RRC Rotary actuator

Oscillation/rotation drive

Size 8/32/63

Overview

This is a compact rack and pinion rotary actuator. Torque: 0.7, 3.1, 5.6 N·m

CONTENTSSeries variation1284Product introduction1284● Rack & pinion (RRC)1286Selection guide1292♠ Safety precautions1294

LCM LCR LCG LCW LCX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 PCC SHC MCP GLC MFC RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chuk

ShkAbs

FJ

FK SpdContr Ending

Series variation

LCM LCR LCG LCW LCX STM STG STS/STI STR2 UCA2 ULK* JSK/M2 JSC3/JSC4 USSD **UFCD** USC UB JSB3 LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC RRC GRC RV3* NHS HRL LN Hand Chuk

Rotary actuator RRC Series

12 C4 D D D	Variation	Model No. JIS symbol	Size	Effective torque (0.5 MPa) (N·m)	Max. oscillating angle (°)	
					90	
4		RRC	8	0.7		
4 N -N 2	Rack and pinion		32	3.1	•	
_			63	5.6		

Product introduction

Max. oscillating angle 270° Torques of 0.7, 3.1, 5.6 N⋅m (working pressure 0.5 MPa) and oscillating angles of 90°, 180°, 270°, are included in the series. Space saving Compact and thin design permits installation in a narrow space.

Select the ideal model for your application. Stable torque/long service life Uses a unique mechanism combining two linear cylinders with rack and pinion gears. Torque is stable even at low pressure, and internal/external leakages are the same as that of the }-----linear cylinder. Furthermore, long service life is achieved. Cushion needle direction can be changed RRC-32 and 63 only are 3-directional. No lubrication Cushion provided as standard No-lubrication usage is possible. Rubber cushion or air cushion is Total operation costs will be reduced. provided as standard.

MecHnd/Chuk ShkAbs

SpdContr

Ending

FJ FK

RRC Series

Series variation

●: Standard, ◎: Option, ○: Made to order, ■: Not available

Max. oscill ('		angle dO	Copper and PTFE free	Switch	Page
180	270	➤ Adjustable angle	ට Copper and	Ø	ш
•	•	©	©	©	1286

LCM LCR LCG LCW LCX STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSC3/JSC4 USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS

HRL LN Hand UFCD USC

HRL
LN
Hand
Chuk
MecHnd/Chuk
ShkAbs
FJ
FK
SpdContr
Ending

RRC

GRC RV3*

NHS

Rotary actuator Rack & pinion

RRC Series

Size: 8/32/63

Oscillating angle: 90°/180°/270°

JIS symbol

Specifications

Item			RRC						
Size		8	32	63					
Effective torque*	¹ N·m	0.7	3.1	5.6					
Actuation		Rack and pinion mechanism							
Working fluid			Compressed air						
Max. working pressu	re MPa		1.0 (≈150 psi, 10 bar)						
Min. working pressure	e*² MPa		0.1 (≈15 psi, 1 bar)						
Proof pressure	MPa	1.6 (≈230 psi, 16 bar)							
Ambient temperat	ure °C	-10 (14°F) to 60 (140°F) (no freezing)							
Port size		Rc1/8							
Oscillating angle tole	rance °	90^{+8}_{+1} , 180^{+8}_{+1} , 270^{+8}_{+1}							
Cushion		Rubber cushion	Air cu	shion					
Effective cushion leng	gth mm	-	4.8	5.8					
Allowable absorbed e	nergy J	0.05	0.21	0.41					
Volumetric	90°	3	12	22					
	180°	6	24	44					
capacity cm ³	270°	9 36 66							
Lubrication		Not required (use turbine oil ISO VG32 if necessary for lubrication)							

Max. load

Use the load applied to the shaft at the values below or less.

Unit: N

Model No. Load direction	RRC-8	RRC-32	RRC-63
Thrust load F1	9.8	39.2	58.8
Radial load F2	19.6	78.4	117.6

- *1 : Effective torque value is at working pressure 0.5 MPa.
- $^{\star}2$: When using RRC-8 with max. oscillating angle, the working pressure is to be 0.3 MPa and over.
- *3 : Adjustable angle is available as an option. Refer to page 1291.

Switch specifications

● 1-color/2-color display

	Proximity 2-wire	Prox	imity 2	-wire	P	roximit	ty 3-wii	re	Reed 2-wire						
Item	T1H/ T1V		T2YH/ T2YV		T3H/ T3V		T3YH/ T3YV		TOH	/T0V	T5H	/T5V	1	Γ8Η/T8\	,
Applications	For programmable controller, relay,	1	edicated	-	For programmable				For progr	programmable For programmable controller relay, IC circuit (no indicator			For p	rogramn	nable
	compact solenoid valve	program	nmable c	ontroller	controller, relay				controll	er, relay		connection	cor	troller, re	elay
Output method		_			NPN output PNP output NPN output NPN output				-						
Pwr. supp. V.		-			10 to 28 VDC				-						
Load voltage	85 to 265 VAC	10 to 3	30 VDC	24 VDC ±10%		30 VDC	or less		12/24 VDC	100/110 VAC	5/12/24 VDC	100/110 VAC	12/24 VDC	110 VAC	220 VAC
Load current	5 to 100 mA	5 to	20 mA	(*3)	100 mA	or less	50 mA	or less	5 to 50 mA	7 to 20 mA	50 mA or less	20 mA or less	5 to 50 mA	7 to 20 mA	7 to 10 mA
Indicator	LED	LED	"	Red/green	LED		Red/green		LE	ED .	Without indicator		Without indicator		
lamp	(Lit when ON)	(Lit when ON)	LED	LED	(Lit when ON)	LED	LED	LED	(Lit who	en ON)	lar	np	l ai	t when O	N)
	,	(2.1.1.1.0.1.0.1.7)	(Lit when ON)	(Lit when ON)	(21.111011-011)	(Lit when ON)	(Lit when ON)	(Lit when ON)	(=1, 1111			··· r	(=-		
Leakage	≤ 1 mA at 100 VAC,	1	mA or le	88		10 μΑ	or less					0 mA			
current	≤2 mA at 200 VAC					10 μ/ τ									
	1 m: 33	1 m:18	1 m: 33	1 m:18	1 m	:18	1 m: 33	1 m:18		1 m:18				1 m: 33	
Weight g	3 m: 87	3 m:49	3 m: 87	3 m:49	3 m:49 3 m: 87 3 m:49			3 m:49			3 m: 87				
	5 m:142	5 m:80	5 m:142	5 m:80	5 m:80		5 m:142	5 m:80	5 m		1:80		5 m:142		

- *1 : Refer to Ending Page 1 for detailed switch specifications and dimensions.
- *2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.
- *3 : The max. load current is 20 mA at 25°C. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than 25°C. (5 to 10 mA at 60°C)

Cylinder weight

Unit: kg

Oscillating angle	90°	180° 270° Switch weight		Switch mounting bracket						
Model No.	90	100	210	(per 1 pc.)	90°	180°	270°			
RRC-8	0.39	0.43	0.49	Refer to the weight	0.005					
RRC-32	1.02	1.23	1.45	in the switch	0.011	0.013	0.015			
RRC-63	1.68	2.03	2.37	specifications.	0.012	0.014	0.016			

(Example) Product weight of RRC-8-90-T2H-D
Body weight0.39 kg
Switch weight 0.018 2 pcs. = 0.036 kg
Switch mounting bracket weight 0.005 2 pcs. = 0.010 kg
Product weight 0.39 kg + 0.036 kg + 0.010 kg = 0.436 kg

How to order

Size

(Item (A) above)

Max. oscillating angle

(Item ® above)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Working pressure (MPa)

0.2 0.3

RRC Series

LCM

LCR LCG

LCW

STM STG STS/STL STR2 UCA2 ULK*

JSK/M2 JSG

JSC3/JSC4 USSD

UFCD USC

UB

JSB3 LMB LML

HCM HCA

LBC CAC4 UCAC2 CAC-N

UCAC-N RCS2

RCC2 PCC

SHC MCP GLC MFC BBS

RRC GRC RV3*

HRL

LN Hand Chuk MecHnd/Chuk

ShkAbs FJ FK SpdContr Ending

Internal structure and parts list

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Cap (2)	Aluminum alloy		16	Bearing		
2	Cap gasket	Nitrile rubber		17	Cover	Aluminum alloy	
3	Body	Aluminum alloy		18	Shaft	Steel	
4	Piston	Stainless steel		19	Key	Steel	
5	Magnet	Plastic		20	Cushion rubber	Urethane rubber	RRC-8 only
6	Piston packing	Nitrile rubber		21	DU bush		RRC-8 only
7	Wear ring	Acetal resin		22	Switch		
8	Cushion packing	Nitrile rubber	Excluding RRC-8	23	Stop plate	Stainless steel	
9	Needle	Copper alloy	Excluding RRC-8	24	Phillips pan head machine screw/captive washer	Steel	
10	Needle gasket	Nitrile rubber	Excluding RRC-8	25	Fixing nut	Stainless steel	
11	Cap (1)	Aluminum alloy		26	Switch rail	Aluminum alloy	
12	U nut	Steel	Excluding RRC-8	27	Hexagon socket set screw	Steel	
13	Hexagon socket set screw	Alloy steel					
14	Phillips flat head machine screw	Steel					
15	Hexagon socket head cap screw	Alloy steel					

Repair parts list

Model No.	Kit No.	Repair parts No.
RRC-8	RRC-8K	200
RRC-32	RRC-32K	0000
RRC-63	RRC-63K	26780

Note: Specify the kit No. when placing an order.

Dimensions

LCM LCR

LCG LCW LCX STM STG

STR2

UCA2

ULK*

JSK/M2

JSC3/JSC4 USSD UFCD

USC UB JSB3

LMB LML HCM HCA LBC CAC4 UCAC2

CAC-N

UCAC-N RCS2 RCC2 PCC

SHC

MCP

GLC

MFC BBS

RRC

GRC RV3* NHS HRL LN

Hand

Chuk MecHnd/Chuk ShkAbs

FJ FK SpdContr Ending

		A					,	RD													
Code	Ossil	latina	anala	T1*			T2*/T3*			T0*/T5*		T8*		T2Y*/T3Y*		T2	W*/T3	W*			
Model	de Oscillating angle -		Oscillating angle		Oscillating angle		Oscillating angle		Oscillating angle			Oscillating angle			Oscillating angle		angle				
No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
RRC-8	94	109	124	31	36	40	33	37	41	30	37	41	24	31	35	31	36	40	34	39	43
									L	D											
Code		T1*		T2*/T3*			T0*/T5*			T8*		T2Y*/T3Y*		T2W*/T3W*							
		lating	angle	Oscil	lating	angle	Oscil	lating	angle	Oscil	lating	angle	Oscil	lating	angle	Oscil	lating	angle			
No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°			
RRC-8	31	36	40	33	37	41	30	37	41	24	31	35	31	36	40	34	39	43			

Note: Dimensions other than the above are the same as the type without switch.

RRC Series

Dimensions

LCM

LCR

LCG

LCX STM

STG

STR2

UCA2

ULK* JSK/M2

JSG JSC3/JSC4 USSD UFCD USC

UB

JSB3 LMB

LML

HCM HCA LBC

CAC4

UCAC2 CAC-N UCAC-N

RCS2 RCC2

PCC

SHC

MCP

GLC

MFC BBS

RRC

GRC RV3*

NHS HRL LN

Hand

Chuk MecHnd/Chuk ShkAbs

FJ FK

SpdContr

Ending

34

M6

9 7

7

	ine key is attached when snipping.																				
		Α										R	D								
Code	Ossil	latina	angle	T1* Oscillating angle				T2*/T3	*		T0*/T5	*	T8*			T2	2Y*/T3	Y*	T2	W*/T3	W*
-	USCII	iauny	angle				Oscillating angle		Oscil	Oscillating angle		Oscillating angle		Oscillating angle			Oscillating angle		angle		
Model No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
RRC-32	153	191	229	56	66	75	58	67	77	57	67	76	51	61	70	56	66	75	59	69	78
RRC-63	172	216	260	64	75	86	65	76	87	65	76	87	59	70	81	64	75	86	67	78	89
									L	D											
Code		T1*			T2*/T3	*		T0*/T5	*		T8* T2Y*/T3Y*			Y*	T2	W*/T3	W*				
	Oscil	lating	angle	Oscil	lating	angle	Oscil	lating	angle	Oscil	Oscillating angle		Oscillating angle		Oscillating ar		angle				
Model No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°			
RRC-32	56	66	75	58	67	77	57	67	76	51	61	70	56	66	75	59	69	78			
RRC-63	64	75	86	65	76	87	65	76	87	59	70	81	64	75	86	67	78	89			

Note: Dimensions other than the above are the same as the type without switch.

LCM LCR LCG

LCW

Dimensions: Option

Adjustable angle

3 port positions each are provided on the R and L sides, as in the figure above.

Code	Ĺ).		Allowable absorbed energy J	Hexagon head bolt dimension for
Model No.	MIN	MAX	AA	(For adjustable angle single 10°)	adjustable angle (Common for R and L)
RRC-8	10.7	11.5	4	0.02	M5×0.5
RRC-32	13.4	15.5	6	0.06	M6×0.75
RRC-63	13.5	16.0	7	0.13	M6×0.75

Key dimensional drawing

A	В	K	D	E
16 _{-0.18}	13	1.5	3-0.025	0.2
20 _0	16	2	$4_{-0.030}^{0}$	0.2
Ī	^	16 _{-0.18} 13	16 _{-0.18} 13 1.5	16 _{-0.18} 13 1.5 3 _{-0.025}

LCX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC USSD UFCD USC UB JSB3 LMB LML HCM НСА LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs

FJ FΚ SpdContr Ending

LCM LCR LCG LCW I CX

STM STG STR2 UCA₂ ULK* JSK/M2 JSG JSC3/JSC4

USSD **UFCD** USC LMB I MI **HCM**

HCA

LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC

BBS RRC **GRC** RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs

FJ

FΚ

SpdContr

Ending

MFC

Selection guide of rotary actuator

Oscillating time check Step 1

Use an oscillating time within the specified range of the table below.

Model No.	90	180	270
RRC-8	0.015 to 0.151	0.030 to 0.302	0.045 to 0.452
RRC-32	0.038 to 0.377	0.075 to 0.754	0.113 to 1.131
RRC-63	0.073 to 0.440	0.147 to 0.880	0.220 to 1.320

^{*} The oscillating time in the table is the time for the oscillating to end after movement begins.

Step 2 Size selection

When simple static pushing force is required for clamp, etc.

Resistance load

When applying force (resistance load) including frictional force, gravity or other external forces.

- (1) Determine the working pressure.
- (2) Determine the required force.
- (3) Length of arm from rotary
- actuator is determined.

ℓ(m)

 $F_R(N)$

P(MPa)

Inertia load

When the object is rotated.

(1) Oscillating angle/oscillating time and working pressure are determined. θ (rad)

Oscillating angle Oscillating time

t(s) Working pressure P(MPa)

90°=1.5708(rad)

180°=3.1416(rad)

270°=4.7124(rad)

- (2) Calculate the load moment of the inertia according to the load shape and weight. Refer to moment of inertia table for the calculation formula.
- I (kg·m²) (3) Calculate the max. angular acceleration speed.

 $\alpha = \frac{2\theta}{t^2} (rad/s^2)$ θ: Oscillating angle (rad)

t: Oscillating time (s)

Calculation of resistance torque $T_R = K \times F_R \times \ell (N \cdot m)$ K: Slack coefficient If no load fluctuation K = 2If load fluctuates K = 5(When resistance torque caused by gravity operates) If load fluctuates when K < 5, the change in angular speed increases.

Determine size of rotary actuator according to output torque graph.

Unit: S

Calculation of acceleration torque $T_A = 5 \times 1 \times \alpha (N \cdot m)$ TA is the required torque to accelerate inertia load until set speed.

Check of allowable energy Step 3

When using an inertial load, keep the load energy lower than the rotary actuator's allowable energy.

- (1) Angular speed at oscillation edge $\omega = \frac{2\theta}{t}$ (rad/s)
 - θ: Oscillating angle (rad) t: Oscillating time (s)
- (2) Calculation of load inertia energy

$$E = \frac{1}{2} \times I \times \omega^2 (J)$$

I: Load moment of inertia (kg·m²)

(3) Confirm that the load inertia energy E is equal to or less than the allowable energy of the rotary actuator. When exceeding the allowable energy, an external shock absorber, etc., will be required.

					_	Selection guide)
	Fig	gure for mon	nen	t of inertia calculat	ion		LCM LCR
• Wh	nen rotary shaft passes through t						LCG
Shape	Sketch	Requirements		Moment of inertia I kg·m²	Radius of rotation K ₁ ²	Remarks	LCW
Dial plate		● Diameter ● Weight	d(m) M(kg)	$I = \frac{Md^2}{8}$	<u>d²</u> 8	No mounting direction For sliding use, contact CKD.	STM STG STS/S STR UCA ULK JSK/N
Circular stepped plate	d_1	● Diameter ● Weight d₁ section ↑ d₂ section ↑		$I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$	$\frac{{d_1}^2 + {d_2}^2}{8}$	● Ignore when the d₂ section is extremely small compared to the d₁ section	JSG JSC3/J USS UFC USC UB JSB
Bar (center of rotation at end) Circular stepped plate	R	● Bar length● Weight	R(m) M(kg)	$I = \frac{MR^2}{3}$	$\frac{R^2}{3}$	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	LME LML HCM HCA LBC CAC UCA CAC
Thin rod	R ₂	Bar lengthWeight	R ₁ R ₂ M ₁ M ₂	$I = \frac{M_1/R_1^2}{3} + \frac{M_2/R_2^2}{3}$	$\frac{-R_1^2+R_2^2}{3}$	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	RCS RCC PCC SHC MCF GLC
Bar (center of rotation at center of gravity)	R	● Bar length● Weight	R(m) M(kg)	I = MR ² 12	R ² 12	No mounting direction	RRO GRO RV3 NH3 HRI LN Har
Thin reclangle plate (rectangular parallelepiped)	a ₁ b	Plate lengthSide lengthWeight	a ₁ a ₂ b M ₁ M ₂	$I = \frac{M_1}{12} (4a_1^2 + b^2) = \frac{M_2}{12} (4a_2^2 + b^2)$	(4a ₁ ² +b ²)+(4a ₂ ² +b ²) 12	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	Chu MecHno Shk, FJ FK SpdO
Rectangular parallelepiped Thin recangle plate (rectangular	a	Side lengthWeight	a(m) b(m) M(kg)	$I = \frac{M}{12} (a^2 + b^2)$	- a ² +b ² 12	No mounting directionFor sliding use, contact CKD.	
Concentrated load	Concentrated load M ₁	 Shape of concentrated Length to center of grader of concentrated load Arm length Concentrated load weight Arm weight 	R ₁ (m) R ₂ (m) M ₁ (kg) M ₂ (kg)	$I = M_1(R_1^2 + k_1^2) + \frac{M_2 R_2^2}{3}$	Calculate k ₁ ² according to shape of concentrated load	 Mounting direction is horizontal When M₂ is extremely small compared to M₁, it may be calculated as M₂ = 0 	
Gear	b Load IL Rotary	or shaft rotation when u Gear - Rotary side (tooth nu Load side (tooth nun Load moment of ine	umber) a, mber) b	Load moment of inertia for the rotary actuator's shaft rotation $I_{H} = \left(\frac{a}{b}\right)^{2} I_{L}$		 When gear shape is larger, gear moment of inertia should be considered. 	

LCM

LCR

LCG LCW

LCX STM

STG/STL STR2

UCA2 ULK* JSK/M2

JSG

JSC3/JSC4

USSD

UFCD

USC

LMB

I MI

HCM

HCA

LBC

CAC4 UCAC2 CAC-N

UCAC-N

RCS2

RCC2 PCC

SHC

MCP GLC MFC BBS

RRC GRC RV3*

HRL LN

Hand Chuk

MecHnd/Chuk ShkAbs

SpdContr

Ending

FJ

FK

UB

Pneumatic components

Safety Precautions

Be sure to read this section before use.

Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Product-specific cautions: Rotary actuator rack and pinion mechanism RRC Series

Design/selection

ACAUTION

- Do not apply torque exceeding rated output externally to the product.
 - If force exceeding rated output is applied, the product could be damaged.
- If oscillating angle repeatability is required, directly stop external load.
 - The initial oscillating angle may change even with products provided with adjustable angles.
- If the axial load (thrust load) on the shaft exceeds the allowable value, faulty operation could occur. Therefore, do not apply a load in excess of the allowable value. If this is unavoidable, use a structure with a thrust bearing as shown in Fig.1.

Avoid applying bending (radial) load exceeding the allowable value onto the shaft end, or faulty operation could occur.

When unavoidable, use a mechanism transmitting only rotation as shown in Fig. 2.

When connecting the shaft end and load at any position in the oscillation range, use flexible couplings, etc., that will not twist off to prevent the shaft from breaking and bearings from wearing or seizing.

Fig. 2 Radial load

■ Install the external stopper in a position far from the rotary shaft.

If the stopper is installed near the rotary shaft, torque generated by the product could be applied to the rotary shaft. This reaction on the stopper may damage the rotary shaft or bearings, possibly resulting in injury to the operator or damage to equipment or devices.

- If the load weight is large and oscillation speed is high, large inertia could be generated and allowable absorbed energy exceeded, possibly damaging the rotary actuator.
 - Install a shock absorber to absorb inertia.
- When installing a load or jig, etc., on the rotary actuator shaft, check that load is not applied to the body as shown in Fig.3.

Fig. 3

- Prevent seizing at rotating sections. Apply grease to rotating sections (pins, etc.) to prevent seizing.
- The retention torque of the oscillating end is about half that of the effective torque, so a load factor of 50% or less should be used.
- Generally, select the model so that the output torque is twice or more than that required by load. The RRC Series uses a double piston, so if the oscillating angle is adjusted by the stopper bolt, torque at the oscillation end will be half the effective torque.
- Even if the required torque load is low during oscillation motion, the load inertia may lead to actuator damage. Upon consideration of moment of inertia, kinetic energy and oscillating time, be sure to use with the allowable energy or less.

Hexagon head bolt

for adjustable angle

Product-specific cautions

Mounting, installation and adjustment

A CAUTION

- When adjusting the angle by supplying pressure, do not rotate the device too much in advance. When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is oriented, possibly resulting in operator, component, or device injury or damage.
- Do not loosen the angle adjustment hexagon bolt beyond the adjusting range. Loosening more than the adjusting range may cause the

angle adjustment bolt to fall out, potentially causing bodily injury or damage to the workpiece/device/equipment. The cylinder's oscillating angle will decrease when the angle adjustment hexagon bolt is rotated clockwise.

■ Observe steps (1) to (5) when adjusting the angle. If adjustments are not made this way, the seal washer will be damaged after one or two adjustments.

[Angle adjustment procedure]

(1) First loosen the hexagon nut as shown in Fig.1.

washer cap (2) by hand to reach the state shown in Fig. 2. (3) Turn the angle adjustment hexagon bolt, hexagon nut,

and seal washer together as

shown in Fig.3, and adjust

the angle. Check that the

rubber section of the seal

washer does not bite into

the thread part.

(4) After adjusting the angle, move the seal washer near to the cap (2) by hand as shown in Fig. 4.

(5) Tighten securely with the hexagon nut as shown in Fig. 5. Check that the rubber section of the seal washer does not bite into the thread part.

■ Securely tighten the hexagon nut after adjusting the angle. If not adequately tightened, the hex nut could loosen in the course of usage, resulting in external leakage.

LCR LCG LCW I CX STM STR2 UCA2 ULK* JSK/M2 JSG JSC3/JS **UFCD** USC UB JSB3 LMB I MI **HCM** НСА LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC RRC GRC RV3 NHS HRL LN Hand

> Chuk MecHnd/Chu

ShkAbs

SpdContr Ending

FJ FΚ

LCM