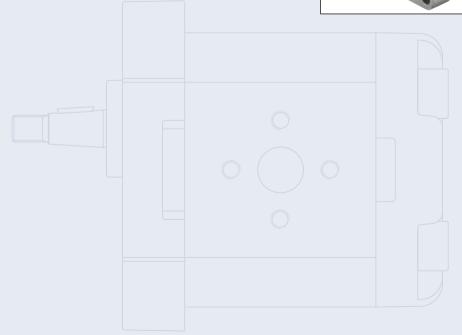
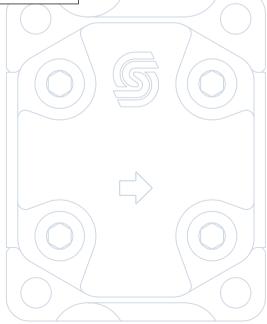


Group 3 Gear Pumps


Technical Information



Group 3 Gear Pumps Technical Information

General Information

Overview

The Sauer-Danfoss Group 3 is a range of peak performance fixed-displacement gear pumps. Constructed of a high-strength extruded aluminum body with aluminum cover and flange, all pumps are pressure-balanced for exceptional efficiency.

Some representatives of Group 3 gear pumps:

SNP3NN 07SA

Features

Group 3 gear pumps' attributes

- Wide range of displacements from 22 to 90 cm³/rev [from 1.34 to 5.49 in³/rev]
- Continuous pressure rating up to 250 bar [3625 psi]
- Speeds up to 3000 min⁻¹ (rpm)
- SAE, DIN and European standard mounting flanges
- High quality case hardened steel gears
- Multiple pump configurations in combination with SNP1NN, SNP2NN and SNP3NN

Pump design

SEP3NN

The SEP3NN gear pump is available in a limited displacement range from 22.0 to 44.1 cm³/rev [from 1.34 to 2.69 in³/rev]. Suitable for applications where the pressure is lower than 210 bar [3045 psi], the SEP3NN range is released into SAE and European configurations. The overall length is reduced by 12 mm [0.47 in] in respect of the SNP3NN.

SNP3NN

The SNP3NN is available in the full displacement range from 22.0 to 88.2 cm³/rev [from 1.34 to 5.38 in³/rev], and with higher pressure ratings than the SEP3NN. This is due to the pressure balance on each side of the gears obtained with pressure-balance plates made in antifriction alloy that contribute to high volumetric efficiency and maximum sealing as well.

© 2008, Sauer-Danfoss. All rights reserved. Printed in Europe.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group.

Front cover illustrations: F005 033, F005 075, F005 071, F005 079, F005 076 and P005 051.

Contents

General Information	Overview	2
	Features	
	Group 3 gear pumps` attributes	
	Pump design	2
	SEP3NN	
	SNP3NN	
	Technical data	
	Determination of nominal pump sizes	
	Based on SI units/Based on US units	
Product Coding	Model code	6
System Requirements	Pressure	9
	Speed	
	Hydraulic fluids	
	Temperature and Viscosity	
	Filtration	
	Reservoir	
	Filters	
	Selecting a filter	
	Line sizing	
	Pump drive	
	Pump drive data form	
	Pump life	
	Sound levels	
Pump Performance	Pump performance graphs	15
Product Options	Shaft, flange, and port configurations	19
•	Mounting flanges	20
	Shaft options	
	Port configurations	21
	Porting	22
Dimensions	SNP3NN – 01FA, 01DA, 01BA and SEP3NN – 01BA	23
	SNP3NN – 02FA, 02DA and 02BA	
	SNP3NN – 03FB and 03BB	
	SNP3NN – 06DD and 06AA	
	SNP3NN, SEP3NN – 07SA and 07GA	

SAUER Group 3 Gear Pumps Technical Information **Group 3 Gear Pumps General Information**

Technical data

Technical data for SNP3NN

CND2NN	Frame size										
SNP3NN pump mode	!I	022	026	033	038	044	048	055	063	075	090
Displacement	cm³/rev [in³/rev]	22.1 [1.35]	26.2 [1.60]	33.1 [2.02]	37.9 [2.32]	44.1 [2.69]	48.3 [2.93]	55.1 [3.36]	63.4 [3.87]	74.4 [4.54]	88.2 [5.38]
Peak pressure	bar [psi]	270 [3910]	270 [3910]	270 [3910]	270 [3910]	270 [3910]	250 [3625]	250 [3625]	230 [3350]	200 [2910]	170 [2465]
Rated pressure		250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	230 [3350]	230 [3350]	210 [3045]	180 [2610]	150 [2175]
Minimum speed	min ⁻¹ (rpm)	800	800	800	800	800	800	800	600	600	600
Maximum speed		3000	3000	3000	3000	3000	3000	2500	2500	2500	2500
Weight	kg [lb]	6.8 [15.0]	6.8 [15.0]	7.2 [15.8]	7.3 [16.1]	7.5 [16.5]	7.6 [16.8]	7.8 [17.3]	8.1 [17.9]	8.5 [18.7]	8.9 [19.6]
Moment of inertia of rotating components	x 10 ⁻⁶ kg•m ² [x 10 ⁻⁶ lbf•ft ²]	198 [4698]	216 [5126]	246 [5838]	267,2 [6340]	294,2 [6891]	312,2 [7408]	342,3 [8123]	378,3 [8977]	426,4 [10118]	486,5 [11545]
Theoretical flow at maximum speed	l/min [US gal/min]	66.3 [17.5]	78.6 [20.8]	99.3 [26.2]	113.7 [30.0]	132.3 [35.0]	144.9 [38.3]	137.8 [36.4]	158.5 [41.8]	186 [49.1]	220.5 [58.3]

Technical data for SEP3NN

CED2NN numn model		Frame size								
SEP3NN pump model		022	026	033	038	044				
Displacement	cm³/rev [in³/rev]	22.1 [1.35]	26.2 [1.60]	33.1 [2.02]	37.9 [2.32]	44.1 [2.69]				
Peak pressure	hau [mai]	230 [3350]	230 [3350]	230 [3350]	230 [3350]	200 [2910]				
Rated pressure	bar [psi]	210 [3045]	210 [3045]	210 [3045]	210 [3045]	180 [2610]				
Minimum speed		1000	1000	1000	1000	800				
Maximum speed	min ⁻¹ (rpm)	3000	3000	3000	2800	2600				
Weight	kg [lb]	5.7 [12.57]	5.8 [12.79]	6.1 [13.45]	6.2 [13.67]	6.4 [14.11]				
Moment of inertia of rotating components	x 10 ⁻⁶ kg•m ² [x 10 ⁻⁶ lbf•ft ²]	198 [4698]	216 [5126]	246 [5873]	294.2 [6981]	312.2 [7408]				
Theoretical flow at maximum speed	l/min [US gal/min]	66.3 [17.5	78.6 [20.8]	99.3 [26.2]	113.7 [30.0]	132.3 [35.0]				

• Caution

The rated and peak pressure mentioned are for pumps with flanged ports only. When threaded ports are required a de-rated performance has to be considered. To verify the compliance of an high pressure application with a threaded ports pump apply to a Sauer-Danfoss representative.

SAUER Group 3 Gear Pumps Technical Information

General Information

Determination of nominal pump sizes

Use these formulae to determine the nominal pump size for a specific application:

Based on SI units

Based on US units

Output flow:
$$Q = \frac{Vg \cdot n \cdot \eta_v}{1000}$$
 I/min

$$Q = \frac{Vg \cdot n \cdot \eta_v}{231} \quad [US gal/min]$$

Input torque:
$$M = \frac{Vg \cdot \Delta p}{20 \cdot \pi \cdot \eta_m}$$
 N·m

$$M = \frac{Vg \cdot \Delta p}{2 \cdot \pi \cdot \eta_m} \quad [lbf \cdot in]$$

Input power:
$$P = \frac{M \cdot n}{9550} = \frac{Q \cdot \Delta p}{600 \cdot \eta}$$
 kW

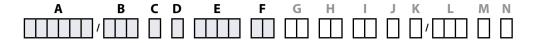
$$P = \frac{M \cdot n}{63.025} = \frac{Q \cdot \Delta p}{1714 \cdot \eta_{t}} [hp]$$

Variables: SI units [US units]

 $V_g = Displacement per rev. cm³/rev [in³/rev]$ $<math>p_{HD} = Outlet pressure$ bar [psi] $p_{ND} =$ Inlet pressure $\Delta p =$ $p_{HD} - p_{ND}$ bar [psi] bar [psi] n = Speed min⁻¹ (rpm)

 η_{ν} = Volumetric efficiency

 $\eta_{m} = Mechanical (torque) efficiency$ $\eta_{\bullet}^{"}$ = Overall efficiency $(\eta_{\bullet} \cdot \eta_{\bullet})$


5 520L0569 • Rev DC • Mar 2008

Group 3 Gear Pumps Technical Information

Product Coding

Model code

A Type

SNP3NN	Standard gear pump
SEP3NN	Medium pressure gear pump

B Displacement

022	22.1 cm³/rev [1.35 in³/rev]
026	26.2 cm³/rev [1.60 in³/rev]
033	33.1 cm³/rev [2.02 in³/rev]
038	37.9 cm³/rev [2.32 in³/rev]
044	44.1 cm³/rev [2.69 in³/rev]
048	48.3 cm³/rev [2.93 in³/rev]
055	55.1 cm³/rev [3.36 in³/rev]
063	63.4 cm³/rev [3.87 in³/rev]
075	74.4 cm³/rev [4.54 in³/rev]
090	88.2 cm³/rev [5.38 in³/rev]

C Direction of rotation

R	Right hand (clockwise)					
L Left hand (counterclockwise)						
В	For reversible motors					

D Version *

N	Standard gear pump
---	--------------------

E Mounting flange and drive gear

Code	Description (Type of flange • type of drive gear • prefered ports for configuration)	SNP3NN	SEP3NN
01FA	European four bolt flange • Parallel shaft • European flanged ports	•	-
01BA	European four bolt flange • Tapered 1:8 shaft • European flanged ports	•	•
01DA	European four bolt flange • Splined 15T 12x10 shaft • European flanged ports	•	_
02BA	European four bolts flange • Tapered 1:8 shaft • European flanged ports	•	-
02DA	European four bolts flange • DIN splined shaft • European flanged ports	•	-
02FA	European four bolts flange • Parallel shaft • European flanged ports	•	-
03BB	European four bolts flange • Tapered 1:8 shaft • European flanged ports	•	-
03FB	European four bolts flange • Parallel shaft • European flanged ports	•	-
06AA	German four bolts flange • Tapered 1:5 shaft • German standard ports	•	-
06DD	German four bolts flange • DIN Splined shaft • German flanged ports	•	_
07GA	SAE B flange • Parallel shaft • Vertical four bolt SAE flanged ports	•	_
07SA	SAE B flange • SAE splined shaft • Vertical four bolt SAE flanged ports	•	•

Legend:

= StandardO = Optional

Not Available

F Rear cover

P1 Standard cover for pump	Standard Cover for parity	
----------------------------	---------------------------	--

Model code (continued)

Α	В	C	D	E	F	G	Н	- 1	J	K	L	M	Ν

G Inlet port

-	merport							
	A2	8,5x22,23x47,63x ³ / ₈ -16UNC						
	А3	25x26,19x52,37x ³ / ₈ -16UNC	SAE flanged port					
	A4	31x30,18x58,72x ⁷ / ₁₆ -14UNC	SAE hanged port					
	A5	37,5/27x35,7x69,85x ½ -13UNC						
	В7	20x40xM6						
	ВА	18x55xM8	Flammad mantavitely that had a in V matterns					
	ВВ	27x55xM8	Flanged port with thd holes in X pattern					
	ВС	36/27x55xM8						
	С3	13,5x30xM6						
	C 7	20x40xM8						
	CA	27x51xM10	Flanged port with thd holes in + pattern					
	CD	36x62xM10						
	CZ	27x51xM10(2Vert.Holes)						
	E 6	1 ½ ₆ -12UN						
	E8	1 5/16-12UN	Thd SAE O-ring boss port					
	E9	1 5/8-12UN	Tha SAE O-Hing boss port					
	EA	1 1/8-12UN						
	F5	¾ GAS						
	F6	1 GAS	Threaded GAS (BSPP)					
	F7	1 ¼ GAS						
	G7 20x40x5/16-18UNC		EL 14:111 1 : 1 : 1					
	GA	27x51x3/8-16UNC	Flanged 4 thd holes in + pattern					
	M6 31x30,18x58,72xM10							
	MF	25x52,37x26,19xM8	CAE flanged part. Matric the holes					
	МН	31x30,18x58,72xM10 deep18	SAE flanged port - Metric thd holes					
	MN	31x30,18x58,72xM10 deep12						

H Outlet port

For code letters and descriptions see *the table above*.

520L0569 • Rev DC • Mar 2008

Group 3 Gear Pumps Technical Information Product Coding

Model code (continued)

I Port position and variant body

NN	Standard gear pump from catalogue

J Sealing

N	Standard Buna seal
Α	Without shaft seal
В	VITON seals

K Screws

N	Standard screws	
Α	Galvanized screws+nuts-washers	
В	DACROMET/GEOMET screws	

L Set valve

NNN	No valve
V**	Integral RV-pressure setting. Pump speed for relief valve setting (min ⁻¹ [rpm])

M Marking

N	Standard marking	
Α	Standard marking + customer code	
Z	Without marking	

N Mark position

N Standard marking position	
Α	Mark on the bottom reffering to drive gear

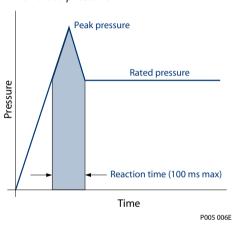
Group 3 Gear Pumps Technical Information

System Requirements

Pressure

The inlet vacuum must be controlled in order to realize expected pump life and performance. The system design must meet inlet pressure requirements during all modes of operation. Expect lower inlet pressures during cold start. It should improve quickly as the fluid warms.

Inlet pressure

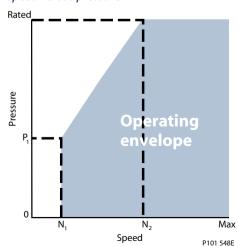

Maximum continuous vacuum	l l l	0.8 [23.6]
Maximum intermittent vacuum	bar absolute [in. Hg]	0.6 [17.7]
Maximum pressure		3.0 [88.5]

Peak pressure is the highest intermittent pressure allowed. The relief valve overshoot (reaction time) determines peak pressure. It is assumed to occur for less than 100 ms. The illustration to the right shows peak pressure in relation to rated pressure and reaction time (100 ms maximum).

Rated pressure is the average, regularly occurring, operating pressure that should yield satisfactory product life. The maximum machine load demand determines rated pressure.
For all systems, the load should move below this pressure.

System pressure is the differential between the outlet and inlet ports. It is a dominant operating variable affecting hydraulic unit life. High system pressure, resulting from high load, reduces expected life. System pressure must remain at, or below, rated pressure during normal operation to achieve expected life.

Time versus pressure



Speed

Maximum speed is the limit recommended by Sauer-Danfoss for a particular gear pump when operating at rated pressure. It is the highest speed at which normal life can be expected.

The lower limit of operating speed is the **minimum speed**. It is the lowest speed at which normal life can be expected. The minimum speed increases as operating pressure increases. When operating under higher pressures, a higher minimum speed must be maintained, as illustrated to the right:

Speed versus pressure

520L0569 · Rev DC • Mar 2008

Group 3 Gear Pumps Technical Information System Requirements

Hydraulic fluids

Ratings and data for SNP3NN and SEP3NN gear pumps are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of internal components. They include:

- Hydraulic fluids following DIN 51524, part 2 (HLP) and part 3 (HVLP) specifications
- API CD engine oils conforming to SAE J183
- M2C33F or G automatic transmission fluids
- · Certain agricultural tractor fluids

Use only clean fluid in the pump and hydraulic circuit.

• Caution

Never mix hydraulic fluids.

Please see Sauer-Danfoss publication *Hydraulic Fluids and Lubricants Technical Information*, **520L0463** for more information. Refer to publication *Experience with Biodegradable Hydraulic Fluids Technical Information*, **520L0465** for information relating to biodegradable fluids.

Temperature and Viscosity

Temperature and viscosity requirements must be concurrently satisfied. Use petroleum / mineral-based fluids.

High temperature limits apply at the inlet port to the pump. The pump should run at or below the maximum continuous temperature. The peak temperature is based on material properties. Don't exceed it.

Cold oil, generally, doesn't affect the durability of pump components. It may affect the ability of oil to flow and transmit power. For this reason, keep the temperature at 16 °C [60 °F] above the pour point of the hydraulic fluid.

Minimum (cold start) temperature relates to the physical properties of component materials.

Minimum viscosity occurs only during brief occasions of maximum ambient temperature and severe duty cycle operation. You will encounter maximum viscosity only at cold start. During this condition, limit speeds until the system warms up. Size heat exchangers to keep the fluid within these limits. Test regularly to verify that these temperatures and viscosity limits aren't exceeded. For maximum unit efficiency and bearing life, keep the fluid viscosity in the recommended viscosity range.

Fluid viscosity

Maximum (cold start)	3,4	1000 [4600]	
Recommended range	mm²/s [SUS]	12-60 [66-290]	
Minimum		10 [60]	

Temperature

Minimum (cold start)	۰c	-20 [-4]
Maximum continuous	[°F]	80 [176]
Peak (intermittent)		90 [194]

Filtration

Filters

Use a filter that conforms to Class 22/18/13 of ISO 4406 (or better). It may be on the pump outlet (pressure filtration), inlet (suction filtration), or reservoir return (return-line filtration).

Selecting a filter

When selecting a filter, please consider:

- contaminant ingression rate (determined by factors such as the number of actuators used in the system)
- · generation of contaminants in the system
- · required fluid cleanliness
- · desired maintenance interval
- filtration requirements of other system components

Measure filter efficiency with a Beta ratio (β_{v}). For:

- suction filtration, with controlled reservoir ingression, use a β_{35-45} = 75 filter
- return or pressure filtration, use a pressure filtration with an efficiency of $\beta_{10} = 75$.

 β_x ratio is a measure of filter efficiency defined by ISO 4572. It is the ratio of the number of particles greater than a given diameter (" $_x$ " in microns) upstream of the filter to the number of these particles downstream of the filter.

Fluid cleanliness level and β_{ij} ratio

Fluid cleanliness level (per ISO 4406)	Class 22/18/13 or better	
$\beta_{\rm x}$ ratio (suction filtration)	$\beta_{35-45} = 75 \text{ and } \beta_{10} = 2$	
β_{x} ratio (pressure or return filtration)	$\beta_{10} = 75$	
Recommended inlet screen size	100-125 μm [0.004-0.005 in]	

The filtration requirements for each system are unique. Evaluate filtration system capacity by monitoring and testing prototypes.

Reservoir

The **reservoir** provides clean fluid, dissipates heat, removes entrained air, and allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. A correctly sized reservoir accommodates maximum volume changes during all system operating modes. It promotes deaeration of the fluid as it passes through, and accommodates a fluid dwell-time between 60 and 180 seconds, allowing entrained air to escape.

Minimum reservoir capacity depends on the volume required to cool and hold the oil from all retracted cylinders, allowing for expansion due to temperature changes. A fluid volume of 1 to 3 times the pump output flow (per minute) is satisfactory. The minimum reservoir capacity is 125% of the fluid volume.

Install the suction line above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the line. Cover the line with a 100-125 micron screen. The pump should be below the lowest expected fluid level.

Put the return-line below the lowest expected fluid level to allow discharge into the reservoir for maximum dwell and efficient deaeration. A baffle (or baffles) between the return and suction lines promotes deaeration and reduces fluid surges.

520L0569 · Rev DC • Mar 2008

Group 3 Gear Pumps Technical Information System Requirements

Line sizing

Choose pipe sizes that accommodate minimum fluid velocity to reduce system noise, pressure drops, and overheating. This maximizes system life and performance. Design inlet piping that maintains continuous pump inlet pressure above 0.8 bar absolute during normal operation. The line velocity should not exceed the values in this table:

Maximum line velocity

Inlet		2.5 [8.2]	
Outlet	m/s [ft/sec]	5.0 [16.4]	
Return		3.0 [9.8]	

Most systems use hydraulic oil containing 10% dissolved air by volume. Under high inlet vacuum conditions the oil releases bubbles. They collapse when subjected to pressure, resulting in cavitation, causing adjacent metal surfaces to erode. **Over-aeration** is the result of air leaks on the inlet side of the pump, and flow-line restrictions. These include inadequate pipe sizes, sharp bends, or elbow fittings, causing a reduction of flow line cross sectional area. This problem will not occur if inlet vacuum and rated speed requirements are maintained, and reservoir size and location are adequate.

Pump drive

Shaft options for Group 3 gear pumps include tapered, splined, or parallel shafts. They are suitable for a wide range of direct and indirect drive applications for radial and thrust loads.

Plug-in drives, acceptable only with a splined shaft, can impose severe radial loads when the mating spline is rigidly supported. Increasing spline clearance does not alleviate this condition.

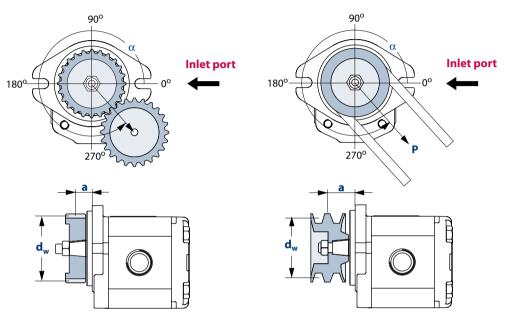
Use plug-in drives if the concentricity between the mating spline and pilot diameter is within 0.1 mm [0.004 in]. Lubricate the drive by flooding it with oil. A 3-piece coupling minimizes radial or thrust shaft loads.

P101 002E

• Caution

In order to avoid spline shaft damages it is recommended to use carburised and hardened steel couplings with 80-82 HRA surface hardness.

Allowable radial shaft loads are a function of the load position, load orientation, and operating pressure of the hydraulic pump. All external shaft loads have an effect on bearing life, and may affect pump performance.


In applications where external shaft loads can't be avoided, minimize the impact on the pump by optimizing the orientation and magnitude of the load. Don't use splined shafts for belt or gear drive applications. A spring-loaded belt tension-device is recommended for belt drive applications to avoid excessive tension. Avoid thrust loads in either direction. Contact Sauer-Danfoss if continuously applied external radial or thrust loads occur.

Pump drive data form

Photocopy this page and fax the complete form to your Sauer-Danfoss representative for an assistance in applying pumps with belt or gear drive. This illustration shows a pump with counterclockwise orientation:

Optimal radial load position

P101 566E

Application data

Item	Value	Unit	
Pump displacement		cm³/rev [in³/rev]	
Rated system pressure	Rated system pressure		
Relief valve setting			□ bar □ psi
Pump shaft rotation			□ left □ right
Pump minimum speed			main-1 (numma)
Pump maximum speed		min ⁻¹ (rpm)	
Drive gear helix angle (gear drive only)	Drive gear helix angle (gear drive only)		
Belt type (gear drive only)			□V □ notch
Belt tension (gear drive only)	Р		□N □lbf
Angular orientation of gear or belt to inlet port α			degree
Pitch diameter of gear or pulley $\mathbf{d}_{\mathbf{w}}$			D. marra D. im
Distance from flange to center of gear or pulley a			-□mm □in

520L0569 · Rev DC • Mar 2008

Group 3 Gear Pumps Technical Information System Requirements

Pump life

Pump life is a function of speed, system pressure, and other system parameters (such as fluid quality and cleanliness).

All Sauer-Danfoss gear pumps use hydrodynamic journal bearings that have an oil film maintained between the gear / shaft and bearing surfaces at all times. If the oil film is sufficiently sustained through proper system maintenance and operating within recommended limits, long life can be expected.

 B_{10} life expectancy number is generally associated with rolling element bearings. It does not exist for hydrodynamic bearings.

High pressure, resulting from high loads, impacts pump life. When submitting an application for review, provide machine duty cycle data that includes percentages of time at various loads and speeds. We strongly recommend a prototype testing program to verify operating parameters and their impact on life expectancy before finalizing any system design.

Sound levels

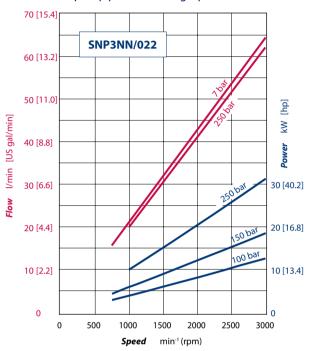
Noise is unwanted sound. Fluid power systems create noise. There are many techniques available to minimize noise. Understanding how it's generated and transmitted is necessary to apply these methods effectively.

Noise energy is transmitted as fluid borne noise (pressure ripple) or structure borne noise. **Pressure ripple** is the result of the number of pumping elements (gear teeth) delivering oil to the outlet and the pump's ability to gradually change the volume of each pumping element from low to high pressure. Pressure ripple is affected by the compressibility of the oil as each pumping element discharges into the outlet of the pump. Pressure pulsations travel along hydraulic lines at the speed of sound (about 1400 m/s in oil) until there is a change in the system (as with an elbow fitting). Thus, the pressure pulsation amplitude varies with overall line length and position.

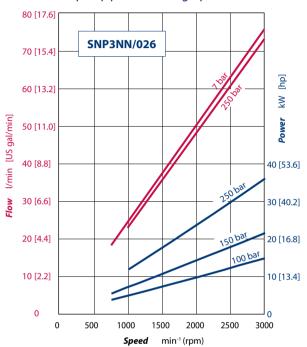
Structure borne noise may be transmitted wherever the pump casing is connected to the rest of the system.

The way circuit components respond to excitation depends on their size, form, and mounting. Because of this, a system line may actually have a greater noise level than the pump. To minimize noise, use:

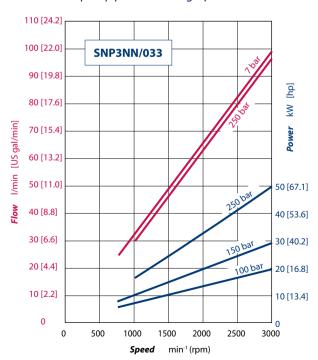
- flexible hoses (if you must use steel plumbing, clamp the lines).
- flexible (rubber) mounts to minimize other structure borne noise.

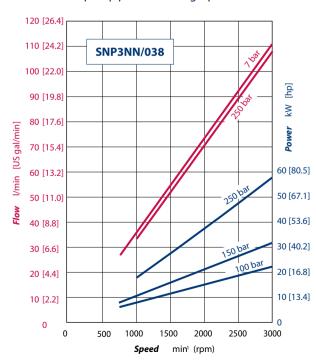


Group 3 Gear Pumps Technical Information Pump Performance


Pump performance graphs

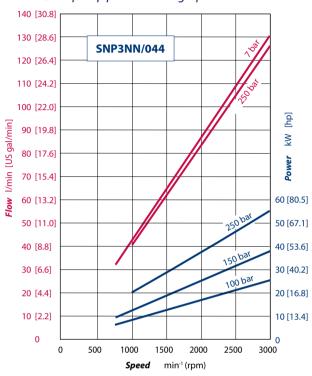
The graphs on the next few pages provide typical output flow and input power for Group 3 pumps at various working pressures. Data were taken using ISO VG46 petroleum /mineral based fluid at $50 \,^{\circ}\text{C}$ [122 $^{\circ}\text{F}$] (viscosity = $28 \, \text{mm}^2/\text{s}$ [132 SUS]).


SNP3NN/022 pump performance graph

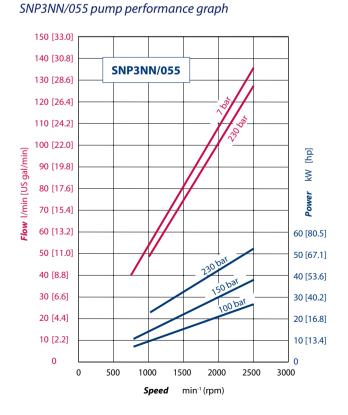

SNP3NN/026 pump performance graph

SNP3NN/033 pump performance graph

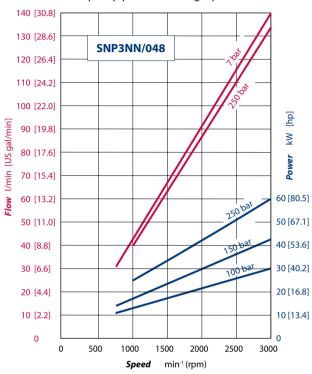
SNP3NN/038 pump performance graph

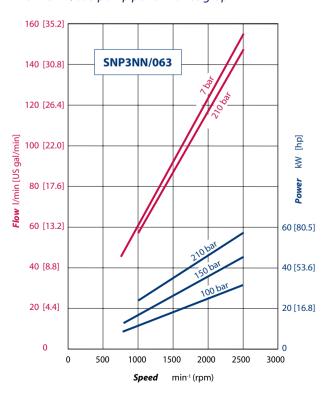

P005 200E

520L0569 · Rev DC • Mar 2008

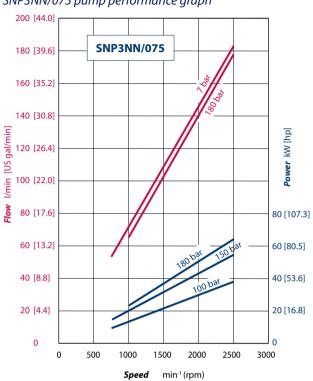


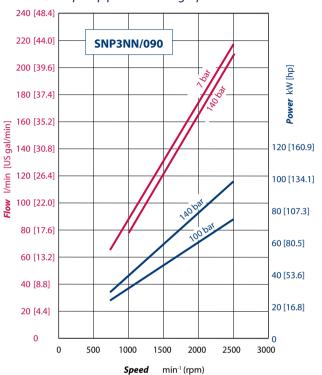
Pump performance graphs (continued)


SNP3NN/044 pump performance graph

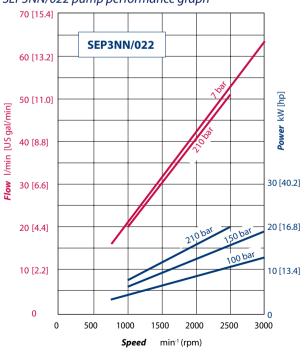

......

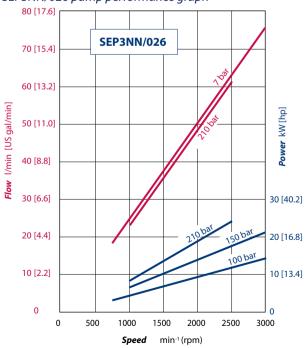
SNP3NN/048 pump performance graph


SNP3NN/063 pump performance graph



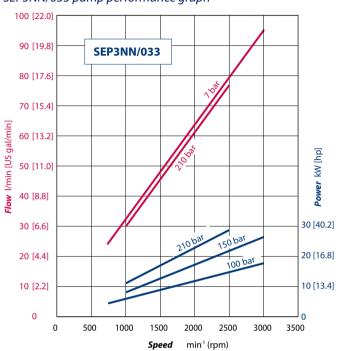
Pump performance graphs (continued)


SNP3NN/075 pump performance graph

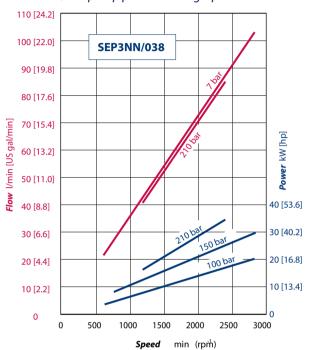

SNP3NN/090 pump performance graph

SEP3NN/022 pump performance graph

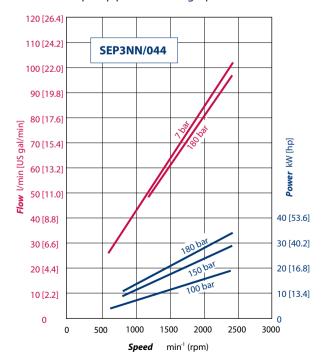
SEP3NN/026 pump performance graph


P005 204E

520L0569 · Rev DC • Mar 2008 17



Pump performance graphs (continued)


SEP3NN/033 pump performance graph

SEP3NN/038 pump performance graph

SEP3NN/044 pump performance graph

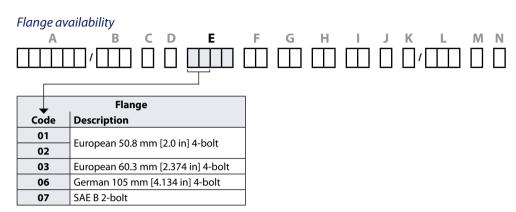
P005 225E

18

Shaft, flange, and port configurations

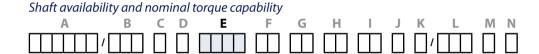
Pump	Code	Flange		Shaft	Port		
SEP3NN SNP3NN	01BA	50.8 mm [2.0 in] pilot Ø European 01 4-bolt		1:8 tapered	European flanged port + pattern	•	
SNP3NN	02BA	50.8 mm [2.0 in] pilot Ø European 02 4-bolt		1:8 tapered	European flanged port + pattern	• • •	
SNP3NN	03BB	60.3 mm [2.374 in] pilot Ø European 03 4-bolt		1:8 tapered	European flanged port + pattern	• • •	
SNP3NN	06AA	105 mm [4.133 in] pilot Ø German 4-bolt		1:5 tapered	German std ports port X pattern	8 8 8 8	
SEP3NN SNP3NN	01FA	50.8 mm [2.0 in] pilot Ø European 01 4-bolt		Ø 20 mm [0.787 in] parallel	European flanged port + pattern	•	
SNP3NN	02FA	50.8 mm [2.0 in] pilot Ø European 02 4-bolt		Ø 20 mm [0.787 in] parallel	European flanged port + pattern	• • •	
SNP3NN	03FB	60.3 mm [2.374 in] pilot Ø European 03 4-bolt		Ø 22 mm [0.866 in] parallel	European flanged port + pattern	• • •	
SEP3NN SNP3NN	07GA	SAE B Ø 101.6 pilot 2-bolt	000	Ø 22.225 mm [0.875 in] parallel	Vertical four bolt flanged port	8 8	
SNP3NN	01DA	50.8 mm [2.0 in] pilot Ø European 01 4-bolt		Splined shaft 13T - m 1.60 DIN 5482-B22x19	European flanged port + pattern	• • •	
SNP3NN	02DA	50.8 mm [2.0 in] pilot Ø European 02 4-bolt		Splined shaft 13T - m 1.60 DIN 5482-B22x19	European flanged port + pattern	• • •	
SNP3NN	03DA	60.3 mm [2.374 in] pilot Ø European 03 4-bolt		Splined shaft 13T - m 1.60 DIN 5482-B25x22	European flanged port + pattern	•	
SNP3NN	06DD	105 mm [4.133 in] pilot Ø German 4-bolt		Splined shaft 13T - m 1.60 DIN 5482-B28x25	German std ports port X pattern	© () () () () () () () () () (
SEP3NN SNP3NN	07SA	SAE B Ø 101.6 pilot 2-bolt	000	Splined shaft SAE J498 13T - 16/32DP	Vertical four bolt flanged port	\$ \$ \$	

520L0569 · Rev DC · Mar 2008



Group 3 Gear Pumps Technical Information

Product Options


Mounting flanges

Sauer-Danfoss offers many types of industry standard mounting flanges. This table shows order codes for each available mounting flange and its intended use:

Shaft options

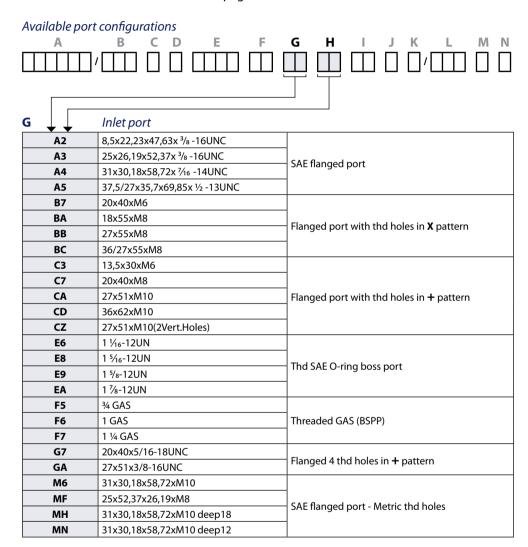
Direction is viewed facing the shaft. Group 3 pumps are available with a variety of splined, parallel, and tapered shaft ends. Not all shaft styles are available with all flange styles.

	Shaft	Mounting	flange code	with maxim	um torque in	Nm [lb•in]
Code	Description	01	02	03	06	07
AA	Taper 1:5	_	_	-	300 [2655]	ı
ВА	Taper 1:8	350 [3097]	350 [3097]	-	-	ı
ВВ	Taper 1:8	-	-	500 [4425]	-	-
DA	Spline 13T DIN 5482-B22X19	290 [2566]	290 [2566]	-	-	-
DD	Spline 13T DIN 5482-B28X25	-	-	-	450 [3982]	-
SA	SAE spline 13T 16/32p	-	-	-	-	270 [2389]
FA	Parallel ø20 mm	210 [1858]	210 [1858]		-	
FB	Parallel ø22.225 mm			300 [2655]	_	
GA	Parallel ø22.225 mm				-	230 [2035]

Sauer-Danfoss recommends mating splines conform to SAE J498 or DIN 5482. Sauer-Danfoss external SAE splines have a flat root side fit with circular tooth thickness reduced by 0.127 mm [0.005 in] in respect to class 1 fit. Dimensions are modified to assure a clearance fit with the mating spline.

• Caution

Shaft torque capability may limit allowable pressure. Torque ratings assume no external radial loading. Applied torque must not exceed these limits, regardless of stated pressure parameters. Maximum torque ratings are based on shaft torsional fatigue strength.



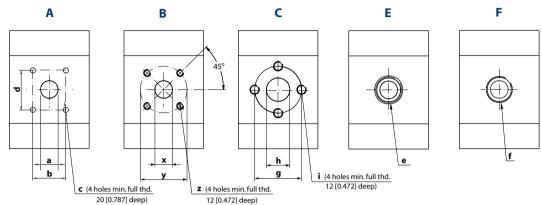
Product Options

Port configurations

Various port configurations are available on Group 3 pumps. They include:

- European standard flanged ports
- German standard flanged ports
- Gas threaded ports (BSPP)
- O-Ring boss (following SAE J1926/1 [ISO 11926-1] UNF threads, standard) A table of dimensions is on the next page.

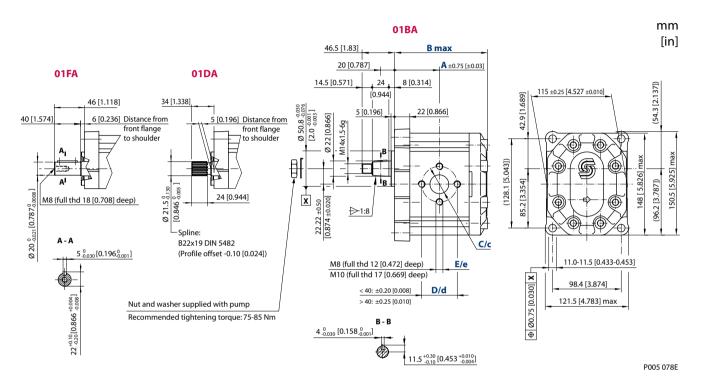
H Outlet port


For code letters and descriptions see the table above.

21 520L0569 • Rev DC • Mar 2008

SAUER Group 3 Gear Pumps Technical Information **Product Options**

Porting



Ports dimensions

Por	Port type			Α			В			С		E	F	
Din	nensio	ns	а	b	d	с	х	у	z	g	h	i	е	f
	022	Inlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³/ ₈ –16UNC–2B	27 [1.063]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	15/16-12UN-2B	¾ Gas (BSPP)
	022	Outlet	19.1 [0.752]	22.23 [0.875]	47.63 [1.875]	³/8-16UNC-2B	18 [0.709]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	1 ¹ / ₁₆ –12UN–2B	¾ Gas (BSPP)
	026	Inlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³/8-16UNC-2B	27 [1.063]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	15/16-12UN-2B	¾ Gas (BSPP)
	020	Outlet	19.1 [0.752]	22.23 [0.875]	47.63 [1.875]	³/ ₈ –16UNC–2B	18 [0.709]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	1 ¹ / ₁₆ –12UN–2B	¾ Gas (BSPP)
	033	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8- 12UN-2B	1 Gas (BSPP)
		Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³/8-16UNC-2B	18 [0.709]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	15/16-12UN-2B	¾ Gas (BSPP)
	038	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
		Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³ / ₈ –16UNC–2B	18 [0.709]	55 [2.165]	M8	40 [1.575]	20 [0.787]	M8	15/16-12UN-2B	¾ Gas (BSPP)
ent)	044	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
Type (displacement)		Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³/ ₈ –16UNC–2B	18 [0.709]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/16-12UN-2B	1 Gas (BSPP)
e (disp	048	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
Тур		Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	³/8-16UNC-2B	18 [0.709]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/16-12UN-2B	1 Gas (BSPP)
	055	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	1 ⁷ / ₈ –12UN–2B	1 Gas (BSPP)
		Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	18 [0.709]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
	063	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	36 [1.417]	55 [2.165]	M8	62 [2.441]	36 [1.417]	M10	1 ⁷ / ₈ –12UN–2B	1¼ Gas (BSPP)
		Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
	075	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	36 [1.417]	55 [2.165]	M8	62 [2.441]	36 [1.417]	M10	1 ⁷ / ₈ –12UN–2B	1¼ Gas (BSPP)
	<i>3, 3</i>	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	27 [1.063]	55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)
	090	Inlet	38.1 35.71 69.85 [1.500] [1.406] [2.750] ½–13UNC–2B		½-13UNC-2B	36 [1.417]	55 [2.165]	M8	62 [2.441]	36 [1.417]	M10	1 ⁷ / ₈ –12UN–2B	1¼ Gas (BSPP)	
	090	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 7/16-14UNC-2B 27 [1.063]		55 [2.165]	M8	51 [2.008]	27 [1.063]	M10	15/8-12UN-2B	1 Gas (BSPP)	

SNP3NN - 01FA, 01DA, 01BA and SEP3NN - 01BA

The drawing shows the SNP3NN standard porting for 01FA, 01DA and 01BA. The configurations 01FA and 01BA are available for the **SEP3NN**. The SEP3NN overall length is 12 mm [0.472 in] less than the SNP3NN for the whole range of displacements (22.1 to 44.1 cm³/rev [1.35 to 2.69 in³/rev]).

SNP3NN - 01FA, 01BA, 01DA and SEP3NN - 01BA dimensions

Type (displace	ement)	022	026	033	038	044	048	055	063	075	090
	Δ.	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0
Dimension	Α	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]
Dimension	В	132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5
В	[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]	
	C	20 [0	.787]		27 [1	.063]		36 [1.417]			
Inlet	D	40 [1	.575]	51 [2.007] 62 [2.441]							
	E	N	18				М	10			
	С		20 [0.					27 [1	.063]		
Outlet	d		40 [1	.575]				51 [2.001]			
	е		N	18		M10					

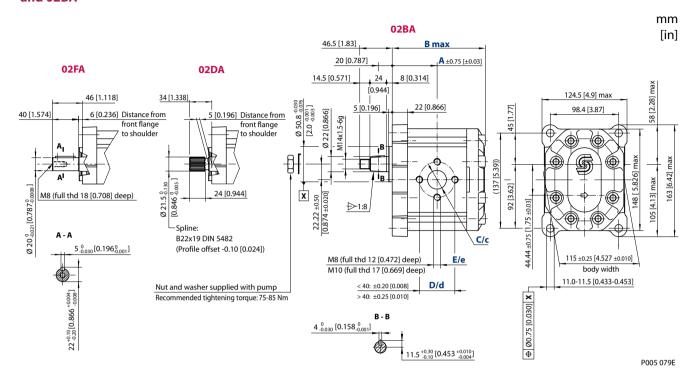
Model code examples and maximum shaft torque

Flange/drive gear configuration	Model code example	Maximum shaft torque N·m [lb·in]
01DA	SNP3NN/075LN01DAP1CDCANNNN/NNNNN	290 [2566]
01FA	SNP3NN/033RN01FAP1CAC7NNNN/NNNNN	210 [1858]
01BA	SNP3NN/022RN01BAP1C7C7NNNN/NNNNN	350 [3097]

For further details on ordering, see *Model Code*, pages 6÷8.

The SEP3NN overall length is 12 mm [0.472 in] less than the SNP3NN for the whole range of displacements (22.1 to 44.1 cm³/rev [1.35 to 2.69 in³/rev]).

520L0569 · Rev DC • Mar 2008



Group 3 Gear Pumps Technical Information

Dimensions

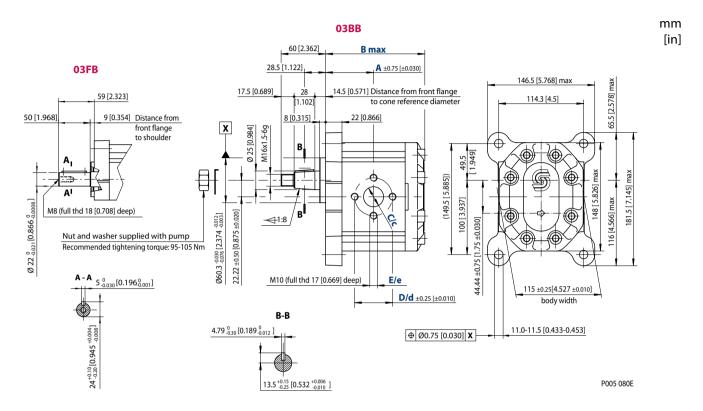
SNP3NN - 02FA, 02DA and 02BA

This drawing shows the standard porting for 02FA, 02DA and 02BA.

SNP3NN - 02FA, 02DA and 02BA dimensions

Type (displace	Type (displacement)		026	033	038	044	048	055	063	075	090
Dimension	Α	63.0 [2.480]	64.5 [2.539]	67.0 [2.637]	68.8 [2.708	71.0 [2.795]	72.5 [2.854]	75.0 [2.952]	78.0 [3.070]	82.0 [3.228]	87.0 [3.425]
Dimension	R I I		135.5 [5.334]	140.5 [5.531]	144.0 [5.669]	148.5 [5.846]	151.5 [5.964]	156.5 [6.161]	162.5 [6.397]	170.5 [6.712]	180.5 [7.106]
	С	20 [0	.787]	27 [1.063]				36 [1.417]			
Inlet	D	40 [1	.575]		51 [2	.007]			62 [2	.441]	
	E	N	18				М	10			
	c		20 [0.787]					27 [1	.063]		
Outlet	d		40 [1	.575]	.575]				51 [2.001]		
	е		N	18		M10					

Model code examples and maximum shaft torque


Flange/drive gear configuration	Model code example	Maximum shaft torque N•m [lb•in]
02FA	SNP3NN/044RN02FAP1CACANNNN/NNNNN	210 [1858]
02DA	SNP3NN/033RN02DAP1CAC7NNNN/NNNNN	290 [2566]
02BA	SNP3NN/026LN02BAP1C7C7NNNN/NNNNN	350 [3097]

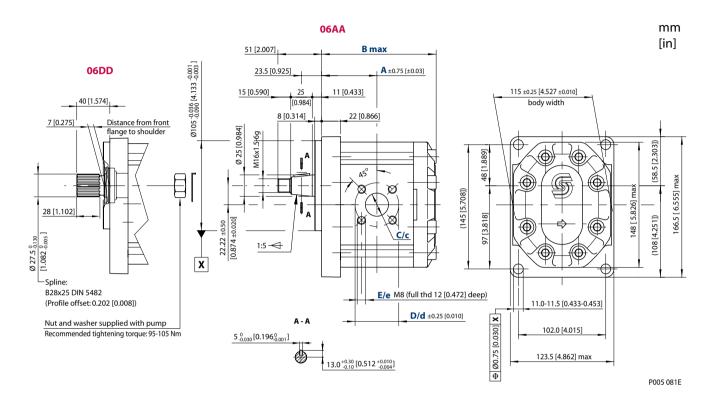
For further details on ordering, see *Model Code*, pages 6÷8.

24

SNP3NN – 03FB and 03BB This drawing shows the standard porting for 03FB and 03BB.

SNP3NN - 03FB and 03BB dimensions

Type (displacement)		022	026	033	038	044	048	055	063	075	090
	Δ.	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0
Dimanaian	Α	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]
Dimension		132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5
В		[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]
	С	20 [0	.787]		27 [1	.063]			36 [1	.417]	
Inlet	D	40 [1	.575]		51 [2	.007]		62 [2	.441]		
	E	N	18				М	10			
	С		20 [0	.787]				27 [1	.063]		
Outlet	d		40 [1	.575]				51 [2.001]			
	е		N	18		M10					


Model code examples and maximum shaft torque

Flange/drive gear configuration	Model code example	Maximum shaft torque N•m [lb•in]
03FB	SNP3NN/044LN03FBP1CACANNNN/NNNNN	300 [2655]
03BB	SNP3NN/090RN03BBP1CDCANNNN/NNNNN	500 [4425]

For further details on ordering, see *Model Code*, pages 6÷8.

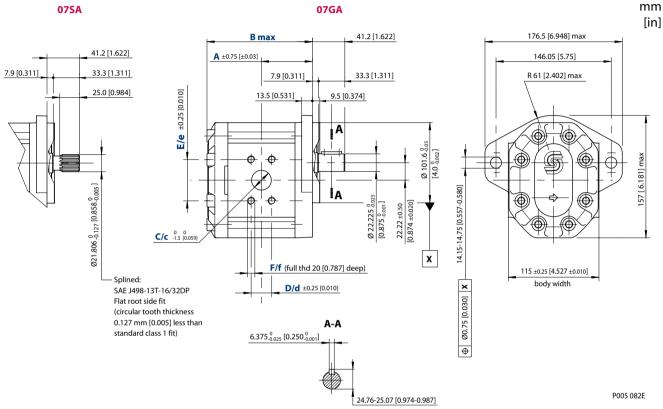
520L0569 ⋅ Rev DC **⋅** Mar 2008 25

SNP3NN - 06DD and 06AA This drawing shows the standard porting for 06DD and 06AA.

SNP3NN - 06DD and 06AA dimensions

Type (displace	ement)	022	026	033	038	044	048	055	063	075	090
		63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0
Dimension	Α	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]
Dimension	В	132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5
	D	[5.216] [5.334] [5.531] [5.669] [5.846] [5.964] [6.161]								[6.712]	[7.106]
	С	27 [1.063]								36 [1.417]	
Inlet	D										
	E					N	18				
	С				18 [0.708]					27 [1.063]	
Outlet	d					55 [2	.165]				
	е	M8									

Model code examples and maximum shaft torque


Flange/drive gear configuration	Model code example	Maximum shaft torque N•m [lb•in]
06DD	SNP3NN/044RN06DDP1BBBANNNN/NNNNN	450 [3982]
06AA	SNP3NN/026LN06AAP1BBBANNNN/NNNNN	300 [2655]

For further details on ordering, see *Model Code*, pages 6÷8.

26

SNP3NN, SEP3NN – 07SA and 07GA

The drawing shows the SNP3NN standard porting for 07SA and 07GA. The same configurations are available for the **SEP3NN**. The SEP3NN overall length is 12 mm [0.472 in] less than the SNP3NN for the whole range of displacements (22.1 to 44.1 cm³/rev [1.35 to 2.69 in³/rev]).

SNP3NN, SFP3NN - 07SA and 07GA dimensions

5111 51111,521	AT STATE, SET STATE OF SECURIORISTS											
Type (displace	ement)	022	026	033	038	044	048	055	063	075	090	
	Α	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0	
Dimension		[2.480]	[2.539]	[2.637]	[2.708	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]	
Difficusion	В	132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5	
		[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]	
С		25.4	4 [1]		31.8 [1.251]		38.1 [1.5]				
Inlat	D	26.19	[1.031]		30.18	[1.188]			35.71	[1.405]		
Inlet	E	52.37	[2.061]	58.72 [2.311]					69.85	[2.75]		
	F	³/8-16L	JNC-2B	⁷ / ₁₆ –14UNC–2B				½–13UNC–2B				
	С	19.1 [0.751]			25.4	[1.0]		31.8 [1.251]				
Outlat	d	22.23	[0.875]	26.19 [1.031]				30.18 [1.188]				
Outlet	е	47.63	[1.875]		52.37	[2.061]		58.72 [2.311]				
	f	³/8-16L	JNC-2B		³/8–16L	JNC-2B		7/16-14UNC-2B				

Model code examples and maximum shaft torque

Flange/drive gear configuration	Model code example	Maximum shaft torque N•m [lb•in]
07SA	SNP3NN/063LN07SAP1A5A4NNNN/NNNNN	270 [2389]
07GA	SNP3NN/026LN07GAP1A3A2NNNN/NNNNN	230 [2035]

For further details on ordering, see *Model Code*, pages 6÷8.

520L0569 · Rev DC • Mar 2008 27

OUR PRODUCTS

Hydrostatic transmissions

Hydraulic power steering

Electric power steering

Electrohydraulic power steering

Closed and open circuit axial piston pumps and motors

Gear pumps and motors

Bent axis motors

Orbital motors

Transit mixer drives

Proportional valves

Directional spool valves

Cartridge valves

Hydraulic integrated circuits

Hydrostatic transaxles

Integrated systems

Fan drive systems

Electrohydraulics

Microcontrollers and software

Electric motors and inverters

Joysticks and control handles

Displays

Sensors

Sauer-Danfoss Mobile Power and Control Systems – Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

Local address:

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Fax: +1 515 239 6618

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany

Phone: +49 4321 8710 Fax: +49 4321 871 122 Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 Fax: +45 7488 4400

Sauer-Danfoss-Daikin LTD Sannomiya Grand Bldg. 8F 2-2-21 Isogami-dori, Chuo-ku Kobe, Hyogo 651-0086, Japan Phone: +81 78 231 5001 Fax: +81 78 231 5004