actuator rack and pinion mechanism RRC Series

Design/selection

A CAUTION

\square Do not apply torque exceeding rated output externally to the product.
If force exceeding rated output is applied, the product could be damaged.

- If oscillating angle repeatability is required, directly stop external load.
The initial oscillating angle may change even with products provided with adjustable angles.

■ If the axial load (thrust load) on the shaft exceeds the allowable value, faulty operation could occur. Therefore, do not apply a load in excess of the allowable value. If this is unavoidable, use a structure with a thrust bearing as shown in Fig. 1.

Fig. 1
■ Avoid applying bending (radial) load exceeding the allowable value onto the shaft end, or faulty operation could occur.
When unavoidable, use a mechanism transmitting only rotation as shown in Fig. 2.
When connecting the shaft end and load at any position in the oscillation range, use flexible couplings, etc., that will not twist off to prevent the shaft from breaking and bearings from wearing or seizing.

Fig. 2 Radial load

■ Install the external stopper in a position far from the rotary shaft.
If the stopper is installed near the rotary shaft, torque generated by the product could be applied to the rotary shaft. This reaction on the stopper may damage the rotary shaft or bearings, possibly resulting in injury to the operator or damage to equipment or devices.

■ If the load weight is large and oscillation speed is high, large inertia could be generated and allowable absorbed energy exceeded, possibly damaging the rotary actuator.
Install a shock absorber to absorb inertia.

- When installing a load or jig, etc., on the rotary actuator shaft, check that load is not applied to the body as shown in Fig.3.

Fig. 3
Prevent seizing at rotating sections.
Apply grease to rotating sections (pins, etc.) to prevent seizing.

■ The retention torque of the oscillating end is about half that of the effective torque, so a load factor of 50% or less should be used.

■ Generally, select the model so that the output torque is twice or more than that required by load. The RRC Series uses a double piston, so if the oscillating angle is adjusted by the stopper bolt, torque at the oscillation end will be half the effective torque.

■ Even if the required torque load is low during oscillation motion, the load inertia may lead to actuator damage. Upon consideration of moment of inertia, kinetic energy and oscillating time, be sure to use with the allowable energy or less.

■ Securely tighten the hexagon nut after adjusting the angle. If not adequately tightened, the hex nut could loosen in the course of usage, resulting in external leakage.

[^0]: (Example) Product weight of RRC-8-90-T2H-D
 Body weight.................................... 0.39 kg
 Switch weight. \qquad .0 .0182 pcs. $=0.036 \mathrm{~kg}$ Switch mounting bracket weight.... 0.0052 pcs. $=0.010 \mathrm{~kg}$ Product weight $\ldots . . .0 .39 \mathrm{~kg}+0.036 \mathrm{~kg}+0.010 \mathrm{~kg}=0.436 \mathrm{~kg}$

[^1]: Note: Specify the kit No. when placing an order.

[^2]: Note: Dimensions other than the above are the same as the type without switch.

[^3]: Note: Dimensions other than the above are the same as the type without switch.

