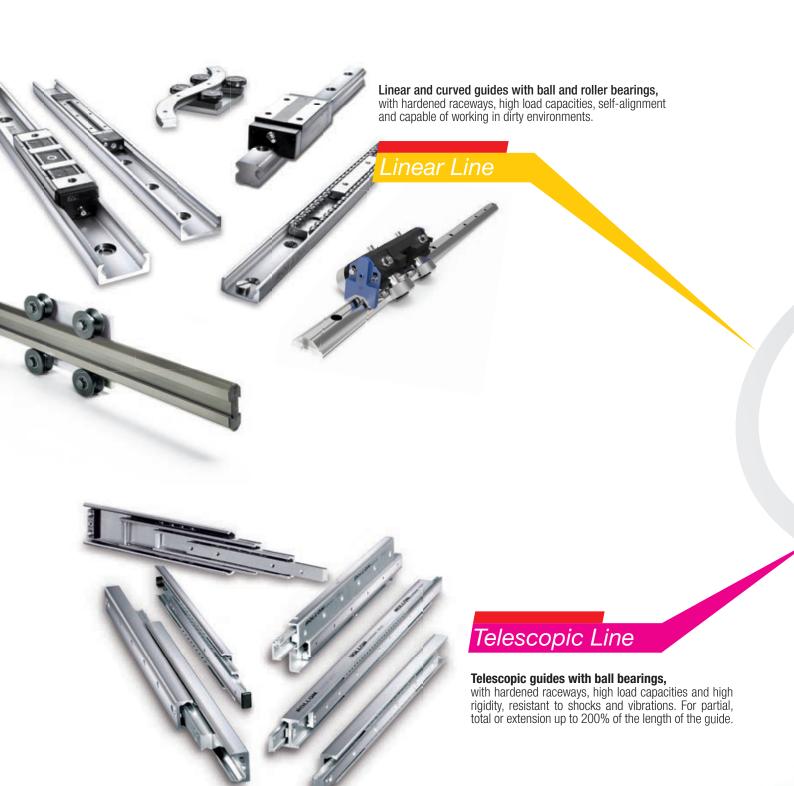


Actuator Line



General catalog English

A complete range for linear motion which reaches every customer

Actuator Line

Linear actuators with different drive and guide configurations, available with belt, screw or rack and pinion drives to cover a wide range of precision and speed requirements. Guides with bearings or recirculating ball systems for varying load capacities and environments.

A global provider of solutions for applications for linear motion

Actuator System Line

Integrated actuators for industrial automation,

wide ranging solutions that span industrial sectors: from machinery servo systems to high precision assembly systems, packaging lines and high speed production lines. Evolved from Actuator Line series in order to meet the most demanding customer needs.

Content

Plus System

Technical features overview

1 ELM series	
ELM series description	PLS-2
The components	PLS-3
The linear motion system	PLS-4
ELM 50 SP - ELM 50 CI	PLS-5
ELM 65 SP - ELM 65 CI	PLS-6
ELM 80 SP - ELM 80 CI	PLS-7
ELM 110 SP - ELM 110 CI	PLS-8
Lubrication, Planetary gear	PLS-9
Simple shaft	PLS-10
Hollow shafts	PLS-11
Linear units parallel, Accessories	PLS-12
Ordering key	PLS-14
2 ROBOT series	
ROBOT series description	PLS-15
The components	PLS-16
The linear motion system	PLS-17
ROBOT 100 SP	PLS-18
R0B0T 100 SP-2C	PLS-19
ROBOT 100 CE	PLS-20
R0B0T 100 CE-2C	PLS-21
R0B0T 130 SP	PLS-22
R0B0T 130 SP-2C	PLS-23
R0B0T 130 CE	PLS-24
R0B0T 130 CE-2C	PLS-25
R0B0T 160 SP	PLS-26
R0B0T 160 SP-2C	PLS-27
ROBOT 160 CE	PLS-28
ROBOT 160 CE-2C	PLS-29
ROBOT 220 SP	PLS-30
ROBOT 220 SP-2C	PLS-31
Lubrication, Planetary gear	PLS-32
Simple shaft	PLS-33
Hollow shafts, Accessories	PLS-34
Ordering key	PLS-39
3 SC series	
SC series description	PLS-40
The components	PLS-41
The linear motion system	PLS-42
SC 65 SP	PLS-43
SC 130 SP	PLS-44
SC 160 SP	PLS-45
Lubrication, Planetary gear	PLS-46
Simple shaft, Hollow shafts	PLS-47
Accessories	PLS-48
Ordering key	PLS-51
Multiaxis systems	PLS-52

Clean Room System

1 ONE series

ONE series description	CRS-2
The components	CRS-3
The linear motion system	CRS-4
ONE 50	CRS-5
ONE 65	CRS-6
ONE 80	CRS-7
ONE 110	CRS-8
Planetary gear	CRS-9
Accessories	CRS-10
Ordering key	CRS-12

Smart System

1 E-SMART series

_		
	E-SMART series description	SS-2
	The components	SS-3
	The linear motion system	SS-4
	E-SMART 30 SP2	SS-5
	E-SMART 50 SP1 - SP2 - SP3	SS-6
	E-SMART 80 SP1 - SP2	SS-7
	E-SMART 80 SP3 - SP4	SS-8
	E-SMART 100 SP1 - SP2	SS-9
	E-SMART 100 SP3 - SP4	SS-10
	Lubrication	SS-11
	Simple shafts, Hollow sahft	SS-12
	Linear units in parallel, Accessories	SS-13
	Ordering key	SS-16
2	R-SMART series	
١	R-SMART series description	SS-17

2 F

11-OMAITI SCIES GESCIPTION	00-17
The components	SS-18
The linear motion system	SS-19
R-SMART 120 SP4 - SP6	SS-20
R-SMART 160 SP4 - SP6	SS-21
R-SMART 220 SP4 - SP6	SS-22
Lubrication	SS-23
Simple shafts, Hollow shaft	SS-24
Accessories	SS-25
Ordering key	SS-29

3 S-SMART series

• • • • • • • • • • • • • • • • • • •	
S-SMART series description	SS-30
The components	SS-31
The linear motion system	SS-32
S-SMART 50 SP	SS-33
S-SMART 65 SP	SS-34
S-SMART 80 SP	SS-35
Lubrication	SS-36
Simple shafts, Hollow shaft	SS-37
Accessories	SS-38
Ordering key	SS-41
Multiaxis systems	SS-42

Eco System

ECO series	
ECO series description	ES-2
The components	ES-3
The linear motion system	ES-4
ECO 60 SP2 - ECO 60 CI	ES-5
ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI	ES-6
ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI	ES-7
Lubrication	ES-8
Simple shafts, Hollow shafts	ES-9
Linear units in parallel, Accessories	ES-10
Ordering key	ES-13
Multiaxis systems	ES-14

Uniline System

1 Uniline A series Uniline A series description The components A40 A55 A75 Lubrication Accessories Ordering key	US-2 US-3 US-4 US-6 US-8 US-10 US-11
2 Uniline C series	
Uniline C series description	US-16
The components C55	US-17 US-18
C75	US-20
Lubrication	US-22
Accessories	US-23
Ordering key	US-26
3 Uniline E series	
Uniline E series description	US-28
The components	US-29
E55	US-30
E75	US-32
Lubrication	US-34
Accessories	US-35 US-38
Ordering key	05-30
4 Uniline ED series	
Uniline ED series description	US-40
The components	US-41
ED75	US-42
Lubrication Accessories	US-44 US-45
Ordering key	US-48
5 Uniline H series	
	US-50
Uniline H series description The components	บร-อบ US-51
The components	00-01

H40	US-52
H55	US-53
H75	US-54
Lubrication	US-55
Accessories	US-56
Ordering key	US-58
6 Belt tension	US-59
7 Installation instructions	US-60

Modline

1 MCR/MCH series	
MCR/MCH series description	ML-3
The components	ML-4
The linear motion system	ML-5
MCR 65	ML-6
MCH 65	ML-7
MCR 80	ML-8
MCH 80	ML-9
MCR 105	ML-10
MCH 105	ML-11
Linear units in parallel, Accessories	ML-12
Insertable nuts and plates	ML-13
Assembly brackets	ML-14
Ordering key	ML-15
2 TCR/TCS series	
TCR/TCS series description	ML-17
The components	ML-18
The linear motion system	ML-19
TCR 140	ML-20
TCS 140	ML-21
TCR 170	ML-22
TCS 170	ML-23
TCR 200	ML-24
TCS 200	ML-25
TCR 220 TCS 220	ML-26
TCR 230	ML-27 ML-28
TCS 230	ML-29
TCR 280	ML-30
TCS 280	ML-31
TCR 360	ML-32
TCS 360	ML-33
Lubrication	ML-34
Accessories	ML-35
Assembly brackets	ML-36
Alignment nuts	ML-37
Ordering key	ML-38
3 ZCR/ZCH series	
ZCR/ZCH series description	ML-40
The components	ML-4
The linear motion system	ML-42
ZCH 60	ML-43
7CR 90	MI -44

3 Z

ZCR/ZCH series description	ML-40
The components	ML-4
The linear motion system	ML-42
ZCH 60	ML-4;
ZCR 90	ML-44

ZCH 90	ML-45
ZCR 100	ML-46
ZCH 100	ML-47
ZCR 170	ML-48
ZCH 170	ML-49
ZCR 220	ML-50
ZCH 220	ML-51
Lubrication	ML-52
Accessories	ML-53
Alignment nuts	ML-54
Ordering key	ML-56
4 7MOU paries	
4 ZMCH series	
ZMCH series description	ML-57
The components	ML-58
The linear motion system	ML-59
ZMCH 105	ML-60
Lubrication	ML-61
Accessories	ML-62
Ordering key	ML-63
Multiaxis systems	ML-64

Precision System

1 TH series	
TH series description	PS-2
The components	PS-3
TH 70 SP2	PS-4
TH 70 SP4	PS-5
TH 90 SP2	PS-6
TH 90 SP4	PS-7
TH 110 SP2	PS-8
TH 110 SP4	PS-9
TH 145 SP2	PS-10
TH 145 SP4	PS-1
Motor connections	PS-12
Lubrication	PS-1:
Critical speed	PS-14
Accessories	PS-1
Ordering key	PS-2
2 TT series	
TT series description	PS-2
The components	PS-23
TT 100	PS-24
TT 155	PS-20
TT 225	PS-28
TT 310	PS-30
Lubrication	PS-32
Accuracy certificate	PS-33
Critical speed	PS-3
Accessories	PS-30
Ordering key	PS-40
3 TV series	
TV series description	PS-4
The components	PS-42
TV 60	PS-43
TV 80	PS-44
TV 110	PS-45
Lubrication	PS-40
Critical speed	PS-4
Accessories	PS-4
Ordering key	PS-50
4 TVS series	
TVS series description	PS-5
The components	PS-52
The linear motion system	PS-5
TVS 170	PS-54
TVS 220	PS-55
Lubrication	PS-50
Critical speed	PS-57
Accessories, Alignment nuts	PS-56
Profile anchor brackets	PS-59
Ordering key	PS-60
Multiaxis systems	PS-6

Tecline

1	PAR/PAS series
	PAR/PAS series description

Multiaxis systems

PAR/PAS series description	IL-3
The components	TL-4
The linear motion system	TL-5
PAS 118	TL-6
PAS 140	TL-7
PAR 170	TL-8
PAS 170	TL-9
PAR 200	TL-10
PAS 200	TL-11
PAR 200P	TL-12
PAS 200P	TL-13
PAR 220	TL-14
PAS 220	TL-15
PAR 230	TL-16
PAS 230	TL-17
PAR 280	TL-18
PAS 280	TL-19
PAR 280P	TL-20
PAS 280P	TL-21
PAR 360	TL-22
PAS 360	TL-23
PAR 170/90	TL-24
PAS 170/90	TL-25
PAR 200/100	TL-26
PAS 200/100	TL-27
PAR 200/100P	TL-28
PAS 200/100P	TL-29
PAR 220/170	TL-30
PAS 220/170	TL-31
PAR 280/200	TL-32
PAS 280/200	TL-33
PAR 280/200P	TL-34
PAS 280/200P	TL-35
PAR 280/200E	TL-36
PAS 280/200E	TL-37
PAR 280/220	TL-38
PAS 280/220	TL-39
PAR 360/220	TL-40
PAS 360/220	TL-41
PAR 360/280	TL-42
PAS 360/280	TL-43
Profile specifications	TL-44
Accessories, Table for selecting maximum operating torque	TL-48
Connections shafts	TL-49
Anti-drop safety device with pneumatic brake system	TL-50
Safety lock-pin (stopper cylinder)	TL-51
Profile anchor brackets	TL-52
L-shaped brackets	TL-52
•	
End caps for profile Threaded incerts for small and medium profiles	TL-56
Threaded inserts for small and medium profiles	TL-57
Threaded inserts for load-bearing profiles	TL-58
Preliminary selection table (1-2-3 axes)	TL-60
Ordering key	TL-62

TL-63

Speedy Rail A

1 SAB series	
SAB series description	SRA-2
The components	SRA-3
The linear motion system	SRA-4
SAB 60V	SRA-5
SAB 120VX	SRA-6
SAB 120VZ	SRA-7
SAB 120CX	SRA-8
SAB 120CZ	SRA-9
SAB 180V	SRA-10
SAB 180C	SRA-1
SAB 250C	SRA-12
Simple shaft version	SRA-1
Hollow shafts, Linear units in parallel	SRA-14
Accessories	SRA-1
Ordering key	SRA-1
2 ZSY series	
ZSY series description	SRA-18
The components	SRA-19
The linear motion system	SRA-20
ZSY 180V	SRA-2
Driving head, Adapter flanges	SRA-22
Accessories	SRA-23
Ordering key	SRA-2
3 SAR series	
Descrizione serie SAR	SRA-2
The components	SRA-28
The linear motion system	SRA-29
SAR 120V	SRA-30
SAR 120C	SRA-3
SAR 180V	SRA-3
SAR 180C	SRA-33
SAR 250C	SRA-34
Lubrication, Accessories	SRA-3
Ordering key	SRA-3
Otatia land and anning life	

Static load and service life	SL-2
Static load and service life Uniline	SL-4
Data sheet	SI _0

Pre-selection overview

Application Priority	Driving system	Section
Max. speed from 4 to 15 [m/s] Max. acceleration from 10 to 50 [m/s²] Stroke up to 10 m	Over bus Dananana Belt	Square
		Rectangular
		Other section
High precision up to \pm 0,005 [mm]		Square
Stroke up to 3.5 m	Ball screw	Rectangular
Heavy loads up to 4.000 Kg Infinite stroke Multiple independent carriages	g o g Communication of the second of the s	Rectangular
		Other section
		Square
Vertical mounting		Rectangular
Profile moving	Ω Belt	Rectangular
		Other section

^{*} Optimal reliability in dirty environments thanks to plastic compound coated rollers

Protection	Rollon solution					
	Product Fa	Product				
	Plus System		ELM			
Protected	Modline		MCR/MCH with protection			
	Eco System		ECO			
Semi-protected	Modline		MCR/MCH			
	Uniline System	To the same of the	UNILINE			
Open	Smart System		E-SMART			
Protected with suction	Clean Room System	To	ONE			
Protected	Plus System		ROBOT			
Open	Smart System		R-SMART			
Орен	Modline		TCR/TCS			
Open*	Speedy Rail A		SAB			
			TV			
	Duration Contain		TVS			
Semi-protected	Precision System		π			
			TH			
Onen	Tecline		PAS			
Open	iedille		PAR			
Open*	Speedy Rail A		SAR			
Semi-protected	Smart System	della	S-SMART			
Semi-protected	Plus System		SC			
Open	Modline	į.	ZCR/ZCH			
Open*	Speedy Rail A	4	ZSY			

Technical features overview // ~

	Reference		Sec	tion	Driving				Destruction
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Toothed belt Ball Rack and screw pinion		Anticorrosion	Protection
		ELM						• •	Protected
Plus System		ROBOT			Onnannano			•	Protected
		SC			Land Onesh			•	Semi-protected
Clean Room System	To	ONE						•	Protected with suctions
	6	E-SMART							
Smart System	150	R-SMART							
	1011	S-SMART			Land Oneal				Semi-protected
Eco System	-	ECO							Semi-protected
Uniline System	E	A/C/E/ED/H			Onnannana (O				Semi-protected
	1	MCR MCH						•	Semi-protected
Modline	To the second	TCR TCS			Ogganganan			•	
- Wouline	į.	ZCR ZCH			honod Opnod			•	
	<u>t</u>	ZMCH			baad Opaad			•	

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size		t. load capa per carriago [N]			. static mor per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
5,25	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]	
50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0,05	6000*	
100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0,05	6000*	
65-130-160	6682	153600	153600	13555	31104	31104	5	50	± 0,05	2500	
50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0,05	6000*	
30-50-80-100	4980	130860	130860	1500	12039	12039	4	50	± 0,05	6000*	
120-160-220	9960	258800	258800	21998	28468	28468	4	50	± 0,05	6000*	
50-65-80	2523	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4565	76800	76800	722	7603	7603	5	50	± 0,05	6000*	
40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0,05	5700*	
65-80-105	3984	51260	51260	520	5536	5536	5	50	± 0,1	10100*	
140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0,1	11480	
60-90-100 170-220	7470	174480	174480	12388	35681	35681	4	25	± 0,1	2500	
105	4980	61120	61120	3591	10390	10390	3	25	± 0,1	2100	

C R S

Technical features overview

	Reference	Sec	tion	Driving			Anticorrosion	Protection	
Pi	roduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticomosion	Trotection
		TH				<i>m</i> _ <i>m</i>			Semi-protected
Precision		TT				<i>m</i> [] <i>m</i>			Semi-protected
System		TV				<i>m</i> []mn			Semi-protected
		TVS				<i>m</i> []mn		•	Semi-protected
Tecline	100	PAR PAS						•	
		SAB			Onnananoon O				
Speedy Rail A	1	ZSY			paad Daary				
		SAR							

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

	Size -	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]		Max. - speed [m/s]	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
	5.25	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]
7	70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500
	100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000
	60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000
	170-220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500
	118-140-170- 200-220-230- 280-360	10989	386400	386400	65688	150310	150310	4	10	± 0,05	10800*
	60-120- 180-250	4565	3620	3620	372	362	362	15	10	± 0,2	7150
	180	4980	2300	2600	188	806	713	8	8	± 0,2	6640
	120-180-250	3598	3620	3620	372	453	453	3	10	± 0,15	7150*

Plus System

ELM series /

ELM series description

Fig. 1

ELM

This is Rollon's highly versatile, premier line of completely enclosed belt driven linear actuators.

The ELM linear units are available in four sizes from 50 mm to 110 mm. They have a self-supporting structure with a robust profile of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced, polyurethane belt. The moving carriage is guided and supported by a linear guide system or optional cam roller system.

A polyurethane sealing strip ensures complete protection of the belt drive and linear guide system against dust, dirt and other contaminants. It avoids the fragility of other sealing systems such as stainless steel strips.

The components used for linear motion and accessories promote a "maintenance-free" system. The pulleys, bearings and drive shafts are among the most robust in the industry. The ELM is the best product for applications in very aggressive working environments that also require high speed duty cycles and position repeatability.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon ELM series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

The Rollon ELM series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon ELM series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

Rollon ELM series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminates, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located inside the carriage. This minimizes resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22.111.10	O
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

The linear motion system

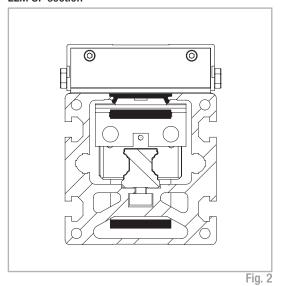
The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ELM...SP with ball bearing guides

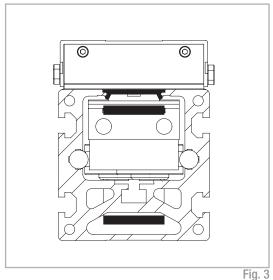
- A ball bearing guide with high load capacity is mounted in a dedicated seat inside the body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance free (depending on applications)
- Low noise

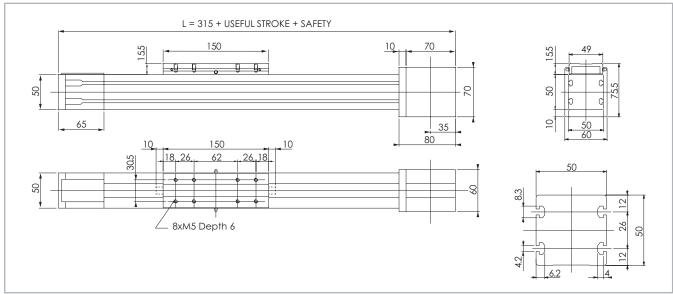

ELM...Cl with gothic arch bearing guides inside the body

- Two hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with six bearing assemblies each having a gothic arch groove machined into its outer race to run on the steel rods.
- The six bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted on the ends of the carriage.


The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance free (depending on applications)

ELM SP section



ELM CI section

ELM 50 SP - ELM 50 CI

ELM 50 SP - ELM 50 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

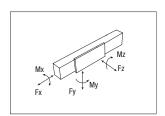
Technical data

	Ту	ре
	ELM 50 SP	ELM 50 CI
Max. useful stroke length [mm]	3700	6000*1
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	22 AT 5	22 AT 5
Type of pulley	Z 23	Z 23
Pulley pitch diameter [mm]	36.61	36.61
Carriage displacement per pulley turn [mm]	115	115
Carriage weight [kg]	0.4	0.5
Zero travel weight [kg]	1.8	1.7
Weight for 100 mm useful stroke [kg]	0.4	0.3
Starting torque [Nm]	0.4	0.4
Moment of inertia of pulleys [g mm ²]	19810	19810
Rail size [mm]	12 mini	Ø6
* 1) It is possible to obtain strokes up to 9000 mm by means of special R	ollon joints	Tab. 4

^{*1)} It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 50	0.025	0.031	0.056
			Tab. 5

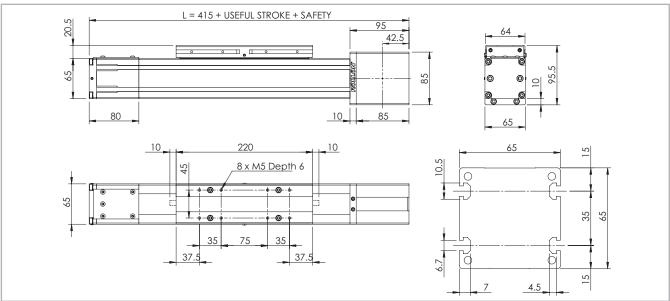

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ELM 50	22 AT 5	22	0.072

Tab. 6

Belt length (mm) = $2 \times L - 130$ (SP and CI Models)


ELM 50 - Load capacity

Туре	F [1	: x V]	F [t	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 50 SP	809	508	7060	6350	7060	46.2	233	233
ELM 50 CI	809	624	1648	3072	1110	19.1	27	45.7

See verification under static load and lifetime on page SL-2 and SL-3

ELM 65 SP - ELM 65 CI

ELM 65 SP - ELM 65 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

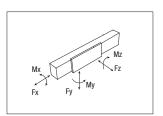
Fig. 5

Technical data

	Ту	ре
	ELM 65 SP	ELM 65 CI
Max. useful stroke length [mm]*1	6000	6000
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s ²]	50	1.5
Type of belt	32 AT 5	32 AT 5
Type of pulley	Z 32	Z 32
Pulley pitch diameter [mm]	50.93	50.93
Carriage displacement per pulley turn [mm]	160	160
Carriage weight [kg]	1.1	1.0
Zero travel weight [kg]	3.5	3.3
Weight for 100 mm useful stroke [kg]	0.6	0.5
Starting torque [Nm]	1.5	1.5
Moment of inertia of pulleys [g mm²]	117200	117200
Rail size [mm]	15	Ø6
*1) It is possible to obtain strokes up to 11000 mm by means of special		Tab. 8

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
ELM 65	0.060	0.086	0.146
			Tah 9

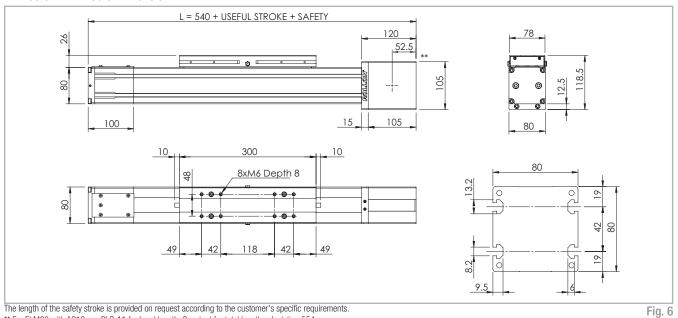

Moments of inertia of the aluminum body

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight	
	belt	[mm]	kg/m	
ELM 65	32 AT 5	32	0.105	

Tab. 10


ELM 65 - Load capacity

Туре	F [1	: X V]	F [1	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 65 SP	1344	883	48400	22541	48400	320	1376	1376
ELM 65 CI	1344	1075	4229	8731	2849	69.5	80.1	117

See verification under static load and lifetime on page SL-2 and SL-3

ELM 80 SP - ELM 80 CI

ELM 80 SP - ELM 80 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

** For ELM80 with AC19 see PLS-11 for head length. Constant for total length calculation 554mm.

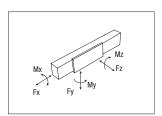
Technical data

	Ту	ре
	ELM 80 SP	ELM 80 CI
Max. useful stroke length [mm]*1	6000	6000
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 19	Z 19
Pulley pitch diameter [mm]	60.48	60.48
Carriage displacement per pulley turn [mm]	190	190
Carriage weight [kg]	2.7	2.5
Zero travel weight [kg]	10.5	9.5
Weight for 100 mm useful stroke [kg]	1.0	0.8
Starting torque [Nm]	2.2	2.2
Moment of inertia of pulleys [g mm²]	388075	388075
Rail size [mm]	20	Ø10
1) It is possible to obtain strokes up to 11000 mm by means of special		Tab.

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
ELM 80	0.136	0.195	0.331
			Tab. 13


Driving belt

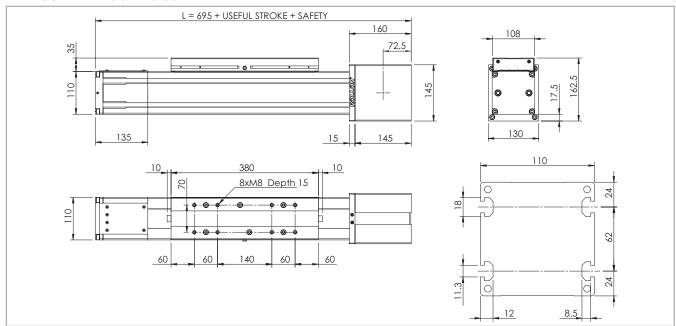
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ELM 80	32 AT 10	32	0.185

Tab. 14

Belt length (mm) = $2 \times L - 230$ (SP and CI Models)

ELM 80 - Load capacity


Туре	F [1	: X Nj	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 80 SP	2258	1306	76800	35399	76800	722	5606	5606
ELM 80 CI	2258	1795	9154	20079	6167	177	352	454

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

ELM 110 SP - ELM 110 CI

ELM 110 SP - ELM 110 CI Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 7

Technical data

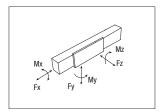
	Ту	ре
	ELM 110 SP	ELM 110 CI
Max. useful stroke length [mm]*1	6000	6000
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	5.0	1.5
Max. acceleration [m/s²]	50	1.5
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.6	5.1
Zero travel weight [kg]	22.5	21.6
Weight for 100 mm useful stroke [kg]	1.4	1.1
Starting torque [Nm]	3.5	3.5
Moment of inertia of pulleys [g mm ²]	2.193·10 ⁶	2.193·10 ⁶
Rail size [mm]	25	Ø10
*1) It is possible to obtain strokes up to 11000 mm by means of special		Tab. 16

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ELM 110	0.446	0.609	1.054

Tab. 17


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ELM 110	50 AT 10	50	0.290

Tab. 18

Belt length (mm) = 2 x L - 290 (SP and Cl Models)

ELM 110 - Load capacity

Туре	F [t	: Nj	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 110 SP	4980	3300	129400	58416	129400	1392	11646	11646
ELM 110 CI	4980	4140	9154	20079	6167	254	308	427

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 19

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides.

The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental

a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

CI linear units with gothic arch bearing guides

Linear units with gothic arch bearing guides are equipped with an extended period lubrication system. Four grease impregnated felt scrapers, complete with grease reservoirs, guarantee a service life of ca. 6000 km without relubrication. If relubrication is required to obtain a higher service life please contact our offices.

Quantity of lubricant necessary for re-lubrication:

Туре	Unit: [cm³]
ELM 50 SP	1
ELM 65 SP	1.4
ELM 80 SP	2.8
ELM 110 SP	4.8

Tab. 20

conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

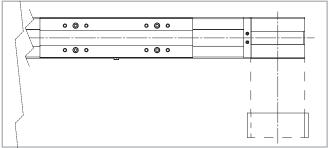
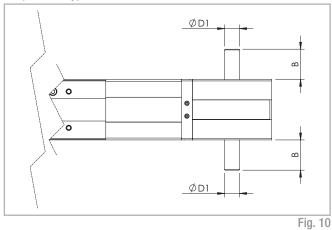


Fig. 9

The series ELM linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.

Versions with planetary gears


Planetary gears are used for highly dynamic robot, automation and handling applications involving high stress cycles with high

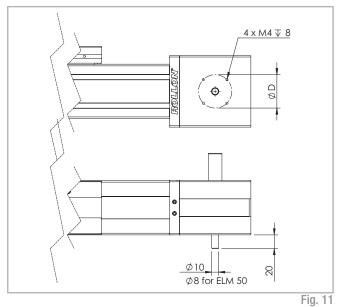
precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type
ELM 50	4E	4C	MP 060
ELM 65	4E	4C	MP 060
ELM 65	6E	6C	MP 080
ELM 80	4E	4C	MP 080
ELM 80	6E	6C	MP 105
ELM 110	4E	4C	MP 105
ELM 110	6E	6C	MP 130
			T-I- 04

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7

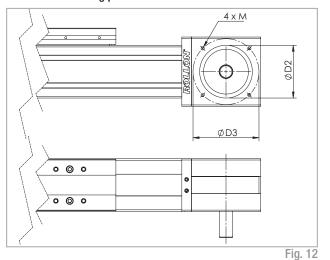

Tab. 22

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS
ELM 50	AS 12	1E	1C	1A
ELM 65	AS 15	1E	1C	1A
ELM 80	AS 20	1E	1C	1A
ELM 110	AS 25	1E	1C	1A

Tab. 23

Simple shaft type AE 10 for encoder assembly + AS

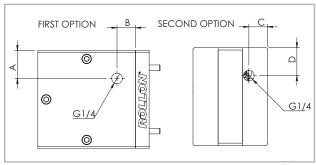


Unit	Head code AS right + AE	Head code AS left + AE	ØD
ELM 50	VF	VG	49
ELM 65	1G	11	49
ELM 80	1G	11	49
ELM 110	1G	11	76

Tab. 24

Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

Shaft with centering pilot

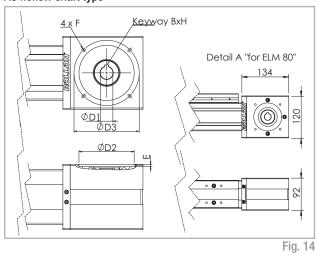


Unit	Shaft type	D2	D3	M	Head code AS left	Head code AS right
ELM 50	AS 12	55	70	M5	VQ	VP
ELM 65	AS 15	60	85	M6	UQ	UP
ELM 80	AS 20	80	100	M8	UN	UM
ELM 80	AS 20	80	100	M6	TD	UD
ELM 110	AS 25	110	130	M8	UL	UI

Tab. 25

Rollon can provide driving heads with output shaft, centering diameter and threads.

Air Hole


Е	i	n		4	2
Г	I	y	=	1	ú

Unit	Fit	rst	Second		
	Α	В	С	D	
ELM 50	20	10	14	20	
ELM 65	20	11	14	20	
ELM 80	30	20	20	30	
ELM 110	45	20,5	33	30	

Tab. 26

Hollow shafts

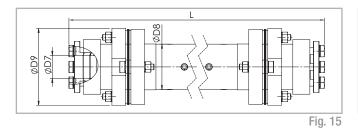
AC hollow shaft type

Appliable to unit	Shaft type	Head code
ELM 50	AC 12	2A
ELM 80	AC 19	2A
ELM 110	AC 25	2A
ELM 110	AC 32	2C

Tab. 27

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices

Dimensions (mm)


Billionolo (ililii)										
Appliable to unit	Shaft type	D1	D2	D3	E	F	Keyway B x H			
ELM 50	AC 12	12H7	60	75	3.5	M5	4 x 4			
ELM 80*	AC 19	19H7	80	100	3.5	M6	6 x 6			
ELM 110	AC 25	25H7	110	130	4.5	M8	8 x 7			
ELM 110	AC 32	32H7	130	165	4.5	M10	10 x 8			

^{*} Dimensions of head change (see detail "A" Fig. 14)

Linear units in parallel

Synchronization kit for use of ELM linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

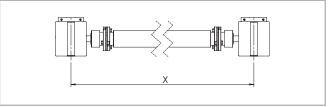
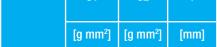


Fig. 16

Dimensions (mm)

Appliable to unit	Shaft type	D7	D8	D9	Code	Formula for length calculation
ELM 50	AP 12	12	25	45	GK12P1A	L= X-68 [mm]
ELM 65	AP 15	15	40	69.5	GK15P1A	L= X-74 [mm]
ELM 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
ELM 110	AP 25	25	70	99	GK25P1A	L= X-165 [mm]


Tab. 29

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ELM linear units enables them to support loads in any direction. They can therefore be installed in any position.

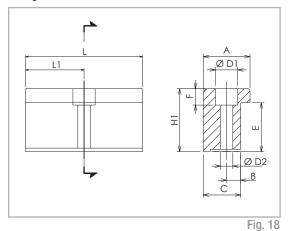
To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Moment of inertia [g mm 2] C1 + C2 \cdot (X-Y)

	01	02		C1+C2	2 · (X-Y)		
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]		
GK12P	61.456	69	166	0.308	0.00056		
GK15P	906.928	464	210	2.28	0.00148		
GK20P	1.014.968	464	250	2.48	0.00148		
GK25P	5.525.250	4.708	356	6.24	0.0051		

Tab. 30

 Fig. 17


Warning:

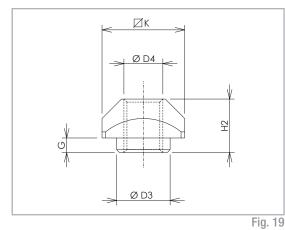
Unit	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130

Tab. 31

Do not fix the linear units through the drive ends.

Fixing brackets

Dimensions (mm)


Unit	Α	H1	В	С	Е	F	D1	D2	L	L1	Code
ELM 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ELM 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ELM 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ELM 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233

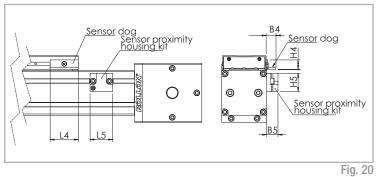
Tab. 32

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-slots of the body.

T-Nuts

Dimensions (mm)


Unit	D3	D4	G	H2	K	Code
ELM 50	-	M4	-	3.4	8	1001046
ELM 65	6.7	M5	2.3	6.5	10	1000627
ELM 80	8	M6	3.3	8.3	13	1000043
ELM 110	11	M8	2.8	10.8	17	1000932

Tab. 33

T-nuts

Steel nuts to be used in the T-slots of the body.

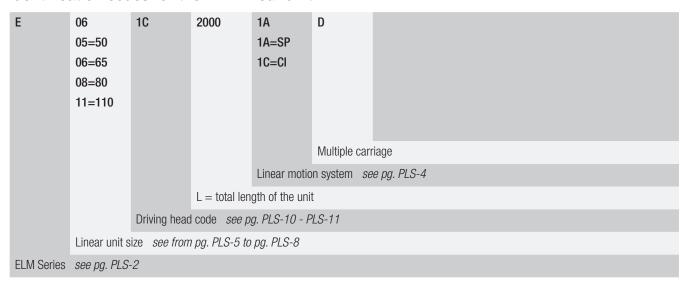
Proximity ELM...SP - ELM...Cl series

0 1

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog


L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

(וווווו) פווטופווטוווע	Authoriation (utilit)												
Unit	B4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code				
ELM 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211				
ELM 65	ELM 65 17.2	20	50	40	17	32	Ø 12	G000267	G000212				
ELM 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209				
ELM 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210				

Ordering key // ~

Identification codes for the ELM linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ROBOT series V

ROBOT series description

Fig. 21

ROBOT

The ROBOT series is particularly well-suited for heavy load applications where significant carriage pitch, yaw or roll moments are applied; or for the linear conveyance of SCARA-type and 6 axis articulated arm robots on a transfer or factory automation line. As a robust, high load choice, the ROBOT Series is the linear actuator for the most demanding applications.

Available in four sizes from 100 mm to 220 mm, the ROBOT series linear units have a rigid structure made by a heavy rectangular cross-section of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced polyurethane. The carriage is running on two parallel linear guides with four self-lubricated "maintenance-free" caged ball bearing blocks, positioned to support the carriage and all incident loads and moments. Multiple independent or idler style carriages are available to further enhance load or moment carrying capacity.

A polyurethane sealing strip ensures complete protection of the driving belt against dirt, chips, liquids and other contaminants.

The ROBOT series is the clear choice for heavy, high-speed, fluctuating load and moment applications in aggressive environments where repeatable, maintenance-free industrial automation is required.

For all sizes of the ROBOT series a 2C version with 2 independent carriages is also available. Each carriage is driven by its own belt. The driving head can accomodate two gearboxes, one on each side. This solution is ideal for pick & place application or loading and unloading machine.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel, preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon ROBOT series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The dimensional tolerances comply with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Driving belt

The Rollon ROBOT series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with backlash-free pulleys, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The provision of guidance for the belt within the body causes it to run central on the pulley, there by ensuring long service life.

Carriage

The carriage of the Rollon ROBOT series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

Rollon ROBOT series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminants, and other foreign objects. The sealing strip runs the length of the body and is kept in posi-tion by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 35

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22.111.10	U
2.7	69	23	200	880-900	33	600-655

Tab. 36

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ROBOT ...SP with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the body.
- The carriage is assembled on four pre-loaded ball bearing blocks.
- The four ball row configuration enable the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The lubrication reservoirs (pockets) fitted on the cages considerably decreases re-lubrication frequency. Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High bending permissible moments
- Low friction
- Long duration
- Maintenance free (dependent on application, see page PLS-32 "Lubrication")
- Low noise

ROBOT CE with gothic arch bearing guides

- Two hardened steel rods (58/60 HRC hardness, tolerance: h6) are securely inserted into the aluminum body.
- The carriage is fitted with six bearing assemblies (except for ROBOT 160), each having agothic arch groove machined into its outer race to run on the steel rods.
- The six bearings (except for ROBOT 160) are mounted on steel pins, of which are eccentric to allow the running clearance and preload to be set.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted at the ends.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance free (dependant on application)

ROBOT SP section

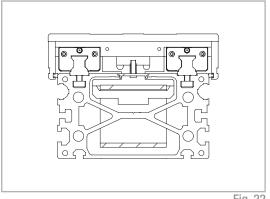
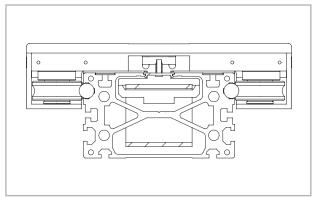
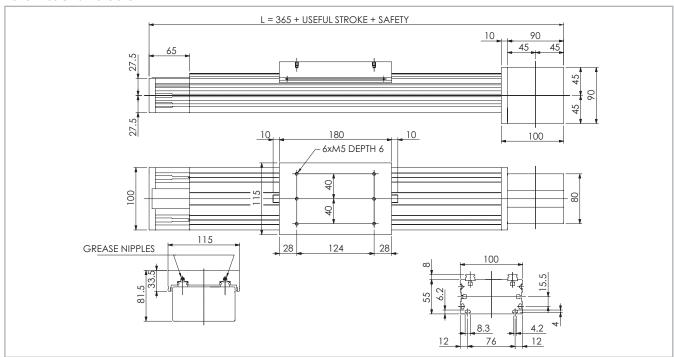


Fig. 22

ROBOT CE section




Fig. 23

ROBOT 2C

For both the SP an CE linear motion system is available the 2C version, which features 2 independent carriages on a single actuator.

ROBOT 100 SP

ROBOT 100 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 24

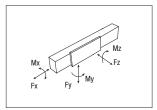
Technical data

	Туре
	R0B0T 100 SP
Max. useful stroke length [mm]	5800
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2.4
Zero travel weight [kg]	4.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	87200
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 38

ROBOT 100 SP - Load capacity

Moments of inertia of the aluminum body

Туре	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 39

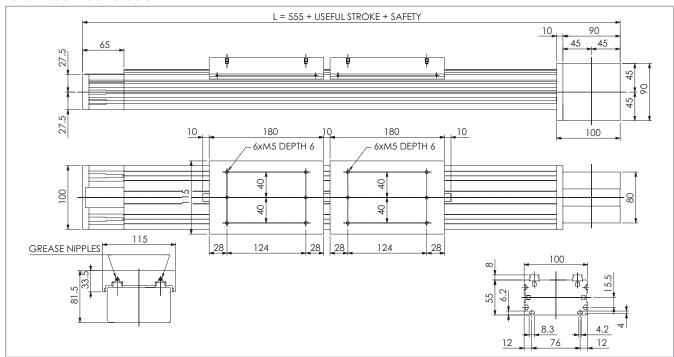

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 100 SP	32 AT 5	32	0.105

Tab. 40

Belt length (mm) = $2 \times L - 115$


Туре	F [N	: N]	F [1	: y v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SP	1176	739	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 41

ROBOT 100 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 100 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

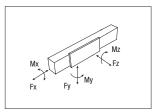
Fig. 25

Technical data

	Туре
	R0B0T 100 SP-2C
Max. useful stroke length [mm]	5600
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2.4
Zero travel weight [kg]	8.0
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	16220
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 42

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

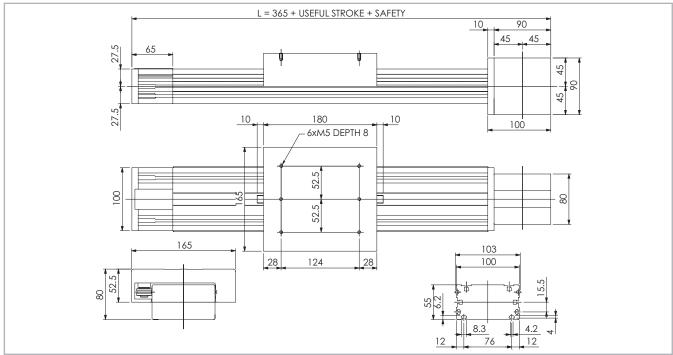

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 43

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 100 SP-2C	16 AT 5	16	0.05
			Tab. 44

Belt length (mm) = $2 \times L - 115$ Two belts for each actuator.


ROBOT 100 SP-2C - Load capacity

Туре	F [[: X Nj	F [!	: vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SP-2C	588	370	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3

ROBOT 100 CE

ROBOT 100 CE dimensions

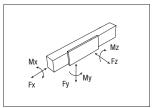
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 26

Technical data

	Туре
	R0B0T 100 CE
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	3.4
Zero travel weight [kg]	5.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	87200
Rail size [mm]	Ø6
1) Positioning repeatability is dependent on the type of transmission used	Tab. 4

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 47

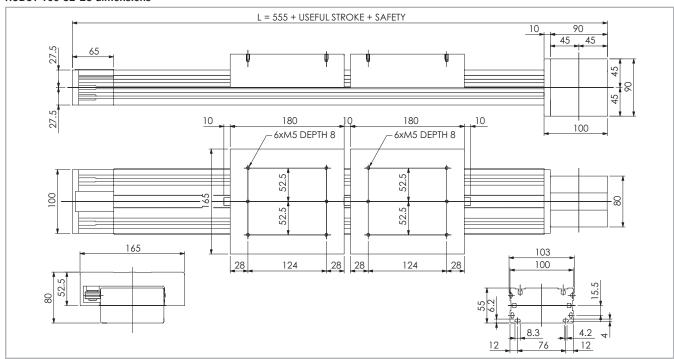
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ROBOT 100-CE	32 AT 5	32	0.105

Belt length (mm) = $2 \times L - 115$

ROBOT 100 CE - Load capacity


Туре	F [N	: × V]	F [I	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE	1176	907	4229	8731	2849	174	101	233

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 49

ROBOT 100 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 100 CE-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 27

Technical data

	Туре
	ROBOT 100 CE-2C
Max. useful stroke length [mm]	5800
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s ²]	1.5
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	3.4
Zero travel weight [kg]	10.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g mm²]	16220
Rail size [mm]	Ø6
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 50

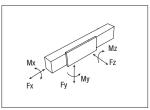
ROBOT 100 CE-2C - Load capacity

Туре	F [1	F _x [N]		: V V	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE-2C	588	454	4229	8731	2849	174	101	233
Table 100 varification under static lead and lifetime on page CL 2 and CL 2								

Туре	F []	: Ň]] []	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE-2C	588	454	4229	8731	2849	174	101	233

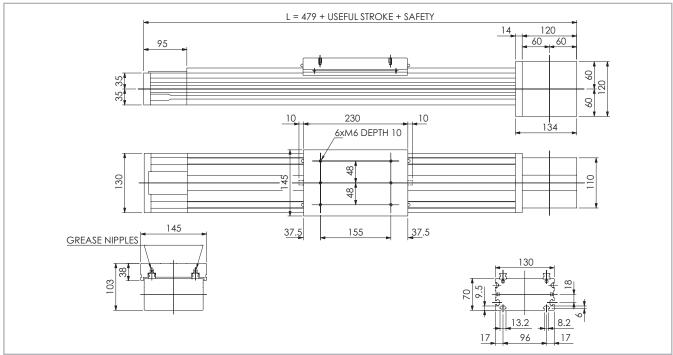
See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 51

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.


Туре	Type of belt	Belt width [mm]	Weight kg/m
ROBOT 100 CE-2C	16 AT 5	16	0.05
			Tab. 52

Belt length (mm) = $2 \times L - 115$ Two belts for each actuator.

ROBOT 130 SP

ROBOT 130 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

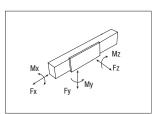
Fig. 28

Technical data

	Туре
	ROBOT 130 SP
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	2.8
Zero travel weight [kg]	9.1
Weight for 100 mm useful stroke [kg]	1.2
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm ²]	493200
Rail size [mm]	15
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	ioints Tab. 54

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments	۸f	inertia	۸f	the	alıı	minum	hody
MIDILIGIIIS	υı	IIIGI ua	υı	เมเซ	aıu	IIIIIIIIIIIII	DUU

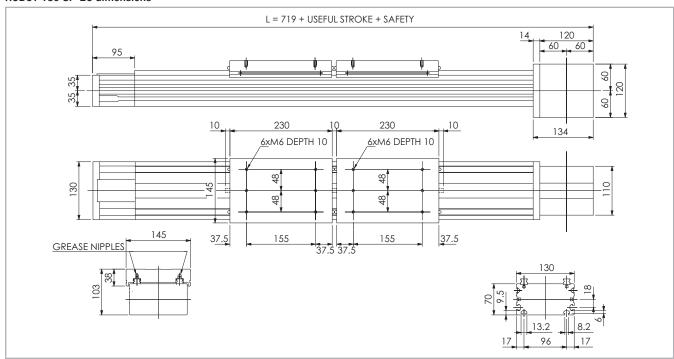

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 130 SP	50 AT 10	50	0.29
			Tab. 56

Belt length (mm) = $2 \times L - 103$



Туре	F [t	: X V]	F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 SP	3112	1725	96800	45082	96800	4646	6340	6340

ROBOT 130 SP - Load capacity

■ ROBOT 130 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 130 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

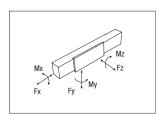
Fig. 29

Technical data

	Туре
	R0B0T 130 SP-2C
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	2.8
Zero travel weight [kg]	14.9
Weight for 100 mm useful stroke [kg]	1.2
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	196200
Rail size [mm]	15
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 58

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

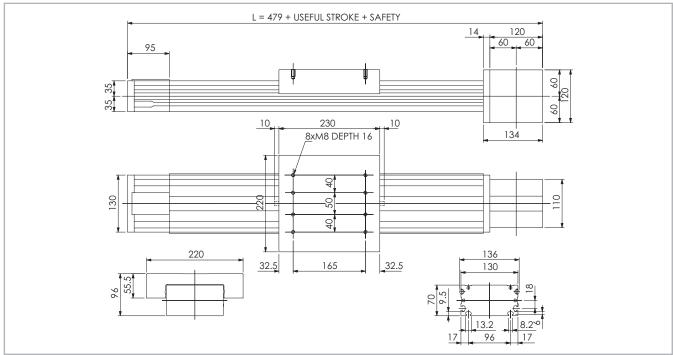

Туре	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 59

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 130 SP-2C	25 AT 10	25	0.16
			Tab. 60

Belt length (mm) = $2 \times L - 103$ Two belts for each actuator.


ROBOT 130 SP-2C - Load capacity

Туре	F [1	: × V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP-2C	1556	862	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page SL-2 and SL-3

№ ROBOT 130 CE

ROBOT 130 CE dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 30

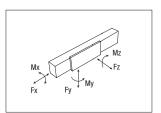
Technical data

	Туре
	R0B0T 130 CE
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	4.3
Zero travel weight [kg]	10.3
Weight for 100 mm useful stroke [kg]	1.1
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	493200
Rail size [mm]	Ø10

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 63


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

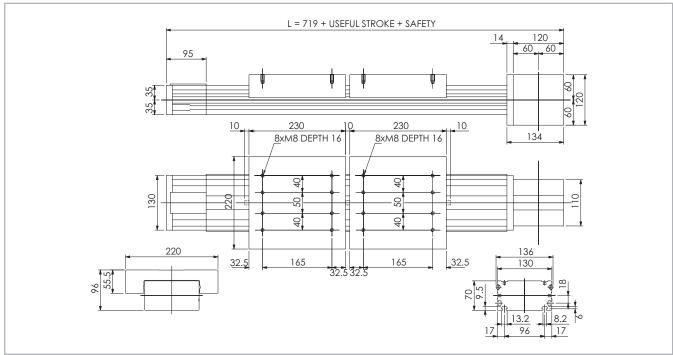
Туре	Type of belt	Belt width [mm]	Weight kg/m
ROBOT 130 CE	50 AT 10	50	0.29

Tab. 64

Belt length (mm) = $2 \times L - 103$

ROBOT 130 CE - Load capacity

Туре	F [1	: × N]	F [!	V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE	3112	2437	9154	20079	6167	498	275	635


See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 65

Tab. 62

■ ROBOT 130 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 130 CE-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

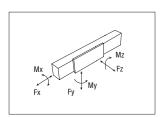
Fig. 31

Technical data

	Туре
	ROBOT 130 CE-2C
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	4.3
Zero travel weight [kg]	17.4
Weight for 100 mm useful stroke [kg]	1.1
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g mm²]	196200
Rail size [mm]	Ø10
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon join	nts Tab. 60

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

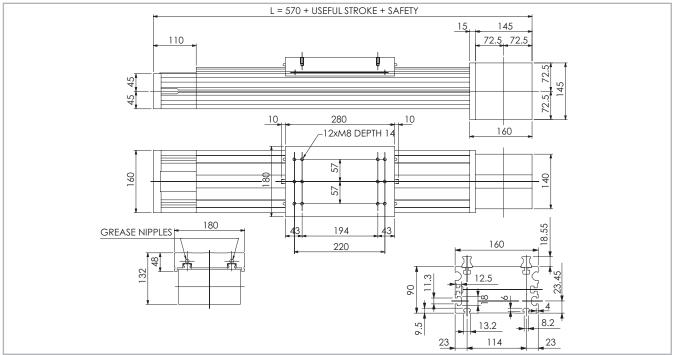

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 67

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ROBOT 130 CE-2C	25 AT 10	25	0.16
			Tab. 68

Belt length (mm) = $2 \times L - 103$ Two belts for each actuator.



ROBOT 130 CE-2C - Load capacity

Туре	F [!	: × V]	F [I	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE-2C	1556	1219	9154	20079	6167	498	275	635

ROBOT 160 SP

ROBOT 160 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 32

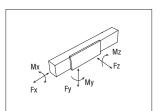
Technical data

	Туре
	ROBOT 160 SP
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	70 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	5.3
Zero travel weight [kg]	21
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	1.202 · 10 ⁶
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 70

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]	
R0B0T 160	0.37	1.51	1.88	
			Tab. 71	

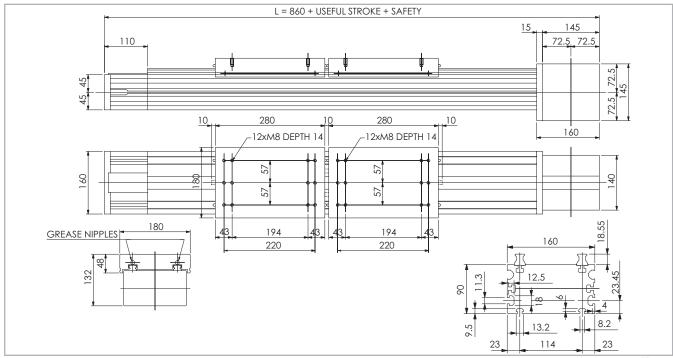

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 160 SP	70 AT 10	70	0.41

Tab. 72

Belt length (mm) = $2 \times L - 130$



ROBOT 160 SP - Load capacity

Туре	F [N	: X V]	F [N	, Ž	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 SP	5229	3024	153600	70798	153600	8755	12211	12211

■ ROBOT 160 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 160 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

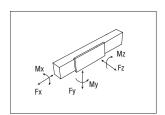
Fig. 33

Technical data

	Туре
	R0B0T 160 SP-2C
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	5.3
Zero travel weight [kg]	30
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	210300
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 74

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

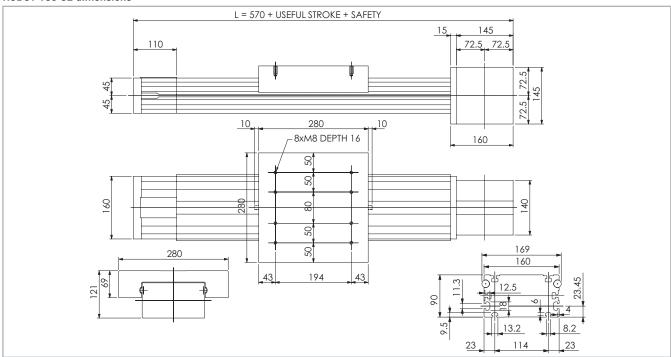

Туре	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]	
R0B0T 160	0.37	1.51	1.88	
			Tab. 75	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 160 SP-2C	32 AT 10	32	0.185
			Tab. 76

Belt length (mm) = $2 \times L - 130$ Two belts for each actuator.



ROBOT 160 SP - Load capacity

Туре	F [!	: Nj	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 SP-2C	2258	1306	153600	70798	153600	8755	12211	12211

ROBOT 160 CE

ROBOT 160 CE dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

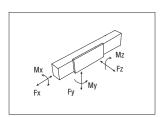
Fig. 34

Technical data

	Туре
	ROBOT 160 CE
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	70 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	8.6
Zero travel weight [kg]	23
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	$1.202 \cdot 10^{6}$
Rail size [mm]	Ø16

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

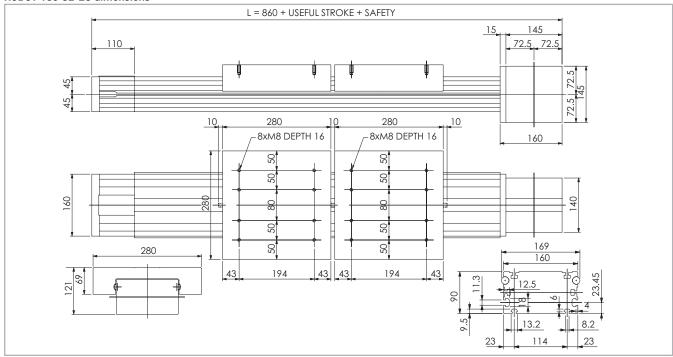

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]	
R0B0T 160	0.37	1.51	1.88	
			Tab. 79	

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 160 CE	70 AT 10	70	0.41
			Tab. 80

Belt length (mm) = $2 \times L - 130$



ROBOT 160 CE - Load capacity

Туре	F [N	: × V]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE	5229	4158	15538	35366	8585	1053	653	1507

■ ROBOT 160 CE-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 160 CE-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

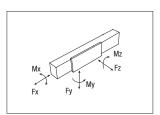
Fig. 35

Technical data

	Туре
	R0B0T 160 CE-2C
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	1.5
Max. acceleration [m/s²]	1.5
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	8.6
Zero travel weight [kg]	32
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g mm²]	210300
Rail size [mm]	Ø16
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	joints Tab. 82

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

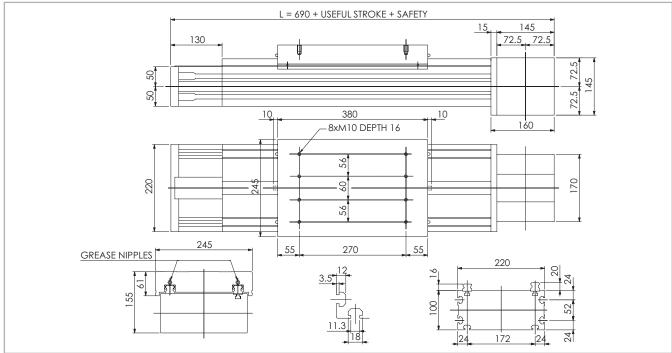

Туре	l _x [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 83

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ROBOT 160 CE-2C	32 AT 10	32	0.185
			Tab. 84

Belt length (mm) = $2 \times L - 130$ Two belts for each actuator.



ROBOT 160 CE-2C - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE-2C	2258	1795	15538	35366	8585	1053	653	1507

ROBOT 220 SP

ROBOT 220 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

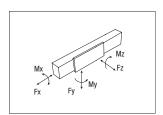
Fig. 36

Technical data

	Туре
	R0B0T 220 SP
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	100 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	14.4
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g mm²]	4.114 · 10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon	n joints Tab.

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

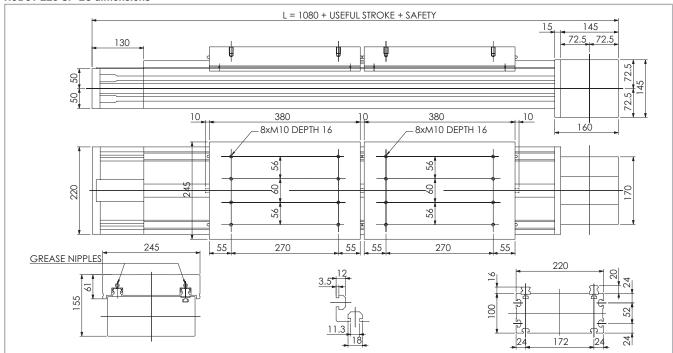

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 87

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
R0B0T 220 SP	100 AT 10	100	0.58
			Tab. 88

Belt length (mm) = $2 \times L - 120$



ROBOT 220 SP - Load capacity

Туре	F [1	: × V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP	9545	6325	258800	116833	258800	22257	28986	28986

■ ROBOT 220 SP-2C DOUBLE INDEPENDENT CARRIAGES

ROBOT 220 SP-2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

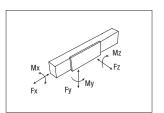
Fig. 37

Technical data

	Туре
	R0B0T 220 SP-2C
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	40 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	13.3
Zero travel weight [kg]	46
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	6.4
Moment of inertia of pulleys [g mm²]	2.026 · 10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollon join	its Tab. 90

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 91

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ROBOT 220 SP-2C	40 AT 10	40	0.23
			Tab. 92

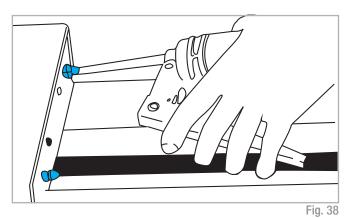
Belt length (mm) = $2 \times L - 120$ Two belts for each actuator.

ROBOT 220 SP-2C - Load capacity

Туре	F [1	: Ň]	F [1	: Ŋ 	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP-2C	3818	2530	258800	116833	258800	22257	28986	28986

Tab. 93

^{*2)} Positioning repeatability is dependent on the type of transmission used


Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides.

The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

- Insert grease gun in the specific grease nipples.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environemental condi-

a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Linear units type CE with gothic arch bearing guides

Linear units with gothic arch bearing guides are equipped with along period lubrication system. Four grease impregnated felt scrapers, complete with grease reservoirs, guarantee a service life of ca. 6000 km without relubrication. If relubrication is required to obtain a higher service life please contact our offices.

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Unit: [cm³]
ROBOT 100 SP	0.7
ROBOT 130 SP	0.7
R0B0T 160 SP	1.4
R0B0T 220 SP	2.4

Tab. 94

tions, lubrication should be carried out more frequently. Apply to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

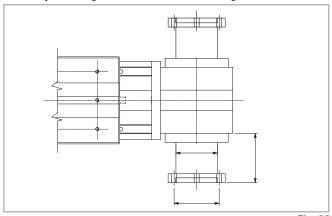
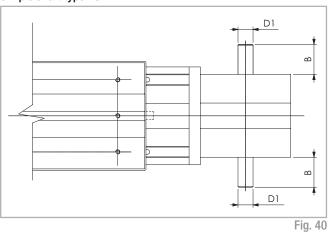


Fig. 39

The series Robot linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gear-shaft by means of a tapered coupling to ensure high accuracy over a long period of time.


Versions with planetary gears

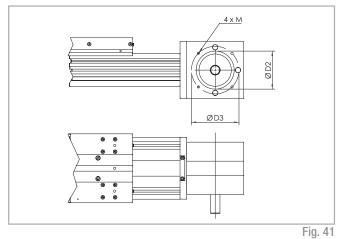
Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type	
Robot 100	4E	4C	MP 060	
Robot 130	4E	4C	MP 080	
Robot 130	6E	6C	MP 105	
Robot 160	4E	4C	MP 105	
Robot 220	4E	4C	MP 105	
Robot 220	6E	6C	MP 130	

Simple shaft version

Simple shaft type AS

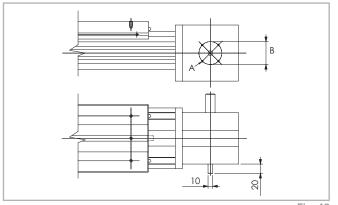
Unit	Shaft type	В	D1
R0B0T 100	AS 15	35	15h7
R0B0T 130	AS 20	40	20h7
R0B0T 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7


Tab. 96

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS	
R0B0T 100	AS 15	1E	1C	1A	
R0B0T 130	AS 20	1E	1C	1A	
R0B0T 160	AS 25	1E	1C	1A	
R0B0T 220	AS 25	1E	1C	1A	

Tab. 97


AS with centering rings

Unit	Shaft type	D2	D3	M	Head code AS right	Head code AS left
R0B0T 100	AS 15	80	100	M6	VL	VM
R0B0T 130	AS 20	80	100	M6	TC	TD
R0B0T 160	AS 25	110	130	M8	UB	UC
R0B0T 220	AS 25	110	130	M8	VP	VQ

Tab. 98

Simple shaft type AE 10 for encoder assembly + AS

Unit	А	В	Head code AS right + AE	Head code AS left + AE
R0B0T 100	4xM4	Ø49	1G	11
R0B0T 130	4xM4	Ø79	1G	11
R0B0T 160	4xM4	Ø76	1G	11
R0B0T 220	4xM4	Ø76	1G	11

Tab. 99

Position of the simple shafts for encoder assembly to the right or to the left on the driving head.

Hollow shafts

AC hollow shaft type

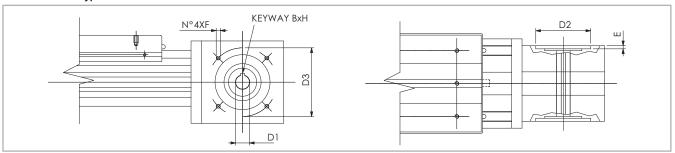


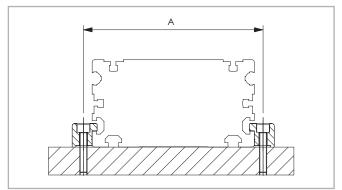
Fig. 43

Unit mm

Appliable to unit	Shaft type	D1	D2	D3	Е	F	Keyway B x H	Head code
R0B0T 100	AC19	19H7	80	100	3	M6	6 x 6	2A
R0B0T 130	AC19	19H7	80	100	4.5	M6	6 x 6	2A
R0B0T 130	AC20	20H7	80	100	4.5	M6	6 x 6	20
R0B0T 130	AC25	25H7	110	130	4.5	M8	8 x 7	2E
R0B0T 160	AC25	25H7	110	130	4.5	M8	8 x 7	2A
R0B0T 160	AC32	32H7	130	165	4.5	M10	10 x 8	20
R0B0T 220	AC25	25H7	110	130	4.5	M8	8 x 7	2A
R0B0T 220	AC32	32H7	130	165	4.5	M10	10 x 8	20

Tab. 100

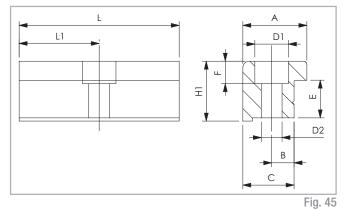
An (optional) connection flange is required to fit the standard reduction units selected by Rollon.


For further informations contact our offices

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ROBOT linear units enable support of loads in any direction. They can therefore be installed in any position.


To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 101

Fig. 44

Fixing brackets

Anodised aluminum block for fixing the linear units through the side T-slots of the body.

Fixing by T-nuts

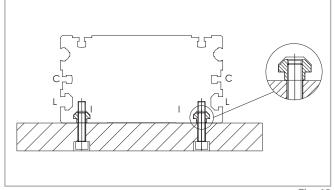
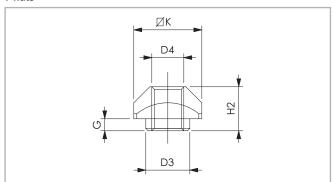


Fig. 46

Warning:


Do not fix the linear units through the drive ends.

Dimensions (mm)

Unit	А	В	С	E	F	D1	D2	H1	L	Lt	Code
ROBOT 100	20	6	16	10	5.5	9.5	5.3	14	35	17.5	1000958
R0B0T 130	20	7	16	12.7	7	10.5	6.5	18.7	50	25	1001061
ROBOT 160	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
R0B0T 220	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233

Tab. 102

T-nuts

L=Side / C=Central / I=Lower - see fig. 45

Steel nuts to be used in the slots of the body.

Dimensions (mm)

emicrosics (mm)											
Unit		D3	D4	G	H2	K	Code				
R0B0T 100	L-I	-	M4	-	3.4	8	1001046				
R0B0T 130	С	-	M3	-	4	6	1001097				
R0B0T 130	L-I	8	M6	3.3	8.3	13	1000043				
R0B0T 160	С	-	M6	-	5.8	13	1000910				
R0B0T 160	I	8	M6	3.3	8.3	13	1000043				
R0B0T 160	L	11	M8	2.8	10.8	17	1000932				
R0B0T 220	L-I	11	M8	2.8	10.8	17	1000932				

Fig. 47

Proximity ROBOT...SP

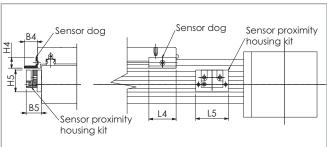


Fig. 48

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into the body slots.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	В4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100 SP	9.5	20	25	45	12	25	Ø 8	G000268	G000092
ROBOT 130 SP	21	28	50	60	20	40	Ø 12	G000269	G000126
ROBOT 160 SP	21	28	50	64	20	40	Ø 12	G000269	G000123
R0B0T 220 SP	21	28	50	70	20	40	Ø 12	G000269	G000207

Tab. 104

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Proximity ROBOT...CE

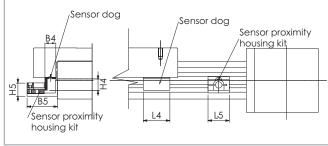


Fig. 49

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into the body slots.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	В4	B5	L4	L5	Н4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100 CE	9.5	47	25	29	12	20	Ø 8	G000268	G000756
ROBOT 130 CE	21	57	50	40	20	25	Ø 12	G000269	G000125
ROBOT 160 CE	21	57	50	40	20	28.5	Ø 12	G000269	G000124

Tab. 105

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Protections

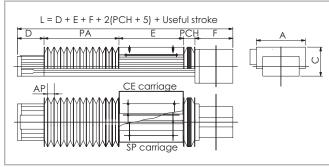


Fig. 50

Standard protections

The Rollon series ROBOT linear units are equipped with a polyurethane sealing strip to protect all parts inside the body against dust and foreign matter. The sealing strip runs the length of the body and is kept in position by micro-bearings located within the carriage. This ensures very low frictional resistance as it passes through the carriage.

Dimensions (mm)

Unit	А	С	D	E	F
R0B0T 130	174	103	95	230	135
R0B0T 160	204	131.5	110	280	160
R0B0T 220	275	149.5	130	380	160

Tab. 106

Protection of ball bearing guides

The four ball bearing blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.

Special protection

To use these linear units in very critical environments, they can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and the ends of the body with Velcro tape for easy assembly and disassembly.

The total length (L) of the linear unit will vary: See Fig. 50.

Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Assembly kits

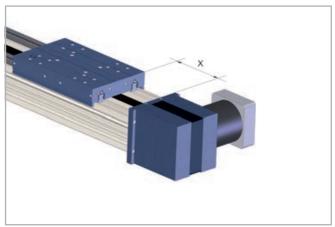
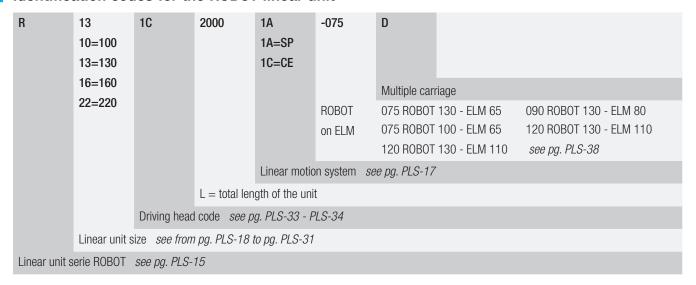


Fig. 51

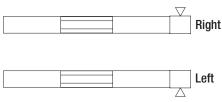
Fig. 52


For the direct assembly of Robot linear units on other types of actuators Rollon offers dedicated assembly kits (brackets) in order to fix those brackets the ends of the actuator must be free of rails. The table below gives the codes of the assembly kit. The allowed combination of assembly as well as the length without rails at each end.

	Kit	Code	X No rail at each end (mm)
1-	ROBOT 100 - ELM 65	G000205	75
	R0B0T 100 - R0B0T 130	G000201*	155
1 -	ROBOT 100 - ECO 80	G000203	90
	ROBOT 100 - E-SMART 50	G000642	60
1-	ROBOT 130 - ELM 65	G000196	75
	ROBOT 130 - ELM 80	G000195	90
	ROBOT 130 - ROBOT 130	G000197*	155
	ROBOT 130 - ROBOT 160	G000197*	190
	ROBOT 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
	R0B0T 160 - R0B0T 220	G000202*	255
1-	ROBOT 220 - ELM 110	G000199	120 Tab. 107

 $^{^{\}star}\,\mbox{Additional fixing holes}$ are requested on the robot plate

Ordering key V


Identification codes for the ROBOT linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

SC series /

SC series description

Fig. 53

SC

The SC series linear units are specifically designed for vertical motion in gantry applications, or in applications where the aluminum profile must move while the carriage remains fixed.

Available in three sizes: 65 mm, 130 mm and 160 mm, the SC linear actuator has a self-supporting structure made by a profile (square profile for SC 65) of extruded and anodized aluminum.

The SC is a stiff vertical system, guaranteed by the use of two parallel linear guides, four "maintenance-free" caged ball bearing blocks and a wide belt drive.

The SC Series has been designed for heavy loads and high cycle applications. It is specifically designed and configured to be compatible and assembled with the ROBOT Series actuators without the need for adaptor plates.

Corrosion resistant version

All Plus System series of linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

The Plus System linear units are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components, all of which are made of low carbon SS AISI 303 and 404C steel, to prevent or delay corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- Very low carbon SS AlSI 303 and 404C steel linear rails, nuts and bolts and components
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized aluminum extrusions used for the profile of the Rollon SC series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

Side slots are provided for fast, trouble-free mounting of accessories (proximity switch runner, etc.). Power cables and/or air hoses (gripper, etc.) can be passed inside the body.

Driving belt

The Rollon SC series linear units use steel reinforced polyurethane drive belt with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a

backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage is an enveloping structure that houses the entire linear motion system consisting of a drive pulley and two driven pulleys. The external parts are made of anodized aluminum. Dimensions vary according to type. One of the two configurations shown on page PLS-48 can be used for fast, simple assembly of the SC series. The carriage also houses brush seals to remove contaminants from the system.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 108

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10	O
2.7	69	23	200	880-900	33	600-655

Tab. 109

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SC series with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the aluminum body.
- The carriage of the linear unit is assembled on four pre-loaded ball bearing blocks with plastic retention cages.
- The four ball row configuration enables the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance intervals.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise
- Free maintenance (dependent on application)

SC section

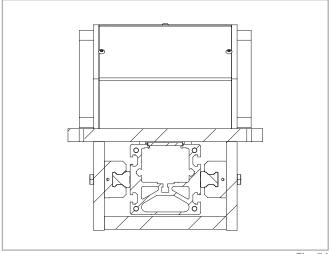
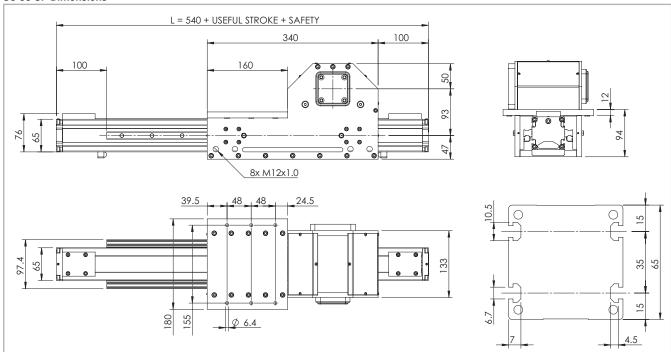



Fig. 54

SC 65 SP

SC 65 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

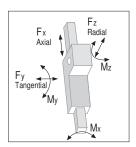
Fig. 55

Technical data

	Туре
	SC 65 SP
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	7.8
Zero travel weight [kg]	11.6
Weight for 100 mm useful stroke [kg]	0.7
Starting torque [Nm]	1.3
Rail size [mm]	15

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	_x [10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]	 [10 ⁷ mm ⁴]
SC 65	0.06	0.09	0.15
			Tab. 112

Driving belt

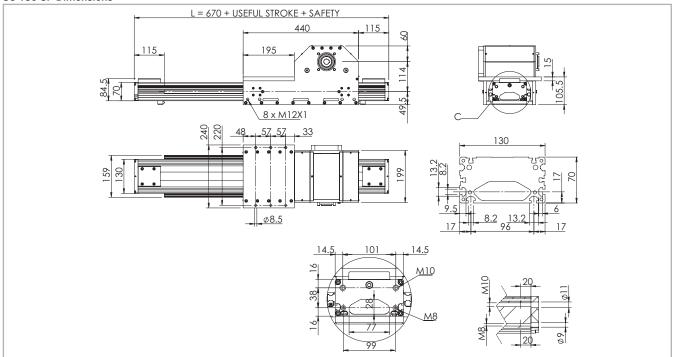
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
SC 65	32 AT 5	32	0.105

Belt length (mm) = L + 85

SC 65 SP - Load capacity

Туре	F _x [N]		F [t	: v v	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 65 SP	1344	883	96800	45082	96800	3775	11616	11616


Tab. 111

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 114

SC 130 SP

SC 130 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

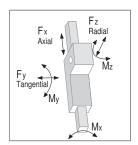
Fig. 56

Technical data

	Туре
	SC 130 SP
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	50 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	13.5
Zero travel weight [kg]	23
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3
Rail size [mm]	15

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	I _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
SC 130	0.15	0.65	0.79
			Tah 116

Driving belt

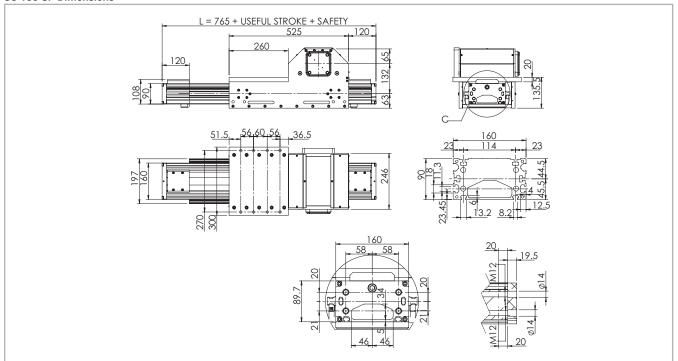
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
SC 130	50 AT 10	50	0.209
			Tab. 117

Belt length (mm) = L + 101

SC 130 SP - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 130 SP	3735	2160	96800	45082	96800	6921	16311	16311


Tab. 115

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 118

SC 160 SP

SC 160 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 57

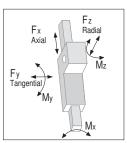
Technical data

	Туре		
	SC 160 SP		
Max. useful stroke length [mm]	2500		
Max. positioning repeatability [mm]*1	± 0.05		
Max. speed [m/s]	5.0		
Max. acceleration [m/s ²]	50		
Type of belt	70 AT 10		
Type of pulley	Z 25		
Pulley pitch diameter [mm]	79.58		
Carriage displacement per pulley turn [mm]	250		
Carriage weight [kg]	32		
Zero travel weight [kg]	48		
Weight for 100 mm useful stroke [kg]	1.9		
Starting torque [Nm]	6.1		
Rail size [mm]	20		
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 119		

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	I _x [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]	 [10 ⁷ mm ⁴]
SC 160	0.37	1.50	1.88
			Tab. 120


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	kg/m
SC 160	70 AT 10	70	0.407

Tab. 121

Belt length (mm) = L + 121

SC 160 SP - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 160 SP	6682	4428	153600	70798	153600	13555	31104	31104

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the

ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Unit: [cm²]
SC 65	0.7
SC 130	0.7
SC 160	1.4

Tab. 123

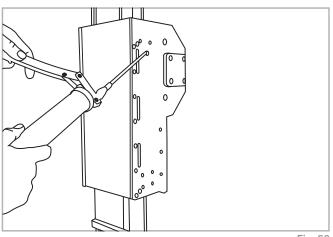


Fig. 58

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental

conditions, lubrication should be carried out more frequently. Refer to Rollon for further advice.

Planetary gears

Assembly to the right or to the left of the driving head

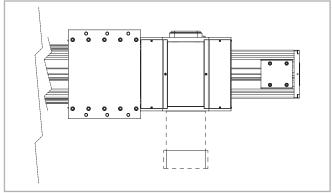
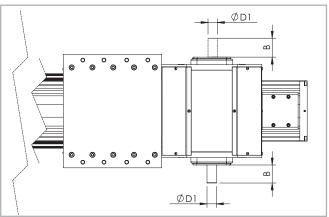


Fig. 59

Motion can be achieved with standard transmission types as follows:

- Planetary gears
- Worm gears
- Versions with simple shaft
- Versions with hollow shaft

Versions with planetary gears


Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with a clearance ranging from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Туре	Left	Right	Gear type
SC 65	4EA	4CA	MP 080
SC 130	4EA	4CA	MP 105
SC 160	4EA	4CA	MP 130

Tab. 124

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
SC 65	AS 20	40	20h7
SC 130	AS 25	50	25h7
SC 160	AS 25	50	25h7

Tab. 125

Fig. 60

Position of the simple shaft can be to the left or right of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS	
SC 65	AS 20	1EA	1CA	1AA	
SC 130	AS 25	1EA	1CA	1AA	
SC 160	AS 25	1EA	1CA	1AA	

Tab. 126

Hollow shafts

AC hollow shaft type

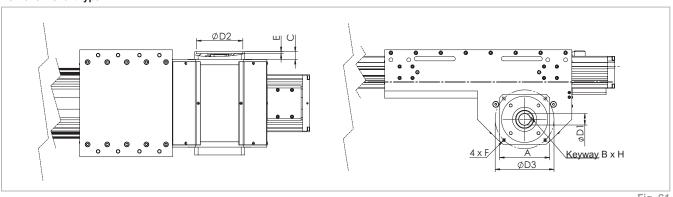


Fig. 61

Unit mm

Appliable to unit	Shaft type	D1	D2	D3	А	С	E	F	Keyway B x H	Head code
SC 65 SP	AC 19	19H7	80	100	90	13	3	M6	6 x 6	2AA
SC 65 SP	AC 20	20H7	80	100	90	13	3	M6	6 x 6	2BA
SC 130 SP	AC 20	20H7	80	100	115	19	4.5	M6	6 x 6	2AA
SC 130 SP	AC 25	25H7	110	130	115	19	4.5	M8	8 x 7	2BA
SC 160 SP	AC 32	32H7	130	165	140	22	5.5	M10	10 x 8	2AA

Tab. 127

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices

Accessories

Fixing by brackets

The ball bearing guide linear drive systems of Rollon SC series linear units enable support of loads in any direction. They can therefore be installed in any position. To install the SC series units, we recommend use of one of the two systems indicated below:

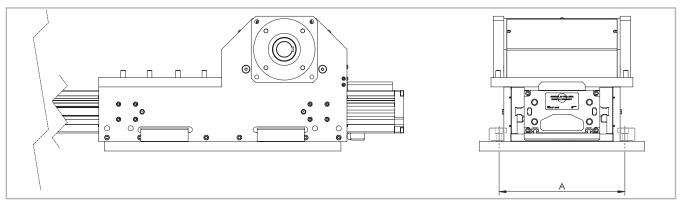
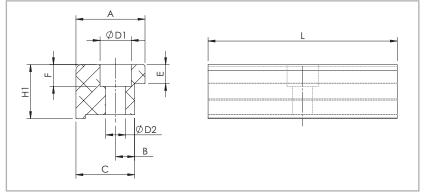



Fig. 62

Fixing brackets

Material: Anodized aluminum

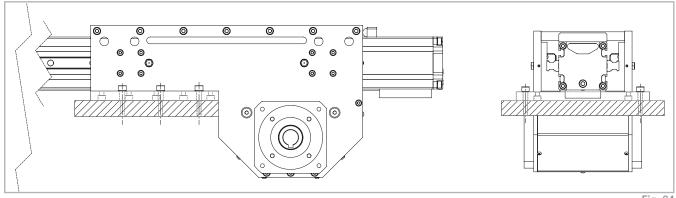
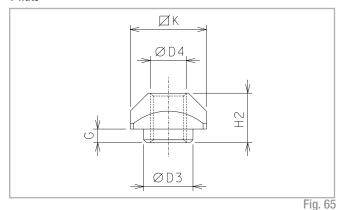

Unit	A (mm)
SC 65 SP	147
SC 130 SP	213
SC 160 SP	266
	Tab. 128

Fig. 63

Unit	А	В	С	Е	F	D1	D2	H1	L	Code
SC 65 SP	20	6	16	10	5.5	9.5	5.3	14	35	1001491
SC 130 SP	20	7	16	12.7	7	10.5	6.5	18.7	50	1001491
SC 160 SP	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	1001233


Tab. 129

Direct fixing

PLS-48 Fig. 64

T-nuts

Steel nuts to be used in the slots of the body

Fixing by T-nuts

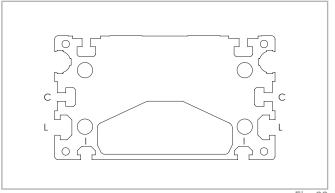
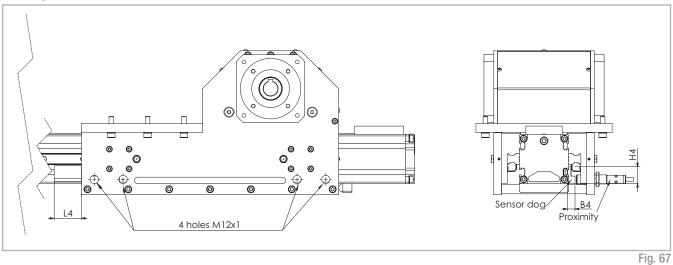


Fig. 66

Warning:


Do not fix the linear units through the drive ends.

Unit	Slot	D3	D4	G	H2	К	Code
SC 65	L	6.7	M5	2.3	6.5	10	1000627
SC 130	L-I	8	M6	3.3	8.3	13	1000043
SC 130	С	-	M3	-	4	6	1001097
SC 160	I	8	M6	3.3	8.3	13	1000043
SC 160	L	11	M8	2.8	10.8	17	1000932
SC 160	С	-	M6	-	5.8	13	1000910

L = Side - I = Lower - C=Central

Tab. 130

Proximity

Fitting of the proximity switch

Proximity switches can be mounted on four threaded mounting holes that are positioned on the sides of the carriage. Do not over-torque the switches during installation as this can cause interference with the proximity switch runner and damage the sensor.

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Unit	В4	Н4	L4	Sensor dog Code
SC 65	8.5	23	50	G001997
SC 130	8.4	25	50	G001862
SC 160	10	27	50	G000272

Tab. 131

Protections

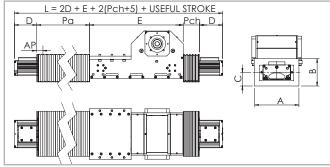


Fig. 68

Protection of ball bearing guides

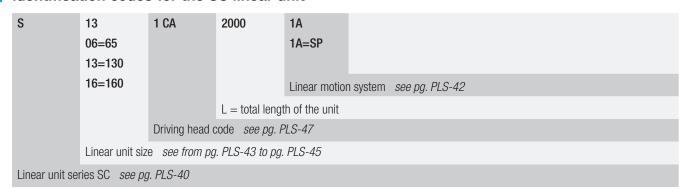
The four ball bearing blocks have seals on both sides and an additional scraper can be fitted for very dusty conditions.

Special protection

For use in hostile conditions, the SC can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and drive ends with hook and loop fasteners for ease of assembly and disassembly.

The total length (L) of the linear unit will vary: See Fig. 68.

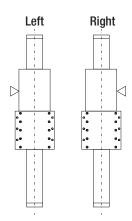
Dimensions (mm)


Unit	А	В	С	D	E
SC 65	135	109	54,5	100	340
SC 130	212	130	64	115	440
SC 160	248	150	73	120	525

Tab. 132

Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Ordering key / ~


Identification codes for the SC linear unit

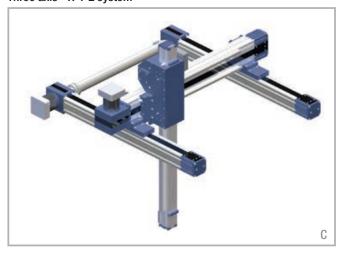
In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Multiaxis systems //

Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axis. Rollon now offers a set of fittings including brackets and cross plates, to enable multiaxis units to be built. The SC series is also pre-

engineered to facilitate direct connection with the units of the ROBOT series. In addition to standard elements, Rollon also provides plates for special applications.


Application examples:

Two axis - X-Y system

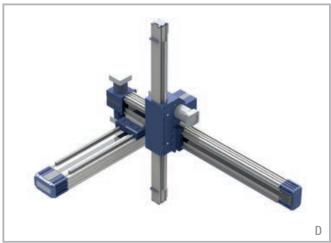
A - Linear units: X axis: 2 ELM 80 SP... Y axis: 1 ROBOT 160 SP... Connection part: 2 kits of fixing brackets for ROBOT 160 SP... on to the carrieages of ELM 80 SP...

Three axis - X-Y-Z system

Z axis: 1 SC 65

Connection part: 2 kits of fixing brackets for ROBOT 130 SP... on to the carrieages of ELM 65 SP... The SC 65 unit is directly assembled on to the ROBOT 130 SP... unit without further elements.

C - Linear units: X axis: 2 ELM 65 SP... Y axis: 1 ROBOT 130 SP...


Two axis - Y-Z system

B - Linear units: X axis: 1 ROBOT 220 SP... Z axis: 1 SC 160Connection part: NoneThe SC 160 unit is directly assembled on to the ROBOT 220 SP...

unit without further elements

Three axis - X-Y-Z system

D - Linear units: X axis: 1 ROBOT 220 SP... Y axis: 1 ROBOT 130 SP... Z axis: SC 65

Connection part: 1 kit of fixing brackets for ROBOT 130 SP... unit to the carriage of the ROBOT 220 SP... unit. The SC 65 unit is directly assembled on to the ROBOT 130 SP... unit without further elements.

ONE series //

ONE series description

Fig. 1

The ONE series actuators are belt driven linear actuators specifically designed for Clean Room applications. The ONE series is certified compliant with ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E cleanroom standards by the Fraunhofer Institute IPA in Stuttgard.

The ONE series reduces particle contamination using a specially designed straight seal that isolates the internals of the actuator from the environment. In addition to particle containment, the ONE series can support a vacuum pump (up to 0,8 bar) to remove and transport contaminates from the interior of the actuator to filtration sites. The 2 vacuum ports are located on the drive and idle head.

All internal components of the ONE series actuators are designed to minimize particle release. Component materials are limited to stainless steel. Where stainless steel is not an option, special treatments are used to ensure low particle release.

Special lubrications designed for use in cleanroom or vacuum environments are used for all bearings and linear rails.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon ONE series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. Aluminum alloy 6060 is used (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

ONE Series is the first linear units driven by timing belt capable to achieve ISO CLASS 3.

We are using selected higth quality polyurethane timing belts, AT profile, manufactured by leading companies in this field.

Carriage

The carriage of the Rollon ONE series linear units are made entirely of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through the carriage.

Sealing strip

Rollon ONE series linear units are equipped with a polyurethane sealing strip to prevent particles generated inside the unit to go outside. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg —	kN —	10-6		J ——	Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	$\frac{N}{mm^2}$	%	_
205	165	10	60-80

The linear motion system

Certified Clean Room Class

ONE Series is a device tested by FRAUNHOFER IPA Institute - Stuttgart (D). Rollon achieved the ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E cleanroom standard using a combination of a vacuum pump and our special sealing belt (Intl. Patend Pending).

Vacuum system

The ONE series actuator has specific connection ports on the drive and the idle end of the unit to connect a vacuum system. The vacuum quality must be evaluated case by case, but Rollon has had success with 0,8 bar on a ONE 80 with a stroke of 1.000 mm up to 4.000 mm. A vacuum was used in conjunction to Rollon's special sealing strip to achieve ISO CLASS 3 (DIN EN ISO 14644-1) and CLASS 1 US FED STD 209E

Selected mechanical components

ONE Series is assembled with select high-quality components.

Only Stainless Steel (AISI 303, AISI 440C) is used for bearings, linear guides, shafts, pulleys, and other metallic components. Where it is impossible to use Stainless Steel, Rollon provides a special treatment tested under severe conditions and under particle generation.

ONE SP section

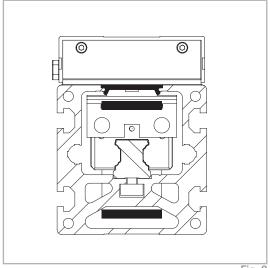


Fig. 2

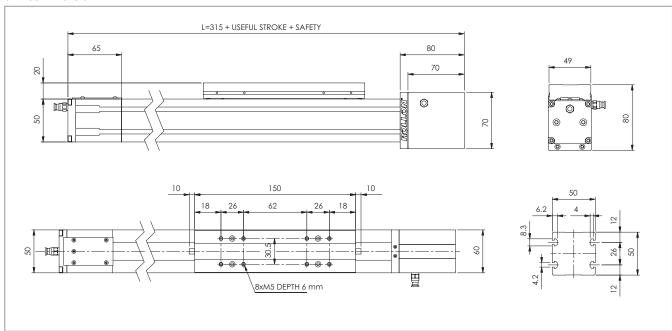
Lubrication

ONE Series is equiped with "innovate and hi-tech linear guides" that feature special ball cages to maintain spacing. This feature supports a long-term maintenance and a low particle generation if combined with special lubricant, specifically developed and adopted for Clean Room applications.

Range

ONE Series is now available in 3 different sizes, for multi axes combina-

- ONE 50
- ONE 65
- ONE 80
- ONE 110


Maximum stroke is 6.000 mm, except ONE 50 where the maximum stroke is 3.700 mm.

For technical details and load capacities, please refer to next pages.

INTL. PATENT PENDING

ONE 50 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 3

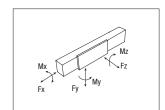
Technical data

	Туре
	ONE 50
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36,61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.4
Zero travel weight [kg]	1.8
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm²]	19810
Rail size [mm]	12 mini
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 4

^{*1)} Positioning repeatability is dependant on the type of transmission used

Moments of inertia of the aluminum body

Туре	_x	l _y	l _p	
	[10 ⁷ mm ⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	
ONE 50	0.025	0.031	0.056	

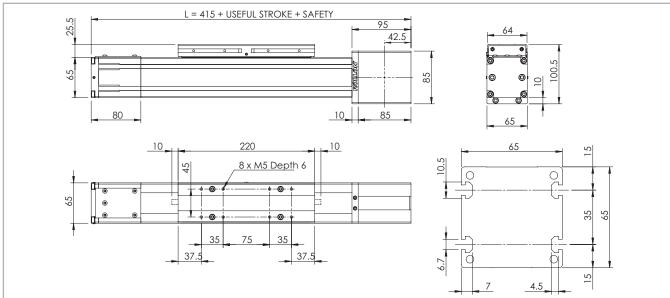

Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ONE 50	22 AT 5	22	0.072
			Tab. 6

Belt length (mm) = $2 \times L - 130$



ONE 50 - Load capacity

Туре	F [N	: X V]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 50	809	508	7060	6350	7060	46.2	233	233

See verification under static load and lifetime on page SL-2 and SL-3

ONE 65 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 4

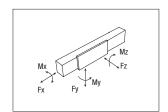
Technical data

	Туре
	ONE 65
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	1.1
Zero travel weight [kg]	3.5
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	1.5
Moment of inertia of pulleys [g mm²]	117200
Rail size [mm]	15
1) Positioning repeatability is dependent on the type of transmission used	Tab.

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
ONE 65	0.060	0.086	0.146
			Tab. 9

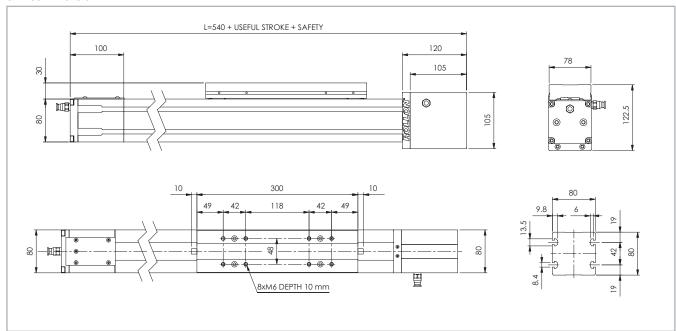

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ONE 65	32 AT 5	32	0.105

Tab. 10

Belt length (mm) = $2 \times L - 180$



ONE 65 - Load capacity

Туре	F [N	: X V]	F [1	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 65	1344	883	48400	22541	48400	320	1376	1376

Tab. 11

ONE 80 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

Fig. 5

Technical data

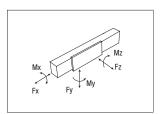
	Туре		
	ONE 80		
Max. useful stroke length [mm]	6000		
Max. positioning repeatability [mm]*1	± 0.05		
Max. speed [m/s]	5		
Max. acceleration [m/s ²]	50		
Type of belt	32 AT 10		
Type of pulley	Z 19		
Pulley pitch diameter [mm]	60.48		
Carriage displacement per pulley turn [mm]	190		
Carriage weight [kg]	2.7		
Zero travel weight [kg]	10.5		
Weight for 100 mm useful stroke [kg]	1		
Starting torque [Nm]	2.2		
Moment of inertia of pulleys [g mm²]	388075		
Rail size [mm]	20		
*1) Positioning repeatability is dependant on the type of transmission used	Tab. 12		

ONE 80 - Load capacity

Moments of in	ertia of the	aluminum	body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
ONE 80	0.136	0.195	0.331
			T 1 40

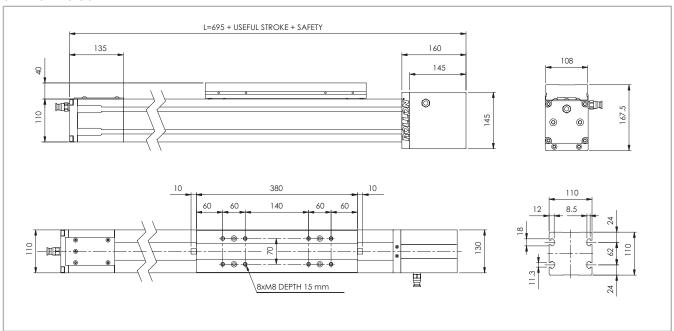
Tab. 13


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ONE 80	32 AT 10	32	0.185

Tab. 14


Belt length (mm) = $2 \times L - 230$

Туре	F [t	F _y		F _z M _x [Nm]		M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 80	2258	1306	76800	35399	76800	722	5606	5606

Tab. 15

ONE 110 Dimension

For further details please visit our website www.rollon.com and download the related DXF files.

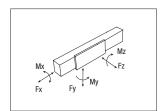
Fig. 6

Technical data

	Туре
	ONE 110
Max. useful stroke length [mm]	6000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	5.6
Zero travel weight [kg]	22.5
Weight for 100 mm useful stroke [kg]	1.4
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm²]	2.193 · 10 ⁶
Rail size [mm]	25

 $^{^{\}star} 1)$ Positioning repeatability is dependant on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
ONE 110	0.446	0.609	1.054
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ONE 110	50 AT 10	50	0.290
			Tab. 18

Belt length (mm) = $2 \times L - 290$

ONE 110 - Load capacity

Туре	F F [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 110	4980	3300	104800	50321	104800	1126	10532	10532

Tab. 16

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Planetary gears

Assembly to the right or to the left of the driving head

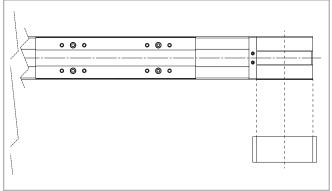
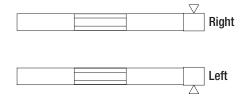



Fig. 7

The series ONE linear units can be fitted with several different drive systems. In each case, the driving pulley is attached to the reduction gearshaft by means of a tapered coupling to ensure high accuracy over a long period of time.

Versions with planetary gears

Planetary gears are used for highly dynamic robot, automation and handling applications involving stressing cycles and with high level precision requirements. Standard models are available with clearance from 3' to 15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Shaft with centering

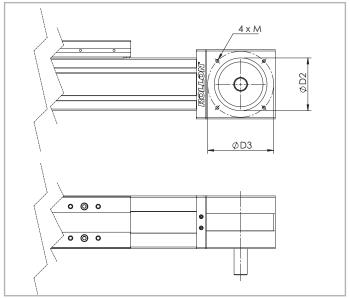
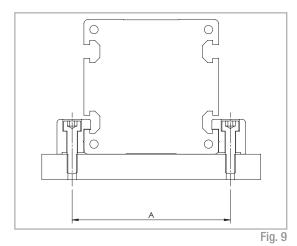


Fig. 8

Unit	Shaft type	D2	D3	М	Head code AS left	Head code AS right
ONE 50	AS 12	55	70	M5	VB	VA
ONE 65	AS 15	60	85	M6	VB	VA
ONE 80	AS 20	80	100	M6	VB	VA
ONE 110	AS 25	110	130/160	M8	VB	VA

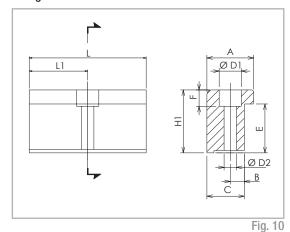

Tab. 20

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ONE linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-Slots in the extruded bodies as shown below.

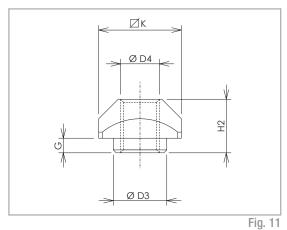

Unit	A (mm)
ONE 50	62
ONE 65	77
ONE 80	94
ONE 110	130

Tab. 21

Warning:

Do not fix the linear units through the drive ends.

Fixing brackets


Dimensions (mm)

Unit	Α	H1	В	С	Ε	F	D1	D2	L	Lt	Code
ONE 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ONE 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ONE 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ONE 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233
											Tah 22

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-Slots of the body.

T-Nuts

Dimensions (mm)

Unit	D3	D4	G	H2	К	Code
ONE 50	-	M4	-	3.4	8	1001046
ONE 65	6.7	M5	2.3	6.5	10	1000627
ONE 80	8	M6	3.3	8.3	13	1000043
ONE 110	11	M8	2.8	10.8	17	1000932

Tab. 23

Steel nuts to be used in the slots of the body.

Proximity

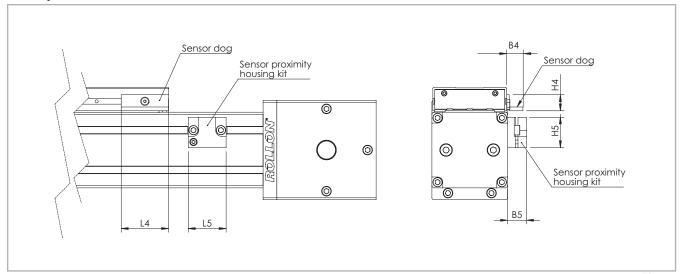


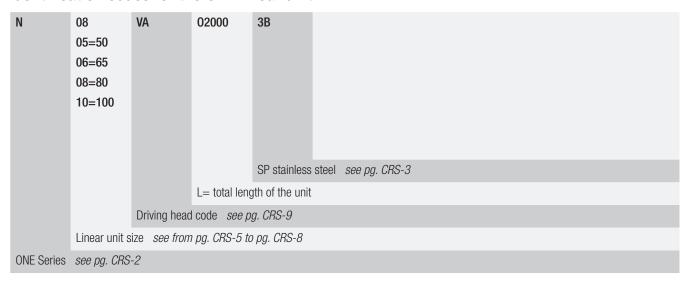
Fig. 12

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.

Sensor dog

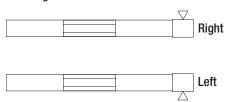
L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.


Dimensions (mm)

Unit	В4	В5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ONE 50	9.5	14	25	29	11.9	22.5	08	G000268	G000211
ONE 65	17.2	20	50	40	17	32	Ø 12	G000267	G000212
ONE 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ONE 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

Ordering key // ~


Identification codes for the ONE linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

E-SMART series / ~

E-SMART series description

Fig. 1

E-SMART

The E-SMART series linear units have an extruded and anodized aluminum self-supporting structure with a profile available in four sizes from 30 to 100mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Also featured is a single rail with one or more recirculating ball bearing runner blocks.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards.

mission characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This type of belt is ideal due to its high load trans-

Carriage

The carriage of the Rollon SMART series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10-9	90
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2.7	70	23.8	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N mm²	N — mm²	%	-
250	200	10	75

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

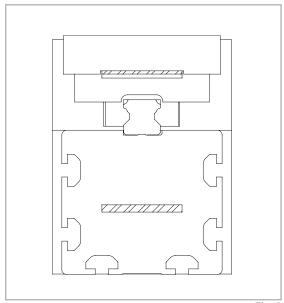
Performance characteristics:

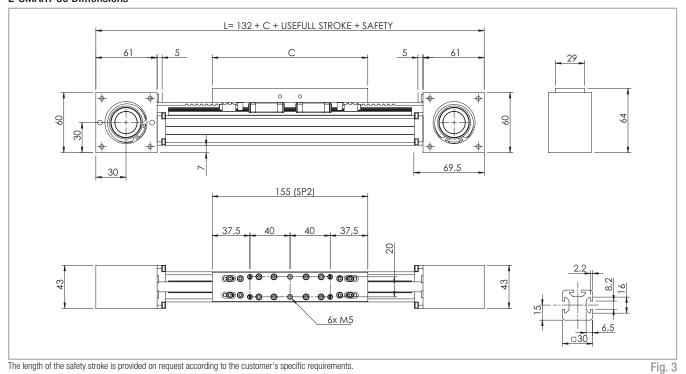
- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

E-SMART section




Fig. 2

E-SMART 30 SP2

Technical data

Max. useful stroke length [mm]

E-SMART 30 Dimensions

Type E-SMART 30 SP2

3700

The length of the safety stroke is provided on request according to the customer's specific requirements.

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
E-SMART 30 SP2	0.003	0.003	0.007
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 30 SP2	10 AT 5	10	0.033
			Tab. 6

Belt length (mm) = $2 \times L - 100 \text{ (SP2)}$

5 . 1	
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	10 AT 5
Type of pulley	Z 24
Pulley pitch diameter [mm]	38.2
Carriage displacement per pulley turn [mm]	120
Carriage weight [kg]	0.28
Zero travel weight [kg]	1.83
Weight for 100 mm useful stroke [kg]	0.16
Starting torque [Nm]	0.15

*1) Positioning repeatability is dependent on the type of transmission used.

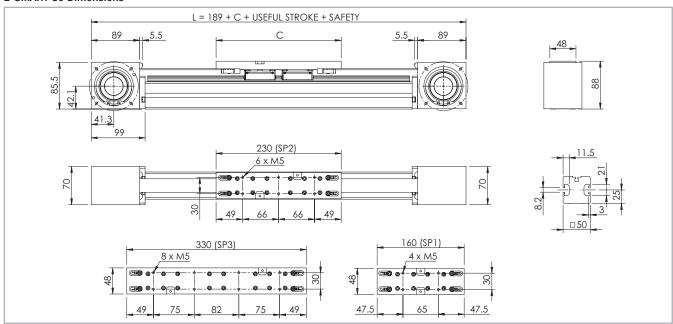
Moment of inertia of pulleys [g · mm2]

E-SMART 30 - Load capacity

Rail size [mm]

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 30 SP2	385	242	7060	6350	7060	46.2	166	166

57.630


12 mini

Tab. 4

See verification under static load and lifetime on page SL-2 and SL-3

E-SMART 50 SP1 - SP2 - SP3

E-SMART 50 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

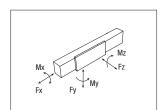
Technical data

		Туре	
	E-SMART 50 SP1	E-SMART 50 SP2	E-SMART 50 SP3
Max. useful stroke length [mm]*1	6120	6050	5950
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0	4.0
Max. acceleration [m/s²]	50	50	50
Type of belt	25 AT 5	25 AT 5	25 AT 5
Type of pulley	Z 40	Z 40	Z 40
Pulley pitch diameter [mm]	63.66	63.66	63.66
Carriage displacement per pulley turn [mm]	200	200	200
Carriage weight [kg]	0.54	0.85	1.21
Zero travel weight [kg]	4.89	5.4	6.16
Weight for 100 mm useful stroke [kg]	0.34	0.34	0.34
Starting torque [Nm]	0.35	0.35	0.55
Moment of inertia of pulleys [g \cdot mm²]	891.270	891.270	891.270
Rail size [mm]	15	15	15

^{*1)} It is possible to obtain stroke up to 11.270 (SP1), 11.200 (SP2), 11.100 (SP3) by means of special Rollon joints. Tab. 8 *2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
E-SMART 50 SP	0.021	0.020	0.041
			Tab. 9

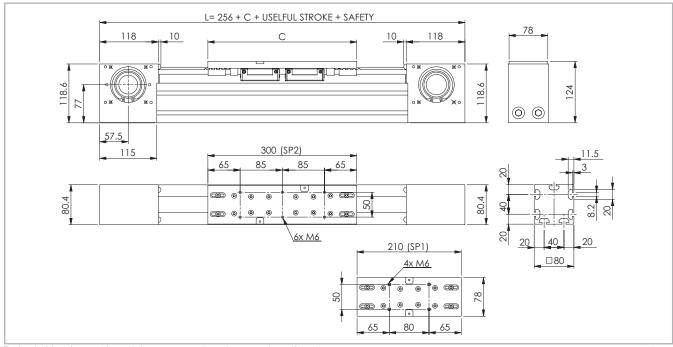

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 50 SP	25 AT 5	25	0.080
			Tab. 10

Belt length (mm) = 2 x L - 60 (SP1) 2 x L - 125 (SP2)

2 x L - 225 (SP3)



E-SMART 50 - Load capacity

Туре	F [t	: Ň Į	F [1	: V]	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 50 SP1	1050	750	15280	9945	15280	120	90	90
E-SMART 50 SP2	1050	750	30560	19890	30560	240	1054	1054
E-SMART 50 SP3	1050	750	45840	29835	45840	360	2582	2582

E-SMART 80 SP1 - SP2

E-SMART 80 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

Technical data

	Туре			
	E-SMART 80 SP1	E-SMART 80 SP2		
Max. useful stroke length [mm]*1	6060	5970		
Max. positioning repeatability [mm]*2	± 0.05	± 0.05		
Max. speed [m/s]	4.0	4.0		
Max. acceleration [m/s ²]	50	50		
Type of belt	32 AT 10	32 AT 10		
Type of pulley	Z 21	Z 21		
Pulley pitch diameter [mm]	66,84	66,84		
Carriage displacement per pulley turn [mm]	210	210		
Carriage weight [kg]	1.34	1.97		
Zero travel weight [kg]	9.94	11.31		
Weight for 100 mm useful stroke [kg]	0.76	0.76		
Starting torque [Nm]	0.95	1.3		
Moment of inertia of pulleys [g · mm²]	938.860	938.860		
Rail size [mm] 1) It is possible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) by means		20 Tab. 12		

^{*2)} Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

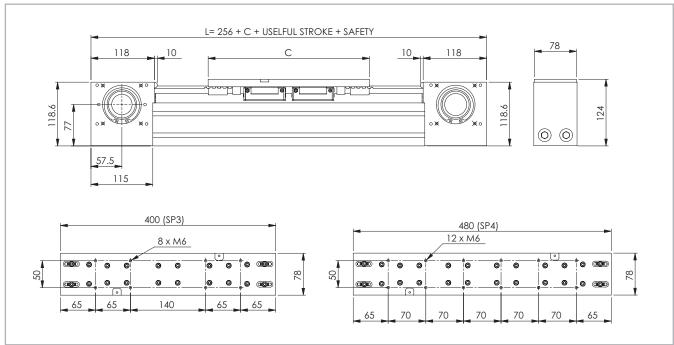
Туре	l _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
E-SMART 80 SP	0.143	0.137	0.280
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
E-SMART 80 SP	32 AT 10	32	0.186

Belt length (mm) = $2 \times L - 135$ (SP1) 2 x L - 225 (SP2)


Tab. 14

E-SMART 80 - Load capacity

Туре	F [1	: X V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP1	2523	1672	25630	18318	25630	260	190	190
E-SMART 80 SP2	2523	1672	51260	36637	51260	520	1874	1874

E-SMART 80 SP3 - SP4

E-SMART 80 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

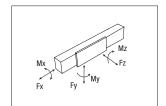
Fig. 6

Technical data

	Туре			
	E-SMART 80 SP3	E-SMART 80 SP4		
Max. useful stroke length [mm]*1	5870	5790		
Max. positioning repeatability [mm]*2	± 0.05	± 0.05		
Max. speed [m/s]	4.0	4.0		
Max. acceleration [m/s²]	50	50		
Type of belt	32 AT 10	32 AT 10		
Type of pulley	Z 21	Z 21		
Pulley pitch diameter [mm]	66,84	66,84		
Carriage displacement per pulley turn [mm]	210	210		
Carriage weight [kg]	2.63	3.23		
Zero travel weight [kg]	12.83	14.06		
Weight for 100 mm useful stroke [kg]	0.76	0.76		
Starting torque [Nm]	1.4	1.52		
Moment of inertia of pulleys $[g \cdot mm^2]$	938.860	938.860		
Rail size [mm]	20	20		
*1) It is possible to obtain stroke up to 11.000 (SP3), 10.920 (SP4) by means		Tab. 16		

^{*1)} It is possible to obtain stroke up to 11.000 (SP3), 10.920 (SP4) by means of special Rollon joints. *2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

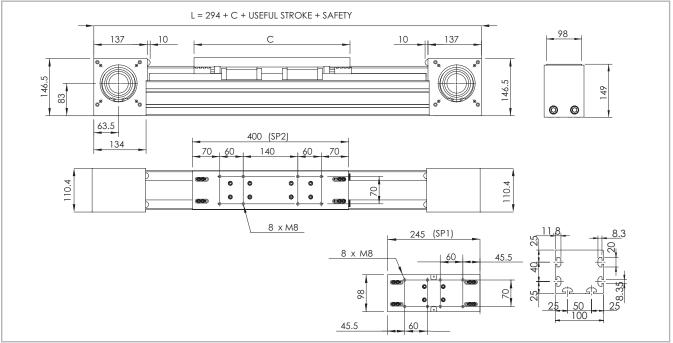

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _p [10 ⁷ mm⁴]
E-SMART 80 SP	0.143	0.137	0.280
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
E-SMART 80 SP	32 AT 10	32	0.186

Belt length (mm) = $2 \times L - 325$ (SP3) 2 x L - 405 (SP4) Tab. 18



E-SMART 80 - Load capacity

Туре	F [t	: N]	F [N	, Š	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP3	2523	1672	76890	54956	76890	780	4870	4870
E-SMART 80 SP4	2523	1672	102520	73274	102520	1040	6920	6920

E-SMART 100 SP1 - SP2

E-SMART 100 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

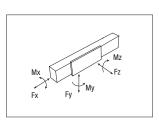
Fig. 7

Technical data

	Туре			
	E-SMART 100 SP1	E-SMART 100 SP2		
Max. useful stroke length [mm]*1	6025	5870		
Max. positioning repeatability [mm]*2	± 0.05	± 0.05		
Max. speed [m/s]	4.0	4.0		
Max. acceleration [m/s ²]	50	50		
Type of belt	50 AT 10	50 AT 10		
Type of pulley	Z 27	Z 27		
Pulley pitch diameter [mm]	85.94	85.94		
Carriage displacement per pulley turn [mm]	270	270		
Carriage weight [kg]	2.72	4.42		
Zero travel weight [kg]	18.86	22.38		
Weight for 100 mm useful stroke [kg]	1.3	1.3		
Starting torque [Nm]	2.1	2.4		
Moment of inertia of pulleys [g · mm²]	4.035.390	4.035.390		
Rail size [mm]	25	25		
*1) It is possible to obtain stroke up to 11.155 (SP1), 11.000 (SP2) by means		Tab. 20		

^{*1)} It is possible to obtain stroke up to 11.155 (SP1), 11.000 (SP2) by means of special Rollon joints.
*2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

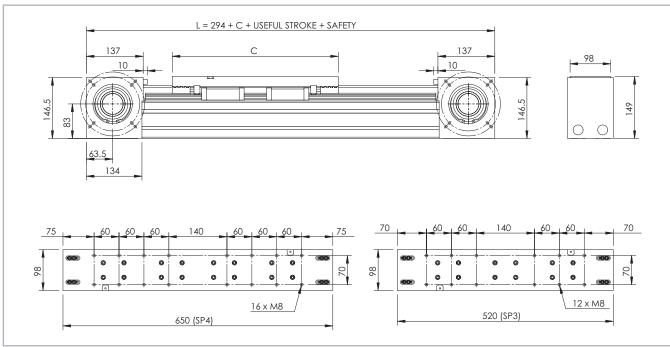

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight	
	of belt	[mm]	[kg/m]	
E-SMART 100 SP	50 AT 10	50	0.290	

Belt length (mm) = $2 \times L - 120 \text{ (SP1)}$ 2 x L - 275 (SP2)



E-SMART 100 Load capacity

Туре	F [1	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP1	4980	3390	43620	31192	43620	500	450	450
E-SMART 100 SP2	4980	3390	87240	62385	87240	1000	6805	6805

E-SMART 100 SP3 - SP4

E-SMART 100 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 8

Technical data

	Ту	pe
	E-SMART 100 SP3	E-SMART 100 SP4
Max. useful stroke length [mm]*1	5790	5620
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.85	7.34
Zero travel weight [kg]	25.22	28.25
Weight for 100 mm useful stroke [kg]	1.3	1.3
Starting torque [Nm]	2.6	2.8
Moment of inertia of pulleys [g · mm²]	4.035.390	4.035.390
Rail size [mm]	25	25
*1) It is possible to obtain stroke up to 10.880 (SP3), 10.750 (SP4) by means	s of special Rollon joints.	Tab. 24

^{*1)} It is possible to obtain stroke up to 10.880 (SP3), 10.750 (SP4) by means of special Rollon joints.
*2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 25

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 100 SP	50 AT 10	50	0.290
			Tab. 26

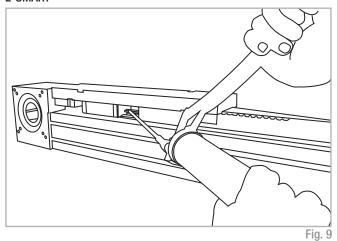
Belt length (mm) = 2 x L - 395 (SP3) 2 x L - 252 (SP4)

E-SMART 100 Load capacity

Туре	F [1	: Ň]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP3	4980	3390	130860	93577	130860	1500	12039	12039
E-SMART 100 SP4	4980	3390	174480	124770	174480	2000	17710	17710

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

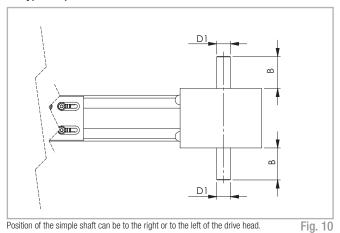

SP linear units with ball bearing guides

The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 2000 km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

E-SMART


Quantity of lubricant necessary for re-lubrication for each block:

Туре	Unit [cm³]
E-SMART 30	1
E-SMART 50	0.2
E-SMART 80	0.5
E-SMART 100	0.6

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Units (mm)

Applicable to unit	Shaft type	В	D1	AS assembly kit code
E-SMART 30	AS 12	25	12h7	G000348
E-SMART 50	AS 15	35	15h7	G000851
E-SMART 80	AS 20	36.5	20h7	G000828
E-SMART 100	AS 25	50	25h7	G000649

Tab. 29

Hollow shaft

Hollow shaft type FP - Standard supply

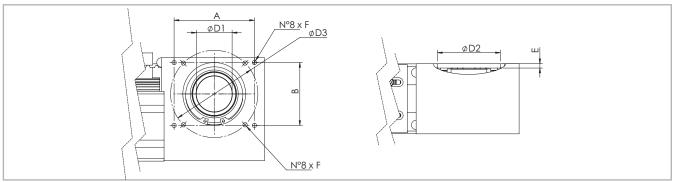
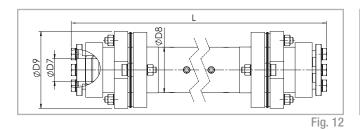
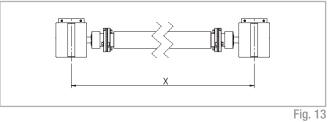


Fig. 11

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	АхВ	Drive head code
E-SMART 30	FP 22	22H7	42	68	3	M5	-	2T
E-SMART 50	FP 34	34H7	72	90	2.5	M6	-	2T
E-SMART 80	FP 41	41H7	72	100	5	M6	92x72	2Z
E-SMART 100	FP 50	50H7	95	130	3.5	M8	109x109	2Y


An (optional) connection flange is required to fit the standard reduction units selected by Rollon.


For further information contact our offices.

Linear units in parallel

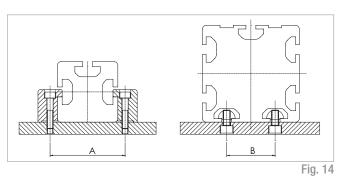
Synchronization kit for use of SMART linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

Dimensions (mm)

Applicable to unit	Shaft type	D7	D8	D9	Code	Formula for length calculation
E-SMART 30	AP 12	12	25	45	GK12P1A	L= X-51 [mm]
E-SMART 50	AP 15	15	40	69.5	GK15P1A	L= X-79 [mm]
E-SMART 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
E-SMART 100	AP 25	25	70	99	GK25P1A	L= X-145 [mm]

Tab. 31

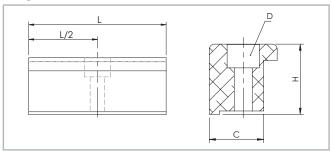

Accessories

Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction.

They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:


Moment of inertia [g mm 2] C1 + C2 \cdot (X-Y)

	C1	C2	Υ	Weight [Kg] C1+C2 · (X-Y)	
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]
GK12P	61.456	69	166	0.308	0.00056
GK15P	906.928	464	210	2.28	0.00148
GK20P	1.014.968	464	250	2.48	0.00148
GK25P	5.525.250	4.708	356	6.24	0.0051
					32

Dimensions (mm)

,		
	А	В
E-SMART 30	42	-
E-SMART 50	62	-
E-SMART 80	92	40
E-SMART 100	120	50
		T 1 00

Fixing brackets

T-nuts

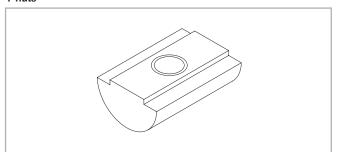


Fig. 15 Steel nuts to be used in the slots of the body.

Fig. 16

Dimensions (mm)

	С	Н	L	D	Cod. Rollon
E-SMART 30	16	17.5	50	M5	1001490
E-SMART 50	16	26.9	50	M5	1000097
E-SMART 80	16	20.7	50	M5	1000111
E-SMART 100	31	28.5	100	M10	1002377
					Tab. 34

Units (mm)

	Hole	Length	Cod. Rollon
E-SMART 30	M5	20	6000436
E-SMART 50	M6	20	6000437
E-SMART 80	M6	20	6000437
E-SMART 100	M6	20	6000437

Tab. 35

Proximity

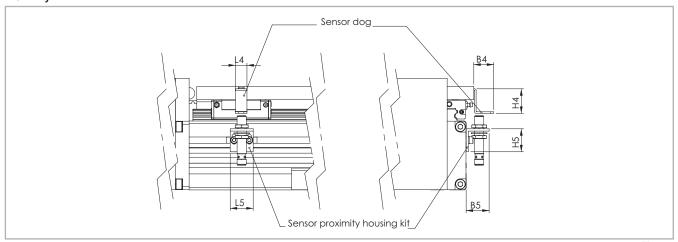
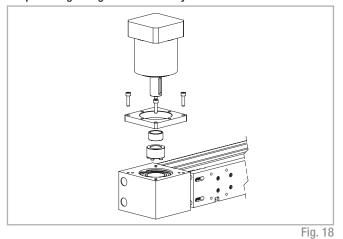
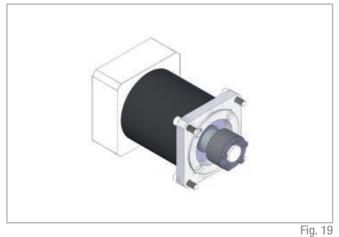


Fig. 17

Sensor proximity housing kit

Aluminum block equipped with T-nuts for fixing


Sensor dog

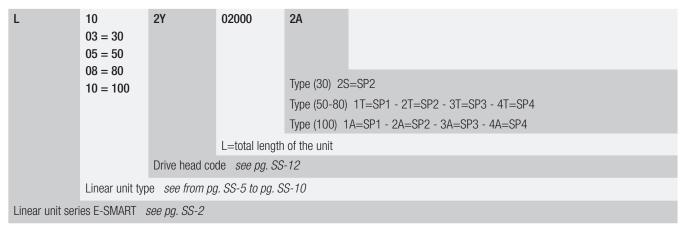

Iron plate mounted on the carriage used for the proximity operation

Units (mm)

Ollito (Illili)									
	B4	B5	L4	L5	Н4	Н5	For proximity	Sensor dog code	Sensor proximity kit code
E-SMART 30	30	30	30	30	15	30	Ø 8	G000847	G000901
E-SMART 50	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 80	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 100	26	30	15	30	32	30	Ø 8	G000833	G000838

Adapter flange for gearbox assembly

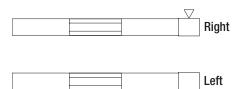
Assembly kit includes: shrink disk; adapter plate; fixing hardware


Unit Gearbox type **Kit Code** (not included) type MP053 G000356 LC050; LP050; PE2 G000357 E-SMART 30 SW030 G000383 MP060; PLE60 G000852 E-SMART 50 LC070; MPV00; LP070; PE3 G000853 SW040 G000854 Р3 G000824 MP080 G000826 LC090; MPV01; LP090; PE4 G000827 MP105 G000830 E-SMART 80 PE3; LP070; LC070 G001078 SP075; PLN090 G000859 SP060; PLN070 G000829 SW040 G000866 SW050 G000895 MP130 G000482 LC120; MPV02; LP120; PE5 G000483 E-SMART 100 LC090; PE4; LP090 G000525 MP105 G000527 G000717 SW050

Tab. 37

For other gearbox type ask Rollon

Ordering key / ~


Identification codes for the E-SMART linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

R-SMART series / V

R-SMART series description

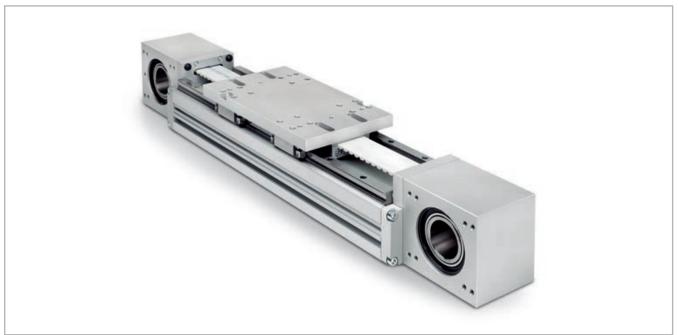


Fig. 20

R-SMART

The R-SMART series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting, and operation in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in three sizes ranging from 120 to 220 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Also featured is a dual rail system with four or more recirculating ball bearing runner blocks. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary system maintenance.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards.

sion characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmis-

Carriage

The carriage of the Rollon SMART series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 38

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10-0	90
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	70	23.8	200	880-900	33	600-655

Tab. 39

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	-
250	200	10	75

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

R-SMART section

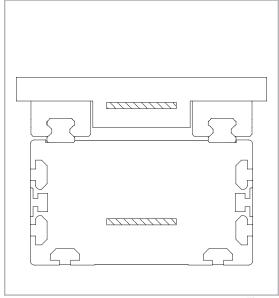
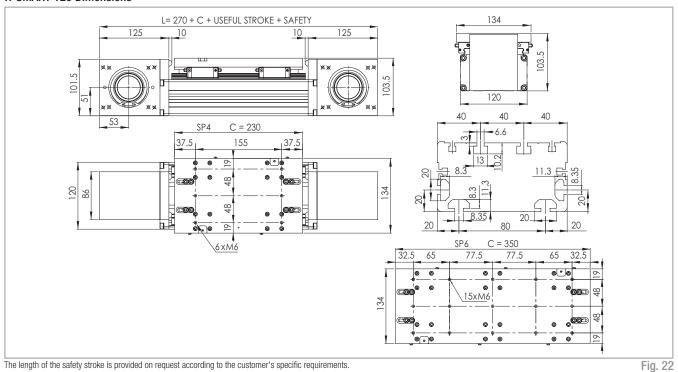



Fig. 21

R-SMART 120 SP4 - SP6

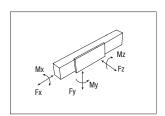
R-SMART 120 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре		
	R-SMART 120 SP4	R-SMART 120 SP6	
Max. useful stroke length [mm]*1	6050	5930	
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	
Max. speed [m/s]	4.0	4.0	
Max. acceleration [m/s²]	50	50	
Type of belt	40 AT 10	40 AT 10	
Type of pulley	Z 21	Z 21	
Pulley pitch diameter [mm]	66.84	66.84	
Carriage displacement per pulley turn [mm]	210	210	
Carriage weight [kg]	3	4	
Zero travel weight [kg]	12.9	15	
Weight for 100 mm useful stroke [kg]	0.9	0.9	
Starting torque [Nm]	1.95	2.3	
Moment of inertia of pulleys [g \cdot mm²]	1.054.300	1.054.300	
Rail size [mm]	15	15	
1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means		Tab. 4	

^{*1)} It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means of special Rollon joints.
*2) Positioning repeatability is dependent on the type of transmission used.

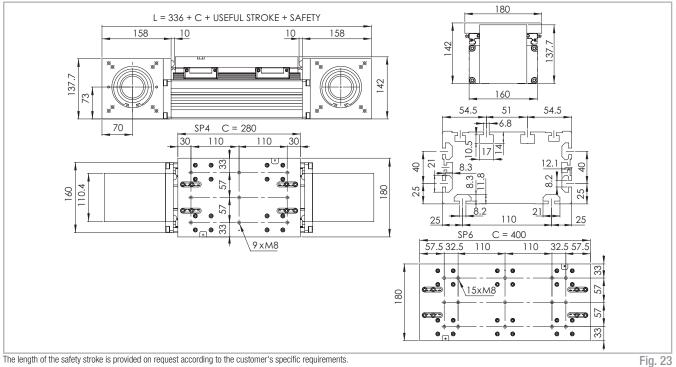

Moments of inertia of the aluminum body						
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]			
R-SMART 120 SP	0.108	0.367	0.475			
			Tab. 42			

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R-SMART 120 SP	40 AT 10	40	0.23
B !!! !! ! ! ! !	1 445 (00	4)	Tab. 43

Belt length (mm) = $2 \times L - 115$ (SP4) 2 x L - 235 (SP6)



R-SMART 120 - Load capacity

Туре	F [t	: N]	F [N	Ĭ	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 120 SP4	3154	2090	96800	45082	96800	4453	6244	6244
R-SMART 120 SP6	3154	2090	145200	67623	145200	6679	11906	11906

R-SMART 160 SP4 - SP6

R-SMART 160 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

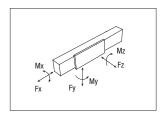
Technical data

	Ту	ре
	R-SMART 160 SP4	R-SMART 160 SP6
Max. useful stroke length [mm]*1	6000	5880
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.4	7.5
Zero travel weight [kg]	24.4	27.9
Weight for 100 mm useful stroke [kg]	1.75	1.75
Starting torque [Nm]	3.4	3.95
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390
Rail size [mm]	20	20
*1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means	of special Rollon joints	Tab. 45

¹⁾ It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means of special Rollon joints *2) The positioning repeatability depends upon the type of transmission used

R-SMART 160 SP4 - R-SMART 160 SP6 - Load capacity

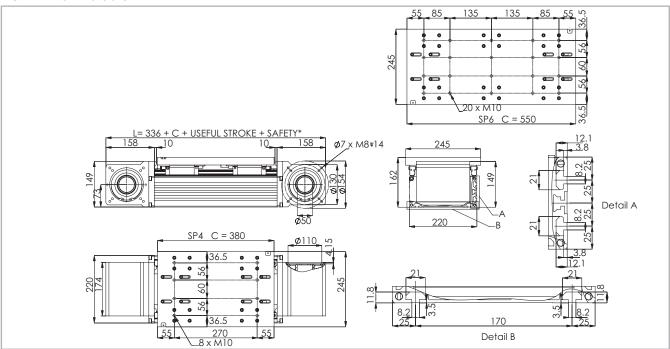
Moments of inertia of the aluminum body


		•	
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 160 SP	0.383	1.313	1.696
			Tab. 46

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
R-SMART 160 SP	50 AT 10	50	0.29


Tab. 47

Туре	F [I	: X N]	F [N	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 160 SP4	4980	3390	153600	70798	153600	8909	12595	12595
R-SMART 160 SP6	4980	3390	230400	106197	230400	13363	21427	21427

R-SMART 220 SP4- SP6

R-SMART 220 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

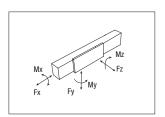
Fig. 24

Technical data

	Туре			
	R-SMART 220 SP4	R-SMART 220 SP6		
Max. useful stroke length [mm]*1	5900	5730		
Max. positioning repeatability [mm]*2	± 0.05	± 0.05		
Max. speed [m/s]	4.0	4.0		
Max. acceleration [m/s ²]	50	50		
Type of belt	100 AT 10	100 AT 10		
Type of pulley	Z 32	Z 32		
Pulley pitch diameter [mm]	101.86	101.86		
Carriage displacement per pulley turn [mm]	320	320		
Carriage weight [kg]	12.1	16.95		
Zero travel weight [kg]	41.13	49.93		
Weight for 100 mm useful stroke [kg]	2.45	2.45		
Starting torque [Nm]	4.3	7		
Moment of inertia of pulleys [g · mm²]	12.529.220	12.529.220		
Rail size [mm]	25	25		
*1) It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means	of special Rollon joints.	Tab. 49		

^{*1)} It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means of special Rollon joints. *2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body


Туре	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
R-SMART 220 SP	0.663	3.658	4.321
			Tah 50

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	[kg/m]
R-SMART 220 SP	100 AT 10	100	0.58

Tab. 51

R-SMART 220 SP4 - R-SMART 220 SP6 - Load capacity

Туре	F _x [N]		F _y [N]		F _z M _x [Nm]		M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 220 SP4	9960	7380	258800	116833	258800	21998	28468	28468
R-SMART 220 SP6	9960	7380	388200	175249	388200	32997	50466	50466

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.

This system guarantees a long interval between maintenances: SP version: every 2000 Km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

R-SMART

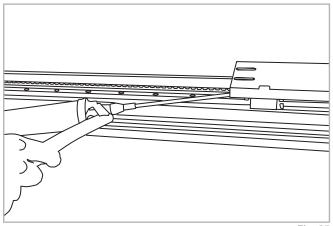
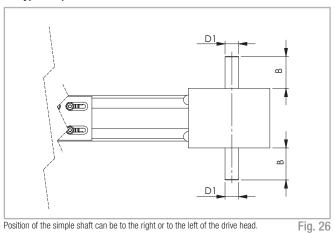


Fig. 25


Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease [cm³]
R-SMART 120	0.7
R-SMART 160	1.4
R-SMART 220	2.4

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Units (mm)

Applicable to unit	Shaft type	В	D1	AS assembly kit code
R-SMART 120	AS 20	36	20h7	G000828
R-SMART 160	AS 25	50	25h7	G000649
R-SMART 220	AS 25	50	25h7	G000649

Tab. 54

Hollow shaft

Hollow shaft type FP - Standard supply

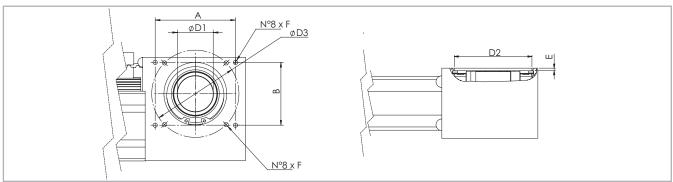


Fig. 27

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	АхВ	Drive head code
R-SMART 120	FP 41	41H7	72	100	3.5	M6	92x72	2Y
R-SMART 160	FP 50	50H7	95	130	3.5	M8	109x109	2Y
R-SMART 220	FP 50	50H7	110	130	4	M8	109x109	2Y

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices.

Accessories

Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

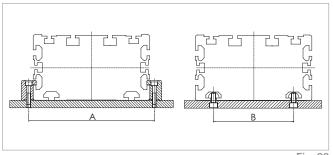


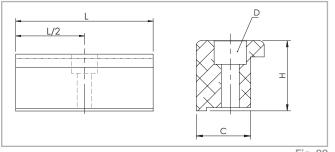
Fig. 28

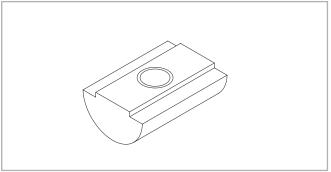
Units (mm)

	А	В
R-SMART 120	132	80
R-SMART 160	180	110
R-SMART 220	240	170

Tab. 56

Fixing brackets




Fig. 29

Dimensions (mm)

	С	Н	L	D	Code Rollon
R-SMART 120	16	20.7	50	M5	1000111
R-SMART 160	31	28.5	100	M10	1002377
R-SMART 220	31	28.5	100	M10	1002377

Tab. 57

T-nuts

Steel nuts to be used in the slots of the body.

Fig. 30

Units (mm)

	Hole	Length	Code Rollon
R-SMART 120	M6	20	6000437
R-SMART 160	M6	20	6000437
R-SMART 160	M8	20	6001544
R-SMART 220	M6	20	6000437
R-SMART 220	M8	20	6001544

Proximity

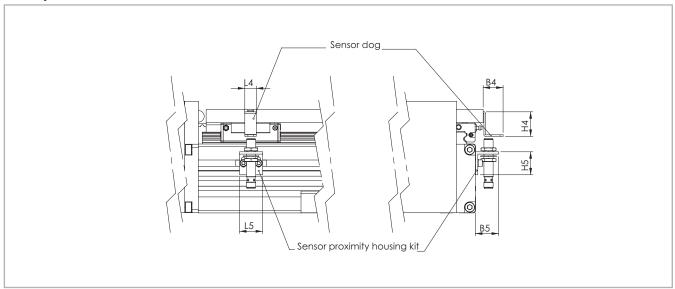


Fig. 31

Sensor proximity housing kit

Aluminum block equipped with T-nuts for fixing

Sensor dog

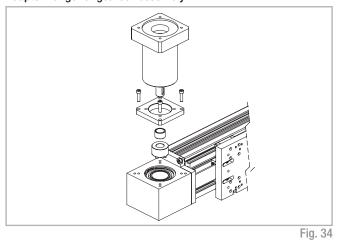
Iron plate mounted on the carriage used for the proximity operation

Units (mm)

	В4	B5	L4	L5	Н4	Н5	For proximity	Sensor dog	Sensor proximity housing kit
R-SMART 120	26	30	15	30	32	30	Ø 8	G000833	G000844
R-SMART 160	26	30	15	30	32	30	Ø 8	G000833	G000838
R-SMART 220	26	30	15	30	32	30	Ø 8	G000833	G000838

Assembly kits

For the direct assembly of R-SMART linear units on other types of actuators Rollon offers dedicated assembly kits. The table below shows the allowed


	Kit	Code	X No rail at each end (mm)
1	R-SMART 120 on E-SMART 50	G000899*	60
1	R-SMART 120 on E-SMART 80	G000863*	90
1-	R-SMART 160 on E-SMART 80	G000902*	90
1-	R-SMART 160 on E-SMART 100	G000903*	110
	R-SMART 220 on E-SMART 100	G001207	110

^{*} Additional fixing holes are requested on the E-SMART plate.

combinations as well as the assembly kit codes.

Tab. 60

Adapter flange for gearbox assembly

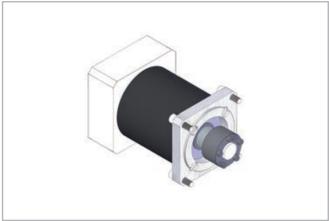
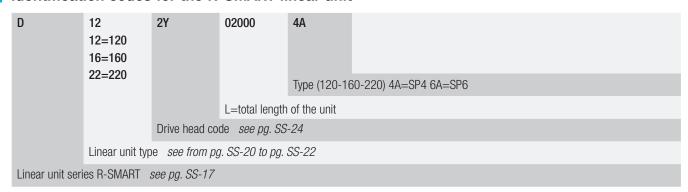


Fig. 35

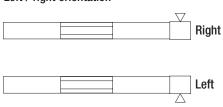
Assembly kit includes: shrink disk; adapter plate; fixing hardware


Unit type	Gearbox type (not included)	Kit Code
	P3	G000824
	MP080	G000826
	LC90; MPV01; LP090; PE4	G000827
R-SMART 120	MP105	G000830
n-SWANT 120	PE3; LP070; LC070	G001078
	SP060; PLN070	G000829
	SP070; PLN090	G000859
	SW040	G000866
	MP130	G000482
	LC120; MPV02; LP120; PE5	G000483
R-SMART 160	LC090; LP090; PE4	G000525
n-SIVIANT 100	MP105	G000527
	SP075; PLN090	G000526
	SW050	G000717
	MP130	G001045
R-SMART 220	MP105	G001047
	LC120; MPV02; LP120; PE5	G001049

Tab. 61

For other gearbox type ask Rollon

Ordering key / ~


Identification codes for the R-SMART linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

S-SMART series / V

S-SMART series description

Fig. 36

S-SMART

The S-SMART series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the aluminum profile must be moving and the carriage must be fixed.

The self-supporting extruded and anodized aluminum structure is available in three sizes. Since it is a rigid system, it is ideal for a "Z" axis in a 3-axis system by using a linear guide rail.

In addition, the S-SMART series has been specifically designed and configured to be easily assembled with the R-SMART series by using a simple bracket.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards.

characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission

Carriage

The carriage of the Rollon SMART series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 62

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	12 . III . 10 °	U
2.7	70	23.8	200	880-900	33	600-655

Tab. 63

Mechanical characteristics

	Rm	Rp (02)	А	НВ					
	N mm ²	$\frac{N}{mm^2}$	%	_					
	250	200	10	75					

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART System series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on pre-loaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

S-SMART section

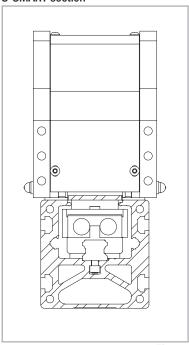
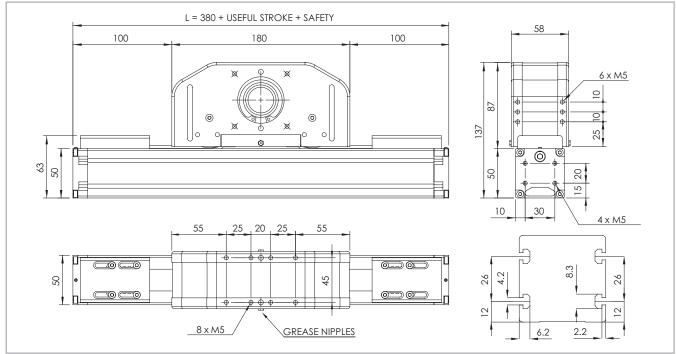



Fig. 37

S-SMART 50 SP

S-SMART 50 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

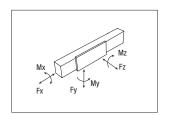
Fig. 38

Technical data

	Туре
	S-SMART 50 SP
Max. useful stroke length [mm]	1000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2
Zero travel weight [kg]	5.7
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.25
Rail size [mm]	12 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 65

S-SMART	50 SP -	Load	capacity	/

Moments of inertia	of	the	alumiı	num body

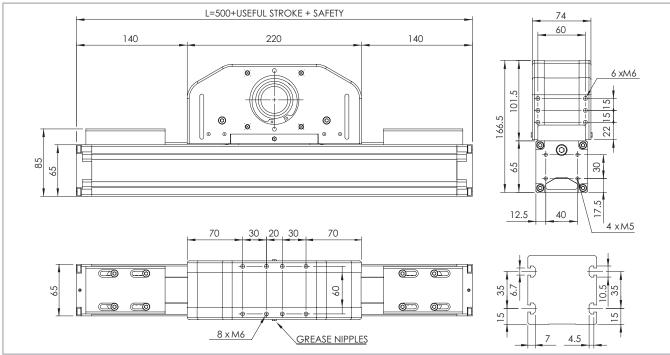

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
S-SMART 50 SP	0.025	0.031	0.056
			Tab. 66

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 50 SP	22 AT 5	22	0.072
			Tab. 67

Belt length (mm) = L + 30



Туре	F [t	: × V]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 50 SP	809	508	7060	6350	7060	46.2	233	233

See verification under static load and lifetime on page SL-2 and SL-3

S-SMART 65 SP

S-SMART 65 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 39

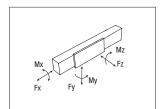
Technical data

	Туре
	S-SMART 65 SP
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	3.6
Zero travel weight [kg]	7.3
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	0.60
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 69

S-SMART 65 SP - Load capacity

32 AT 5	Тур
Z 32	.76
50.93	S-S
100	3-3

Belt length (mm) = L + 35

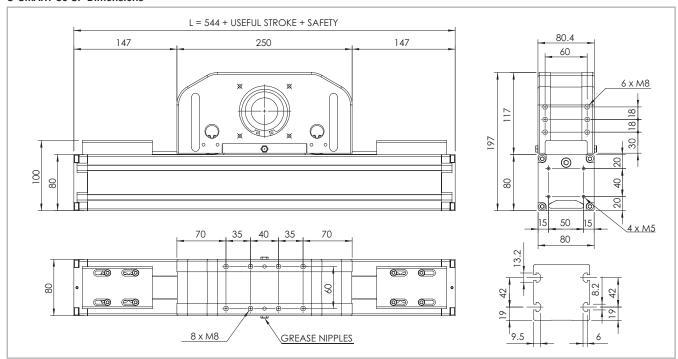

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
S-SMART 65 SP	0.060	0.086	0.146
			Tab. 70

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 65 SP	32 AT 5	32	0.105
			Tab. 71


Туре	F [I	: X V]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 65 SP	1344	960	30560	19890	30560	240	1213	1213

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 72

S-SMART 80 SP

S-SMART 80 SP Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 40

Technical data

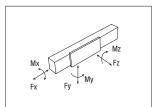
	Туре
	S-SMART 80 SP
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.85
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	6.3
Zero travel weight [kg]	12.6
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.65
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 73

S-SMART 80 SP - Load capacity

Туре	F [1	x N]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 80 SP	2523	1672	51260	36637	51260	520	3742	3742

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
S-SMART 80 SP	0.136	0.195	0.331
			Tab. 74

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 80 SP	32 AT 10	32	0.186
			Tab. 75

Belt length (mm) = L + 50

Lubrication

SP linear units with ball bearing guides

The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 2000 Km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

S-SMART

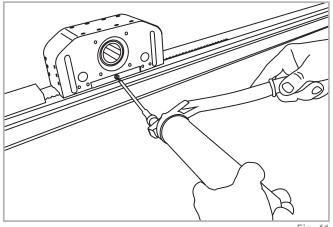
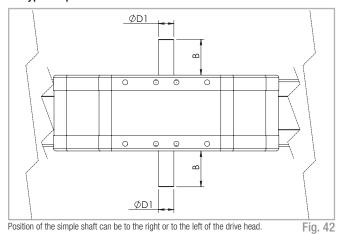


Fig. 41

Quantity of lubricant necessary for re-lubrication for each block:


Туре	Quantity of Grease (cm³)
S-SMART 50	2
S-SMART 65	0.2
S-SMART 80	0.5

Tab. 77

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Units (mm)

Applicable to unit	Shaft type	В	D1	AS Assembly kit code
S-SMART 50	AS 12	26	12h7	G000652
S-SMART 65	AS 15	35	15h7	G000851
S-SMART 80	AS 20	40	20h7	G000828

Tab. 78

Hollow shaft

Hollow shaft type FP - Standard supply

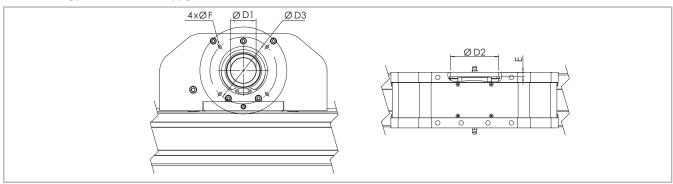


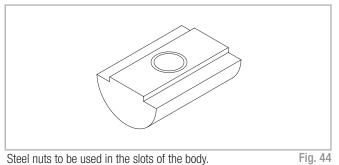
Fig. 43

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	Е	F	Drive head code
S-SMART 50	FP 26	26H7	47	75	2.5	M5	2YA
S-SMART 65	FP 34	34H7	62	96	2.5	M6	2YA
S-SMART 80	FP 41	41H7	72	100	5	M6	2ZA

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices.


Tab. 79

Accessories

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

T-nuts

Steel nuts to be used in the slots of the body.

Units (mm)

	Hole	Length	Code Rollon
S-SMART 50	M4	8	1001046
S-SMART 65	M5	10	1000627
S-SMART 80	M6	13	1000043

Tab. 80

Proximity

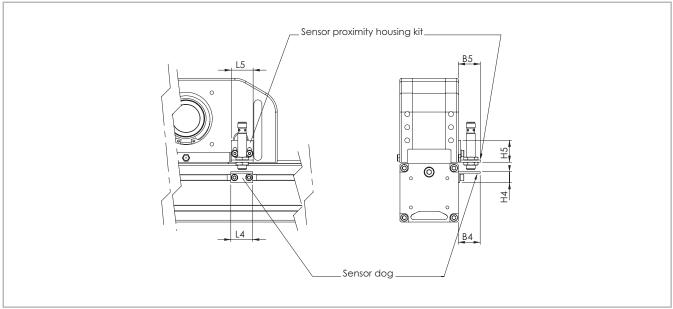
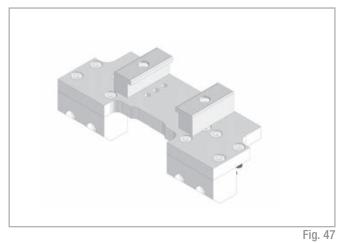


Fig. 45

Proximity switch holder

Aluminum block equipped with T-nuts for fixing

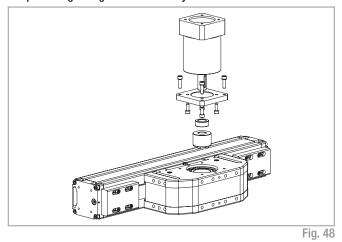
Proximity switch runner

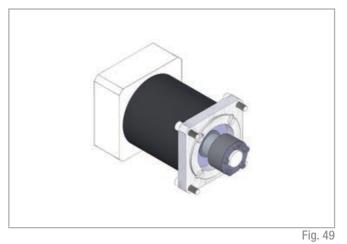

Iron plate mounted on the carriage used for the proximity operation

Units (mm)

	В4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing code
S-SMART 50	30	30	30	30	15	30	Ø8/Ø12	G000835	G000834 / G001408
S-SMART 65	30	30	30	30	15	30	Ø8/Ø12	G000836	G000834 / G001408
S-SMART 80	30	30	30	30	15	30	Ø8/Ø12	G000837	G000834 / G001408

Assembly kits


While ordering two units for Y-Z assembly key has to be specified that they work together in order to drill the trolleys for the assembly of the kit.

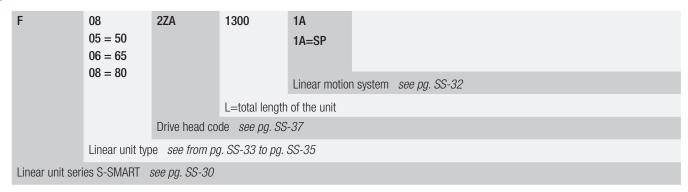

	Actuator combination Y-Z	Kit Code
A CONTRACTOR OF THE PARTY OF TH	S-SMART 50 on E-SMART 50	G000647
	S-SMART 50 on R-SMART 120	G000910
19-07	S-SMART 65 on E-SMART 50	G000654
A CONTRACTOR OF THE PARTY OF TH	S-SMART 65 on E-SMART 80	G000677
	S-SMART 65 on R-SMART 120	G000911
	S-SMART 65 on R-SMART 160	G000912
1907	S-SMART 80 on E-SMART 80	G000653
A CONTRACTOR	S-SMART 80 on E-SMART 100	G000688
	S-SMART 80 on R-SMART 120	G000990
	S-SMART 80 on R-SMART 160	G000913

Tab. 82

For examples of S-Smart on E-Smart see page SS-42

Adapter flange for gearbox assembly

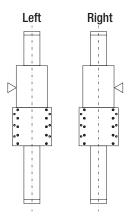
Assembly kit includes: shrink disk; adapter plate; fixing hardware


Unit	Gearbox type (not included)	Kit Code
S-SMART 50	MP060	G000566
S-SIVIANT 50	LC050; PE2; LP050	G001444
	MP080	G000529
S-SMART 65	MP060; PLE060	G000531
S-SIVIANT 00	SW030	G000748
	PE3; LP070; LC070	G000530
	P3	G000824
	MP080	G000826
	LC090; MPV01; LP090; PE4	G000827
S-SMART 80	PLE080	G000884
	SP060; PLN070	G000829
	SW040	G000866
	SW050	G000895

Tab. 83

For other gearbox type ask Rollon

Ordering key /


Identification codes for the S-SMART linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Multiaxis systems / V

Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axes. Rollon now offers a set of components, including brackets and plates, to enable multiaxis units to be built.

In addition to the standard elements, Rollon can supply plates for special applications.

Application examples:

One axis system

A - X Axis: E-SMART

Two axis Y-Z system

C - Linear units: Y Axis 2 E-SMART - Z Axis 1 S-SMART Connection kit: Connection plate Kit for S-SMART (Z axis) on 2 E-SMART (Y axis)

Two parallel axis system

B - Linear units: 2 E-SMART

Connection kit: Parallel Kit

Three axis - X-Y-Z system

D - Linear units: X Axis 2 E-SMART - Y Axis 2 E-SMART - Z Axis 1 S-SMART Connection kit: 2 fixing brackets Kit for 2 E-SMART (X axis) on 2 E-SMART (Y axis). Connection plate Kit for S-SMART (Z axis) on 2 E-SMART (Y axis). Parallel Kit

Two axis Y-Z system

E - Linear units: Y Axis 1 R-SMART - Z Axis 1 S-SMART **Connection kit:** Connection plate Kit for S-SMART (Z axis) on R-SMART (Y axis).

Three axis X-Y-Z system

F - Linear units: X Axis 2 E-SMART - Y Axis 1 R-SMART - Z Axis 1 S-SMART

Connection kit: 2 fixing brackets Kit for 2 R-SMART (Y axis) on
2 E-SMART (X axis). Connection plate Kit for S-SMART (Z axis) on
2 R-SMART (Y axis). Parallel Kit

ECO series /

ECO series description

Fig. 1

The ECO SYSTEM units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Three different sizes available: 60mm, 80mm, 100mm
- Version available with recirculating ball bearing or roller rails
- Reduced weight ensured by the light frame and the aluminum sliders
- High sliding speed

The ECO SYSTEM series actuators are offered with two motion systems:

ECO SYSTEM - SP

Featuring a maintenance free recirculating linear guide rail fitted inside the profile.

ECO SYSTEM - CI

Featuring four rollers with a Gothic arch outer profile sliding on hardened steel bars placed inside the profile.

The components

Extruded bodies

The anodized aluminum extrusion used for the profile of the Rollon ECO series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complant with EN 755-9 standards.

Driving belt

The Rollon ECO series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

Carriage

The carriage of the Rollon ECO series linear units is made of anodized aluminum. Two different length carriages are available for each type of linear unit.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10 ⁻⁶	W 	J	Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

ECO...SP with ball bearing guides

- A ball bearing guide with high load capacity is mounted in a dedicated seat on the inside of the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance Free (dependent on application)
- Low noise
- Suitable for long stroke

ECO...Cl with gothic arch bearing guides inside the body

- Two hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with six bearing assemblies each having a gothic arch groove machined into its outer race to run on the steel rods.
- The six bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted on the ends of the carriage.
- The driving belt is supported by the entire length of the profile in order to avoid deflection as well as to protect the linear guide.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)

ECO SP

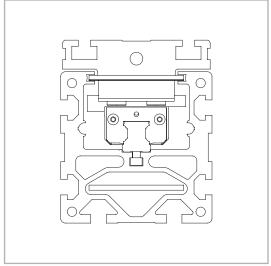


Fig. 2

ECO CI

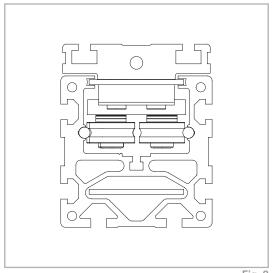
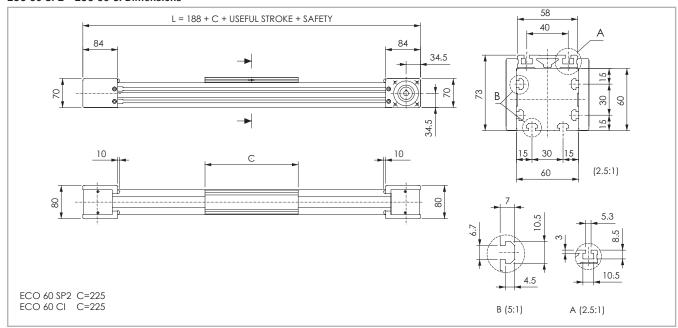



Fig. 3

ECO 60 SP2 - ECO 60 CI

ECO 60 SP2 - ECO 60 CI Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

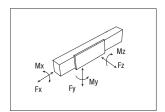
Technical data

	Туре		
	ECO 60 SP2	ECO 60 CI	
Max. useful stroke length [mm]	3700	6000	
Max. positioning repeatability [mm]*1	± 0.05	± 0.05	
Max. speed [m/s]	4.0	1.5	
Max. acceleration [m/s ²]	50	1.5	
Type of belt	32 AT 5	32 AT 5	
Type of pulley	Z 28	Z 28	
Pulley pitch diameter [mm]	44.56	44.56	
Carriage displacement per pulley turn [mm]	140	140	
Carriage weight [kg]	0.51	0.80	
Zero travel weight [kg]	3.5	3.2	
Weight for 100 mm useful stroke [kg]	0.45	0.68	
Starting torque [Nm]	0.24	0.32	
Moment of inertia of pulleys [g mm ²]	163000	163000	
Rail size [mm]	12 mini	Ø6	
*1) Positioning repeatability is dependant on the type of transmission use	ed	Tab. 4	

^{*1)} Positioning repeatability is dependant on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ECO 60	0.037	0.054	0.093
			Tab. 5

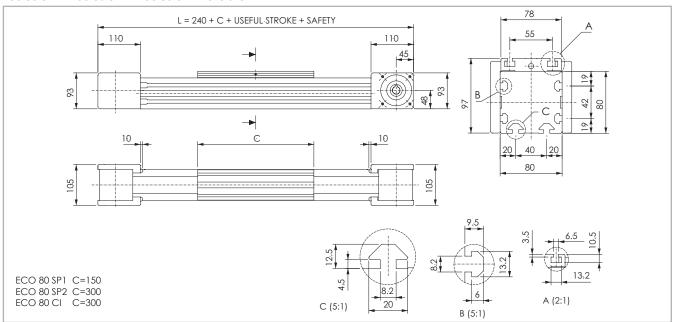

Driving belt

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ECO 60	32 AT 5	32	0.105

Tab. 6

Belt length (mm) $SP2/CI = 2 \times L - 166$


ECO 60 SP2 - ECO 60 CI - Load capacity

Туре	F [t	: X N]	F [I	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 60 SP2	1344	922	7060	6350	7060	46.2	325	325
ECO 60 CI	1344	922	1648	3072	1110	24.4	33	76.2

See verification under static load and lifetime on page SL-2 and SL-3

ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI

ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

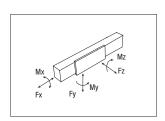
Technical data

		Туре	Туре		
	ECO 80 SP2	ECO 80 SP1	ECO 80 Cl		
Max. useful stroke length [mm]	6000	6000	6000		
Max. positioning repeatability [mm]*1	± 0.05	± 0.05	± 0.05		
Max. speed [m/s]	5.0	5.0	1.5		
Max. acceleration [m/s²]	50	50	1.5		
Type of belt	50 AT 5	50 AT 5	50 AT 5		
Type of pulley	Z 37	Z 37	Z 37		
Pulley pitch diameter [mm]	58.89	58.89	58.89		
Carriage displacement per pulley turn [mm]	185	185	185		
Carriage weight [kg]	1.6	0.9	2.1		
Zero travel weight [kg]	7.7	5.9	8.2		
Weight for 100 mm useful stroke [kg]	0.8	0.8	0.65		
Starting torque [Nm]	0.75	0.75	0.75		
Moment of inertia of pulleys [g mm²]	706000	706000	706000		
Rail size [mm]	15	15	Ø6		
*1) Positioning repeatability is dependant on the type of transmission u	sed		Tab. 8		

Moments of inertia of the aluminum body

Туре	l _x	l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ECO 80	0.117	0.173	0.280

Tab. 9

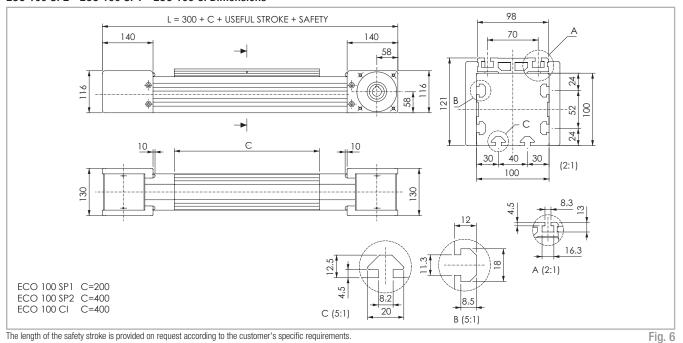

Driving belt

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ECO 80	50 AT 5	50	0.164

Tab. 10

Belt length (mm) SP2/CI = $2 \times L - 240$ **SP1**= $2 \times L - 90$


ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI - Load capacity

Туре	F _x	[N]	F_{y}	[N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 80 SP2	2100	1440	48400	22541	48400	320	3412	3412
ECO 80 SP1	2100	1440	24200	11271	24200	160	175	175
ECO 80 CI	2100	1770	4229	8731	2849	83	129	297

See verification under static load and lifetime on page SL-2 and SL-3

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Туре	_x	_y	lր
	[10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]	[10 ⁷ mm⁴]
ECO 100	0.342	0.439	0.781

Tab. 13

Technical data

	Туре			
	ECO 100 SP2	ECO 100 SP1	ECO100 Cl	
Max. useful stroke length [mm]	6000	6000	6000	
Max. positioning repeatability [mm]*1	± 0.05	± 0.05	± 0.05	
Max. speed [m/s]	5.0	5.0	1.5	
Max. acceleration [m/s²]	50	50	1.5	
Type of belt	50 AT 10	50 AT 10	50 AT 10	
Type of pulley	Z 24	Z 24	Z 24	
Pulley pitch diameter [mm]	76.39	76.39	76.39	
Carriage displacement per pulley turn [mm]	240	240	240	
Carriage weight [kg]	2.9	1.5	3.3	
Zero travel weight [kg]	16.7	12.5	17.1	
Weight for 100 mm useful stroke [kg]	1.3	1.3	1.1	
Starting torque [Nm]	1.90	1.35	1.35	
Moment of inertia of pulleys [g mm²]	2070000	2070000	2070000	
Rail size [mm]	20	20	Ø10	
*1) Positioning repeatability is dependant on the type of transmission u	sed		Tab. 12	

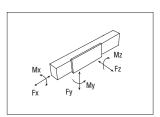
$\ensuremath{^{\star}}\xspace1)$ Positioning repeatability is dependant on the type of transmission used

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI - Load capacity

Туре	F _x	[N]	F_{y}	[N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 100 SP2	4565	2832	76800	35399	76800	722	7603	7603
ECO 100 SP1	4565	2832	38400	17700	38400	361	334	334
ECO 100 CI	4565	3740	9154	20079	6167	214	310	962
Con varification under static	lood and lifetim	o on nogo Cl	0 and CL 0					T-1-45

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body


Туре	I _x	l _y	I _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ECO 100	0.342	0.439	0.781

Driving belt

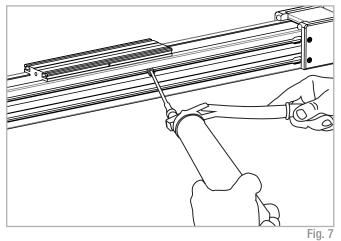
The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
ECO 100	50 AT 10	50	0.290

Belt length (mm) SP1 =
$$2 \times L - 112$$
 SP2/Cl = $2 \times L - 312$

Lubrication

ECO linear units with ball bearing guides

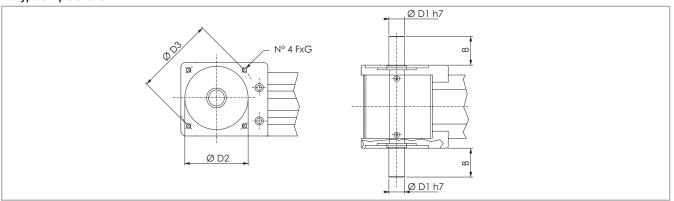

ECO linear are equipped with self lubricating linear ball guides.

The ball bearing carriages of the ECO series are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

EC0


Quantity of lubricant necessary for re-lubrication:

Туре	Unit: [cm³]
ECO 60	1
ECO 80	1.4
ECO 100	2.8

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Simple shafts

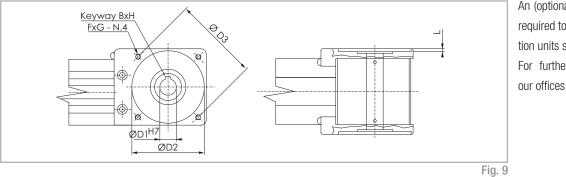
AS type simple shafts

Position of the simple shaft can be to the left or right of the drive head.

Fig. 8

Dimensions (mm)

Applicable to unit	Shaft type	D1	D2	D3	В	F	G	Head code AS left	Head code AS right
ECO 60	AS 12	12	60	75	25	M5	12	2G	21
ECO 80	AS 20	20	80	100	36.5	M6	16	2G	21
ECO 100	AS 25	25	110	130	50	M8	20	2G	21

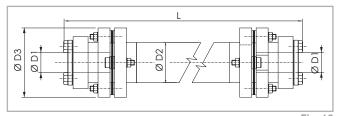

Tab. 17

Hollow shafts

Transmission of torque to the drive pulley

Torque is transmitted to the drive pulley from a hollow shaft and keyway. This system may create backlash in the case of alternating loads and high level acceleration. For further information, contact our offices.

Hollow shaft


An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information, contact

Unit	Shaft type	D1	D2	D3	L	Key way BxH	F	G	Drive head code
ECO 60	AC 12	12H7	60	75	3.5	4 x 4	M5	12	2A
ECO 80	AC 19	19H7	80	100	3.5	6 x 6	M6	16	2A
ECO 100	AC 25	25H7	110	130	4.5	8 x 7	M8	20	2A

Linear units in parallel

Synchronisation kit for use of ECO linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.

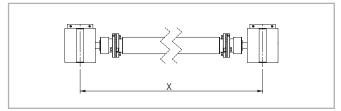


Fig. 10

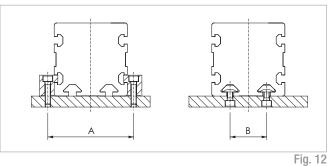
Fig. 11

Unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
ECO 60	AP 12	12	25	45	GK12P1A	L= X-88 [mm]
ECO 80	AP 20	20	40	69.5	GK20P1A	L= X-116 [mm]
ECO 100	AP 25	25	70	99	GK25P1A	L= X-165 [mm]

Tab. 19

Accessories

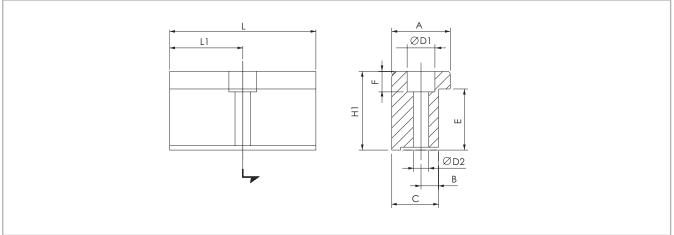
Fixing by brackets


The linear motion systems used for the Rollon ECO series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend use of the dedicated T-slots in the aluminum extruded bodies as shown below.

Moment of inertia [g mm 2] C1 + C2 · (X-Y)

	C1	C2	Υ		t [Kg] · (X-Y)	
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]	
GK12P	61.456	69	166	0.308	0.00056	
GK15P	906.928	464	210	2.28	0.00148	
GK20P	1.014.968	464	250	2.48	0.00148	
GK25P	5.525.250	4.708	356	6.24	0.0051	


Tab. 20

	E	U

Unit	A (mm)	B (mm)
ECO 60	72	30
ECO 80	94	40
ECO 100	120	40

Fixing brackets

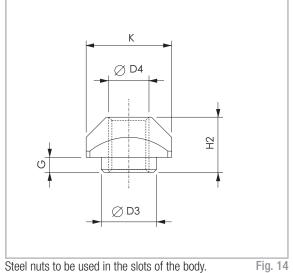

Anodized aluminum block for fixing the linear units through the side slots of the body

Fig. 13

Unit	А	H1	В	С	E	F	D1	D2	L	Lt	Code
ECO 60	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ECO 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ECO 100	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233

Tab. 22

T-nuts

Steel nuts to be used in the slots of the body.

Dimensions (mm)

Unit		D3	D4	G	H2	K	Code
ECO 60	S	6.7	M5	2.3	6.5	10	1000627
ECO 60	С	-	M5	-	5	10	1000620
ECO 80	S	8	M6	3.3	8.3	13	1000043
ECO 80	С	-	M6	-	5.8	13	1000910
ECO 80	L	-	M6	-	6.5	17	1000911
ECO 100	S	11	M8	3	11	17	1000932
ECO 100	C	-	M8	-	8	16	1000942
ECO 100	L	-	M8	-	6.5	17	1000943

 $\mathbf{S} = \mathsf{Side} - \mathbf{C} = \mathsf{Carriage} - \mathbf{L} = \mathsf{Lower}$

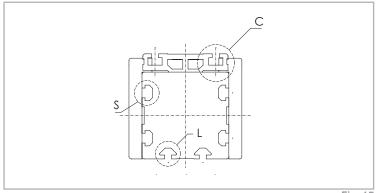


Fig. 15

Proximity

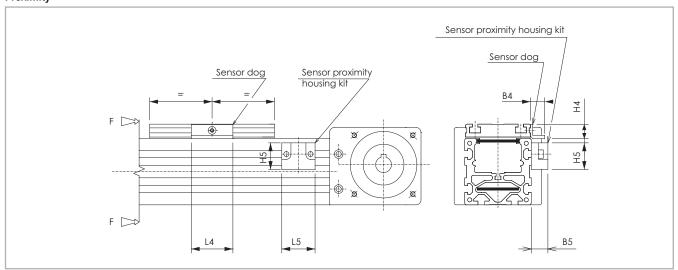
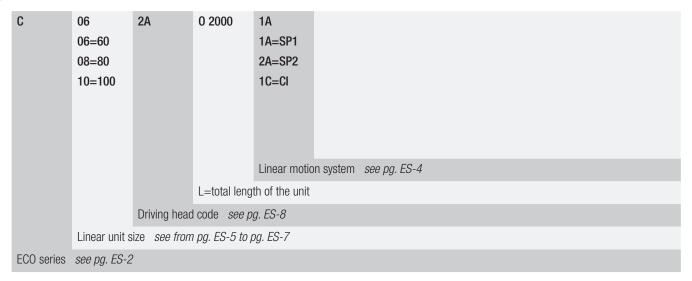


Fig. 16

Sensor proximity housing kit

Anodized aluminum block, red colour, equipped with T-nuts for fixing into the body slots.

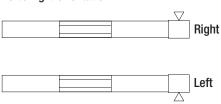
Sensor dog


L-shaped bracket in zinc-plated iron, mounted on the carriage and used for the proximity switch operation.

Unit	В4	B5	L4	L5	Н4	Н5	For proximity	Sensor dog Code	Sensor proximity housing kit code
ECO 60	9.5	14	25	29	12	22.5	Ø 8	G000268	G000213
ECO 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ECO 100	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

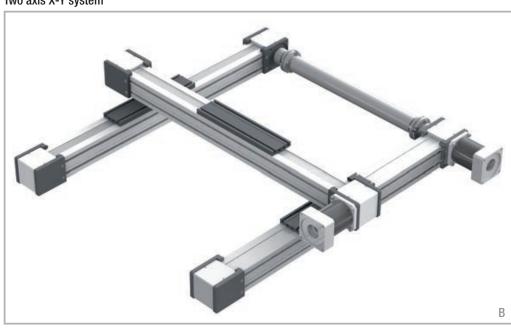
Ordering key / ~


Identification codes for the ECO linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Multiaxis systems / ~


Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axis. Rollon now offers a set of fittings including brackets and cross plates to enable multiaxis units to be built. In addition to standard elements, Rollon also provides plates for special applications.

ECO axis system

A - Linear units: X axis 1 ECO 80

Two axis X-Y system

B - Linear units: X axis: 2 ECO 80 - Y axis 1 ECO 80

Connection kit: 2 Kits of fixing brackets for the ECO 80 unit (Y axis) on the carriages of the ECO 80 units (X axis).

Uniline System

Uniline A series / ~

Uniline A series description

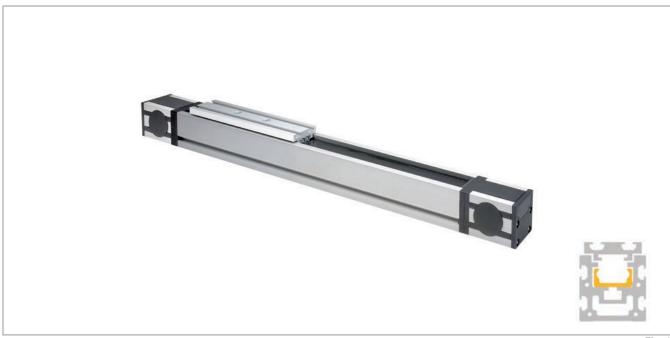


Fig. 1

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the A series, the fixed bearing rail (T-rail) is mounted horizontally in the aluminum profile. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]: Type A: 40, 55, 75
- Length and stroke tolerances:

 For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in)

 For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline A series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon Uniline A series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

Carriage

The carriage of the Rollon Uniline A series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element (size 40 has threded holes). Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

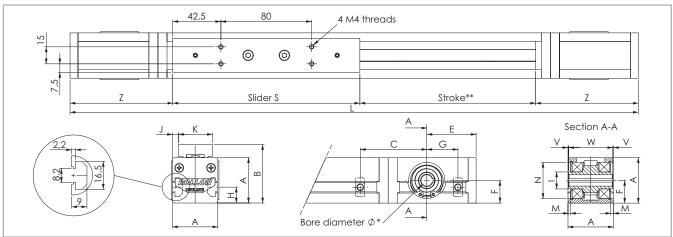
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg —	kN —	10-6		J	Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655


Tab. 2

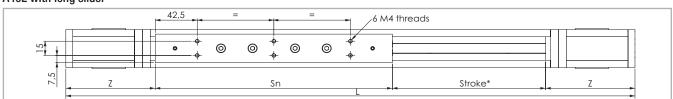
Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
205	165	10	60-80

> A40

A40 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 2

Туре	A [mm]	B [mm]	C* [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
A40	40	51.5	57	43.5	20	26	14	Ø 14,9	5	30	2.3	Ø 32	165	0.5	39	91.5	1900

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff

Tab. 4

A40L with long slider

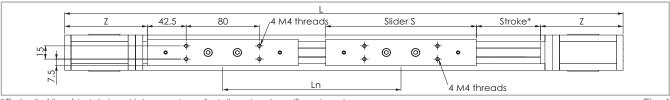

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 3

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
A40L	240	400	$Sn = S_{min} + n \cdot 10$	91.5	1660

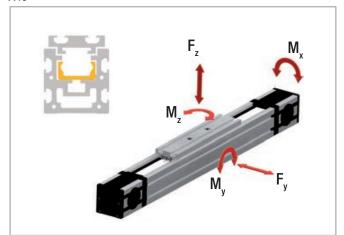
Tab. 5

A40D with double slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

Туре	S	L _{min}	L **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A40D	165	235	1900	$Ln = L_{min} + n \cdot 5$	91.5	1660


 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{\min}

 $^{^{\}star\star}$ Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 9

^{***} Maximum distance L_{\max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 9

Load ratings, moments and characteristic data

A40

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

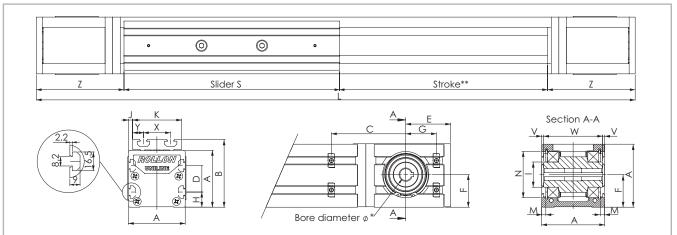
Туре	Type of belt	Belt width [mm]	Weight kg/m
A40	10RPP5	10	0.041

Tab. 7

Belt length (mm) = $2 \times L - 168$ Standard slider Belt length (mm) = $2 \times L - S_n - 3$ Long slider Belt length (mm) = $2 \times L - L_n - 168$ Double slider

Fig. 5

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A40	1530	820	300	2.8	5.6	13.1
A40-L	3060	1640	600	5.6	22 to 70	61 to 192
A40-D	3060	1640	600	5.6	70 to 570	193 to 1558


For the calculation of the allowed moments, please observe pages SL-5ff

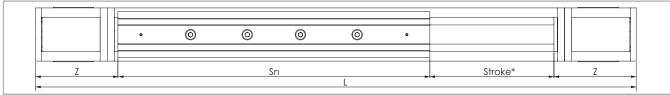
Tab. 8

Technical data	Туре
	A40
Standard belt tension [N]	160
Moment at no load [Nm]	0.14
Max. traversing speed [m/s]	3
Max. acceleration [m/s²]	10
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV18
Slider type	CS18 spec.
Moment of inertia ly [cm4]	12
Moment of inertia Iz [cm ⁴]	13.6
Pitch diameter of pulley [m]	0.02706
Moment of inertia of each pulley [gmm²]	5055
Stroke per shaft revolution [mm]	85
Mass of slider [g]	220
Weight with zero stroke [g]	1459
Weight with 1 m stroke [g]	3465
Max. stroke [mm]	3500
Working temperature	from -20 °C to + 80 °C

> A55

A55 system

* For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 6

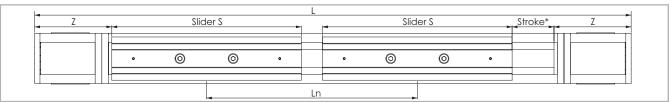
Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
A55	55	71	67.5	25	50.5	27.5	32.5	15	Ø 24.9	1.5	52	2.35	Ø 47	200	28	12	0.5	54	108	3070

 $^{\star}\,$ For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff

Tab. 10

A55L with long slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 7

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
A055-L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770

 * Maximum stroke for a single-piece guiding rail and a maximum slider plate length $\rm S_{\rm max}$ For longer strokes, see tab. 15

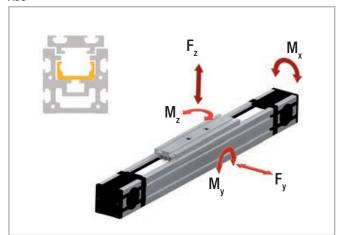
Tab. 11

A55D with double slider

*The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 8

Туре	S	L _{min}	L _{max} **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A55D	200	300	3070	$Ln = L + n \cdot 5$	108	2770


 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{\min}

 $^{^{\}star\star}$ Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 15

^{**} Maximum distance $L_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 15

Load ratings, moments and characteristic data

A55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
A55	18RPP5	18	0.074

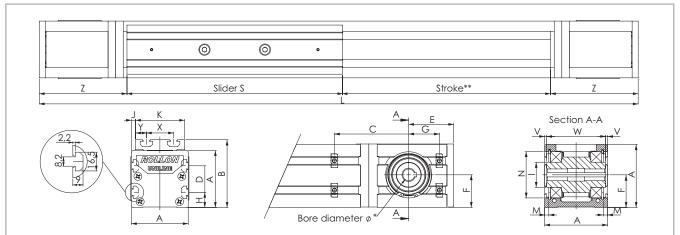
Tab. 13

Belt length (mm) = $2 \times L - 182$ Standard slider Belt length (mm) = $2 \times L - S_n + 18$ Long slider Belt length (mm) = $2 \times L - L_n - 182$ Double slider

Fig. 9

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A55	4260	2175	750	11.5	21.7	54.4
A55-L	8520	4350	1500	23	82 to 225	239 to 652
A55-D	8520	4350	1500	23	225 to 2302	652 to 6677

For the calculation of the allowed moments, please observe pages SL-5ff


Tab. 14

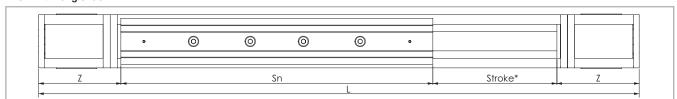
Technical data	Туре
	A55
Standard belt tension [N]	220
Moment at no load [Nm]	0.22
Max. traversing speed [m/s]	5
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV28
Slider type	CS28 spec.
Moment of inertia ly [cm4]	34.6
Moment of inertia Iz [cm4]	41.7
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	475
Weight with zero stroke [g]	2897
Weight with 1 m stroke [g]	4505
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C

Tab. 15

A75

A75 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 10

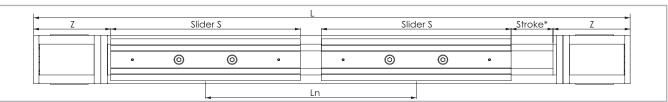
Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
A75	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	5	65	4.85	Ø 55	285	36	14.5	2.3	70.4	116	3420

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-11ff

Tab. 16

A75L with long slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 11

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
A75-L	440	700	$Sn = S_{min} + n \cdot 10$	116	3000

 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a maximum slider plate length $S_{\mbox{\tiny max}}$ For longer strokes, see tab. 21

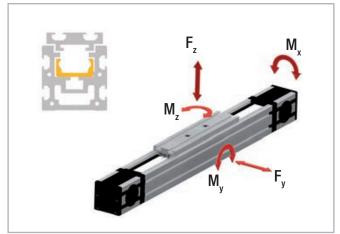
Tab. 17

A75D with double slider

^{*}The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 12

Туре	S	L _{min}	L _{max} **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000


Tab. 18

^{**} Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 21

Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{min}
 ** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm
 For longer strokes, see tab. 21

Load ratings, moments and characteristic data

A75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
A75	30RPP8	30	0.185

Tab. 19

Belt length (mm) = $2 \times L - 213$ Standard slider **Belt length (mm)** = $2 \times L - S_n + 72$ Long slider **Belt length (mm)** = $2 \times L - L_n - 213$ Double slider

Fig. 13

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A75	12280	5500	1855	43.6	81.5	209
A75-L	24560	11000	3710	87.2	287 to 770	852 to 2282
A75-D	24560	11000	3710	87.2	771 to 6336	2288 to 18788

For the calculation of the allowed moments, please observe pages SL-5ff

Tab. 20

Technical data	Туре
	A75
Standard belt tension [N]	800
Moment at no load [Nm]	1.15
Max. traversing speed [m/s]	7
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV43
Slider type	CS43 spec.
Moment of inertia ly [cm4]	127
Moment of inertia Iz [cm ⁴]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1242
Weight with zero stroke [g]	6729
Weight with 1 m stroke [g]	9751
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

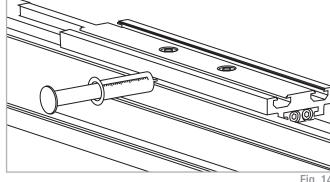
- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500

Tab. 22

Relubrication of the guide rails

These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

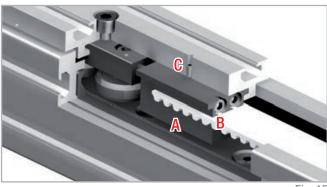

1. Relubrication using a grease gun:

This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 14). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley. The advantage of this solution is the possibility of rail re-lubrication without machine downtime.

*(Any adapter that may be necessary must be manufactured on site)



Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 15).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

- 6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

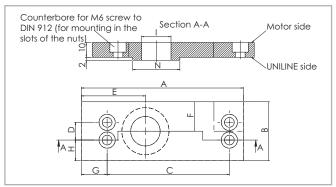
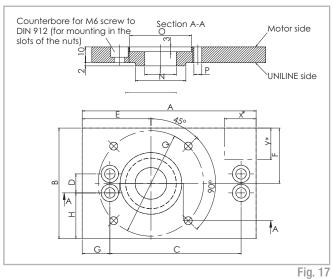


Fig. 16

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
40	110	40	83	12	43.5	20	17.5	14	Ø 20	Ø 32
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

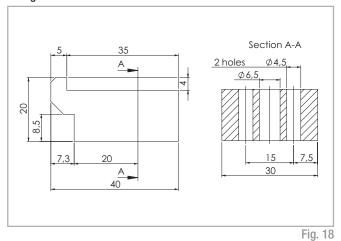

Tab. 23

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes
40	NEMA 23
55	NEMA 34
75	NEMA 42

Tab. 24

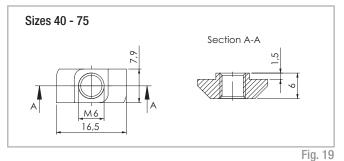

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]		H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
40	110	70	83	12	43.5	35	17.5	29	20	Ø 32	Ø 39	Ø 5	Ø 66.7
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø 74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7

Tab. 25

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2

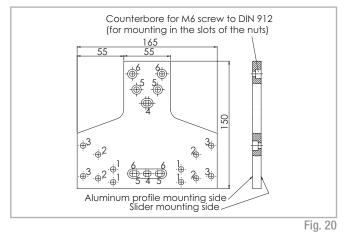


Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut



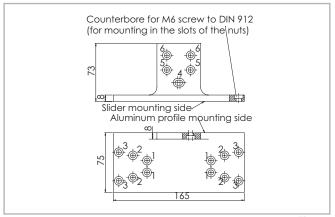
The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Note


In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile				
40	Holes 1	Holes 4				
55	Holes 2	Holes 5				
75	Holes 3	Holes 6				

Tab. 26

Angle connection plate APC-2

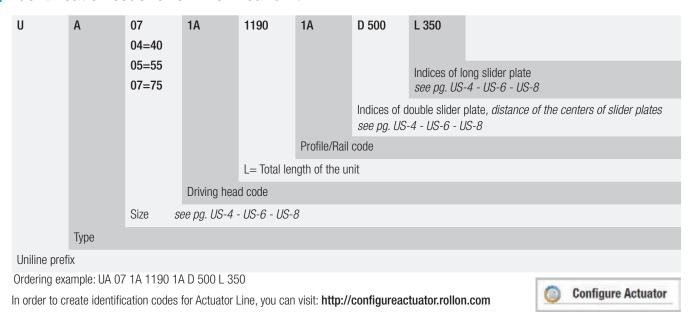
allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tal- 07

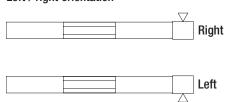
Tab. 27

Fig. 21

X connection plate APC-3

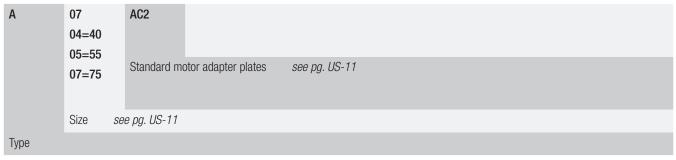

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6

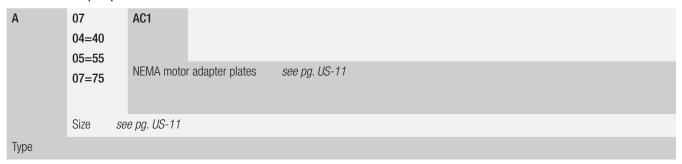

Counterbore for M6 screw to DIN 912 (for mounting in the slots of the nuts) 5⊕. ___10 Fig. 22

Ordering key / ~

Identification code for Uniline linear unit



Left / right orientation


Accessories

Standard motor adapter plate

Ordering example: A07-AC2

NEMA motor adapter plates

Ordering example: A07-AC1

T-connection plate
 Angle connection plate
 Order code: APC-,1 s. pg. US-12
 Argument of the connection plate
 Order code: APC-3, s. pg. US-13
 Fixing clamp
 Order code: APF-2, s. pg. US-12

Motor connection bores

Hole [Ø]	40	55	75	Head code	
Metric [mm] with slot for key	10G8 / 3js9	12G8 / 4js9	14G8 / 5js9	1A	
		10G8 / 3js9	16G8 / 5js9	2A	
		14G8 / 5js9	19G8 / 6js9	3A	
		16G8 / 5js9		4A	
Metric [mm]			18	1B	
for compression coupling			24	2B	
	3/8 / 1/8	1/2 / 1/8	5/8 / 3/16	1P	
Inch [in] with slot for key		3/8 / 1/8		2P	
		5/8 / 3/16		3P	

The highlighted connection bores are standard connections

Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline C series / v

Uniline C series description

Fig. 23

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the C series, the fixed bearing rail (T-rail) and the compensating bearing rail (U-rail) are mounted in the aluminum profile vertically. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:Type C: 55, 75
- Length and stroke tolerances:

 For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in)

 For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline C series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

ratio enables the following performance characteristics to be achieved:

be achieved. Optimization of the maximum belt width/body dimension

- High speed
- Low noise
- Low wear

Driving belt

The Rollon Uniline C series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

Carriage

The carriage of the Rollon Uniline C series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

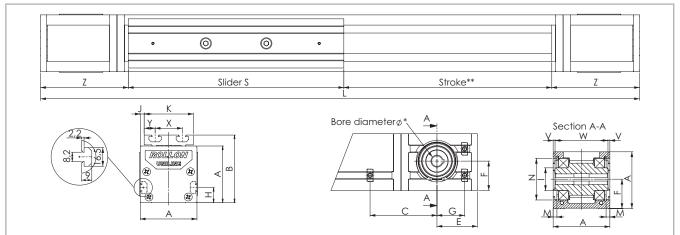
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 30

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm²	— K	 m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655
	- 0	20	230	000 000		000


Tab. 31

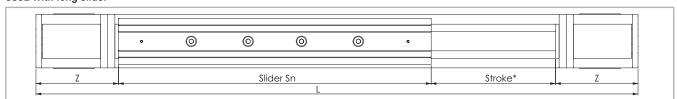
Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

C55

C55 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 24

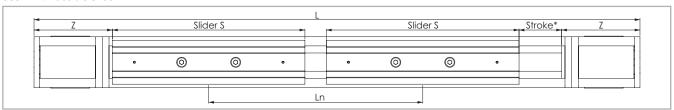
Туре	A [mm]	B [mm]	C* [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
C55	55	71	67.5	50.5	27.5	32.5	15	Ø 24.9	1.5	52	2.35	Ø 47	200	28	12	0.5	54	108	1850

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-23ff

Tab. 33

C55L with long slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 25

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
C55L	310	500	$Sn = S_{min} + n \cdot 10$	108	1550

 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a maximum slider plate length $S_{\mbox{\scriptsize max}}$ For longer strokes, see tab. 38

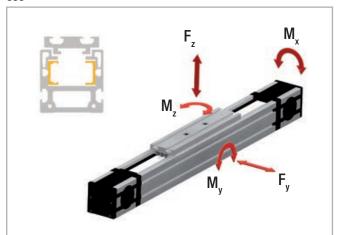
Tab. 34

C55D with double slider

^{*}The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 26

Туре	S	L _{min}	L**	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
C55D	200	300	1850	$Ln = L_{min} + n \cdot 5$	108	1570


 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance $\mathrm{L}_{\mathrm{min}}$

 $^{^{\}star\star}$ Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 38

^{**} Maximum distance $1_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 38

Load ratings, moments and characteristic data

C55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

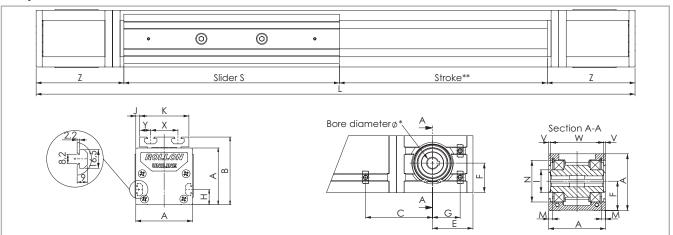
Туре	Type of belt	Belt width [mm]	Weight kg/m
C55	18RPP5	18	0.074

Tab. 36

Belt length (mm) = $2 \times L - 182$ Standard slider Belt length (mm) = $2 \times L - S_n + 18$ Long slider Belt length (mm) = $2 \times L - L_n - 182$ Double slider

Fig. 27

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
C55	560	300	1640	18.5	65.6	11.7
C55-L	1120	600	3280	37	213 to 525	39 to 96
C55-D	1120	600	3280	37	492 to 3034	90 to 555


For the calculation of the allowed moments, please observe pages SL-5ff

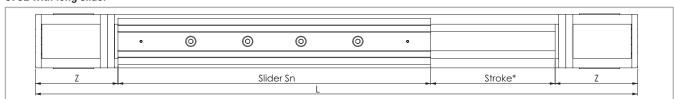
Tab. 37

Technical data	Туре
	C55
Standard belt tension [N]	220
Moment at no load [Nm]	0.3
Max. traversing speed [m/s]	3
Max. acceleration [m/s²]	10
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV18 / ULV18
Slider type	2 CS18 spec.
Moment of inertia ly [cm4]	34.4
Moment of inertia Iz [cm ⁴]	45.5
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	549
Weight with zero stroke [g]	2971
Weight with 1 m stroke [g]	4605
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C

C75

C75 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 28

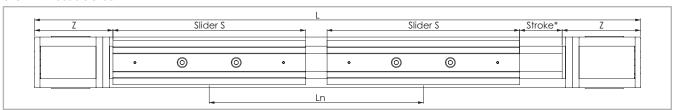
Туре	A [mm]	B [mm]	C* [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
C75	75	90	71.5	53.5	38.8	34.5	20	Ø 29.5	5	65	4.85	Ø 55	285	36	14.5	2.3	70.4	116	3000

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-23ff

Tab. 39

C75L with long slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 29

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
C75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2610

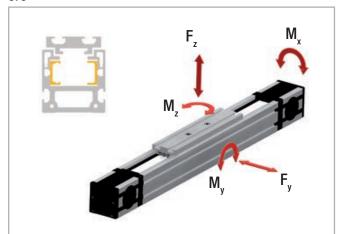
 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a maximum slider plate length $S_{\mbox{\tiny max}}$ For longer strokes, see tab. 44

Tab. 40

C75D with double slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 30


Туре	S	L _{min}	L _{max} **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
C75D	285	416	3024	$Ln = L_{} + n \cdot 8$	116	2610

^{**} Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 44

 $^{^\}star$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{min} ** Maximum distance L_{max} between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 44

Load ratings, moments and characteristic data

C75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
C75	30RPP8	30	0.185

Tab. 42

Belt length (mm) = $2 \times L - 213$ Standard slider **Belt length (mm)** = $2 \times L - S_n + 72$ Long slider **Belt length (mm)** = $2 \times L - L_n - 213$ Double slider

Fig. 31

Туре	C [N]	F _y F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
C75	1470	750	4350	85.2	217	36.1
C75-L	2940	1500	8700	170.4	674 to 1805	116 to 311
C75-D	2940	1500	8700	170.4	1809 to 13154	312 to 2268

For the calculation of the allowed moments, please observe pages SL-5ff

Tab. 43

Technical data	Туре
	C75
Standard belt tension [N]	800
Moment at no load [Nm]	1.3
Max. traversing speed [m/s]	5
Max. acceleration [m/s ²]	15
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV28 / ULV28
Slider type	2 CS28 spec.
Moment of inertia ly [cm ⁴]	108
Moment of inertia Iz [cm ⁴]	155
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1666
Weight with zero stroke [g]	6853
Weight with 1 m stroke [g]	9151
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500

Tab. 45

Relubrication of the guide rails

- 1. Slide the slider plate to one end of the unit.
- At about half the stroke press and manually move the belt in order to see one of the two rails inside the unit (see Fig. 32).
 It may be necessary to release or loosen the belt tension. See chapter Belt tension (pg. US-59).
- 3. By using a grease syringe (not supplied by ROLLON) or an alternative tool (i.e. brush), apply a sufficient quantity of grease on the raceways.
- 4. If required, re-establish the recommended belt tension (see pg. US-59).
- 5. Finally slide the slider plate back and forth over the entire stroke, in order to distribute the grease over the entire length of the rail.

Fig. 32

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 33).
- Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen.

 Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

- 6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

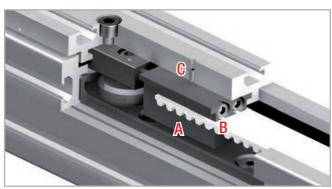


Fig. 33

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

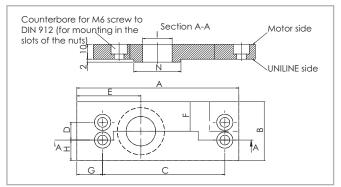
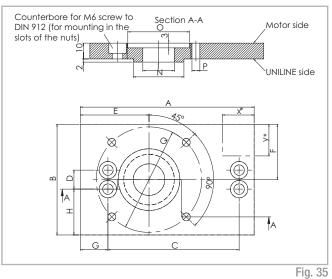


Fig. 34

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

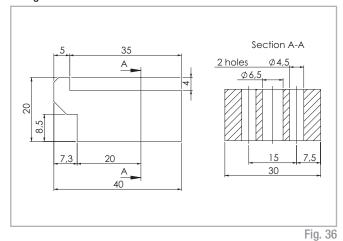

Tab. 46

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes
55	NEMA 34
75	NEMA 42

Tab. 47


Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø 74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7

Tab. 48

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2

Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut

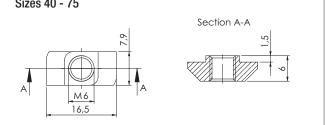


Fig. 37

The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

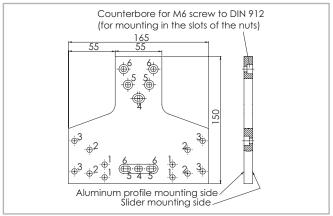
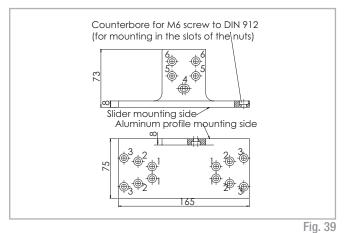


Fig. 38

Note

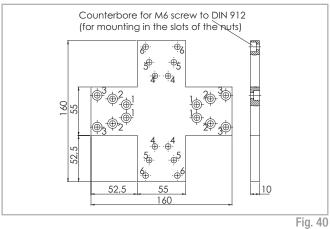

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6

Tab. 49

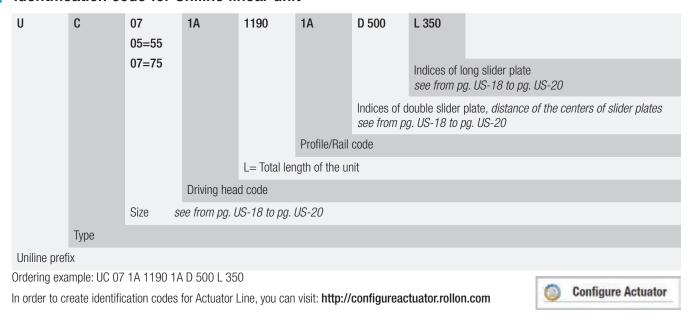
Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.


Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6
		Tab E0

Tab. 50

X connection plate APC-3


X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
55	Holes 2	Holes 5
75	Holes 3	Holes 6



Ordering key / ~

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

C	07	AC2
	05=55 07=75	Standard motor adapter plates see pg. US-23
	Size s	see pg. US-23
Туре		

Ordering example: C07-AC2

NEMA motor adapter plates

С	07	AC1
	05=55 07=75	NEMA motor adapter plates see pg. US-23
	Size	see pg. US-23
Туре		

Ordering example: C07-AC1

T-connection plateOrder code: APC-1, s. pg. US-24Angle connection plateOrder code: APC-2, s. pg. US-25X connection plateOrder code: APC-3, s. pg. US-26Fixing clampOrder code: APF-2, s. pg. US-24

Motor connection bores

	Si		
Hole [Ø]	55	75	Head code
	12G8 / 4js9	14G8 / 5js9	1A
Metric [mm]	10G8 / 3js9	16G8 / 5js9	2A
with slot for key	14G8 / 5js9	19G8 / 6js9	3A
	16G8 / 5js9		4A
Metric [mm] for compression		18	1B
coupling		24	2B
	1/2 / 1/8	5/8 / 3/16	1P
Inch [in] with slot for key	3/8 / 1/8		2P
,	5/8 / 3/16		3P

The highlighted connection bores are standard connections

Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline E series / ~

Uniline E series description

Fig. 41

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the E series, the fixed bearing rail (T-rail) is mounted horizontally in the aluminum profile, and the compensating bearing rail (U-rail) is flanged to the outside of the profile as moment support. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:Type E: 55, 75
- Length and stroke tolerances:

For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in) For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline E series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt Ca

The Rollon Uniline E series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon Uniline E series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

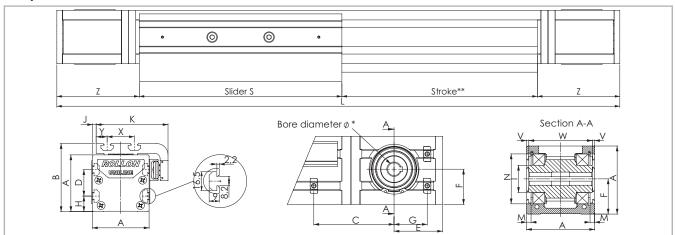
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 53

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
dm ³	mm²	— K	 m . K	kg . K	Ω . m . 10 ⁻⁹	°C
dill		TX.	111 : 13	1.9 . 1.		
2.7	69	23	200	880-900	33	600-655


Tab. 54

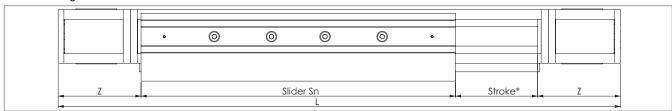
Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N — mm²	%	_
205	165	10	60-80

E55

E55 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 42

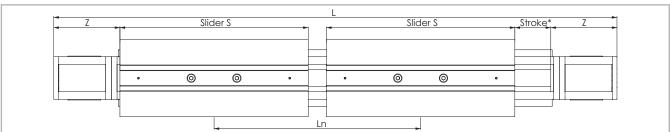
Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
E55	55	71	67.5	25	50.5	27.5	32.5	15	Ø 24.9	1.5	71	2.35	Ø 47	200	28	12	0.5	54	108	3070

 $^{^{\}star}\,$ For the position of the T-nuts when using our motor adapter plates, see pg. US-35ff

Tab. 56

E55L with long slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 43

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
E55L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770

 $^{^\}star$ Maximum stroke for a single-piece guiding rail and a maximum slider plate length S $_{\rm max}$ For longer strokes, see tab. 61

Tab. 57

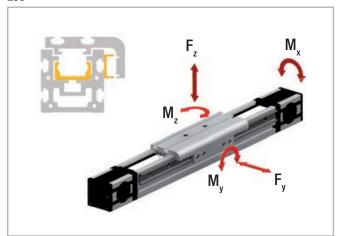
E55D with double slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 44

Туре	S	L _{min}	L**	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
E55D	200	300	3070	$Ln = L + n \cdot 5$	108	2770

 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance $\mathrm{L}_{\mathrm{min}}$


 $^{^{\}star\star}$ Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 61

^{***} Maximum distance $L_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 61

Tab. 58

Load ratings, moments and characteristic data

E55

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

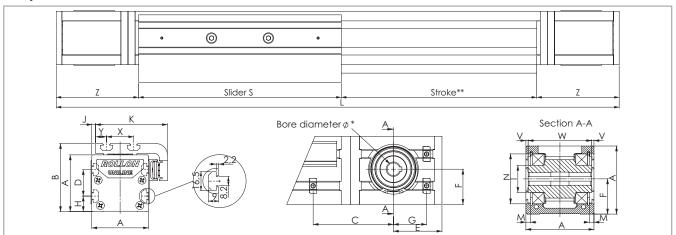
Туре	Type of belt	Belt width [mm]	Weight kg/m
E55	18RPP5	18	0.074

Tab. 59

Belt length (mm) = $2 \times L - 182$ Standard slider Belt length (mm) = $2 \times L - S_n + 18$ Long slider Belt length (mm) = $2 \times L - L_n - 182$ Double slider

Fig. 45

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
E55	4260	2175	1500	25.5	43.4	54.4
E55-L	8520	4350	3000	51	165 to 450	239 to 652
E55-D	8520	4350	3000	51	450 to 4605	652 to 6677


For the calculation of the allowed moments, please observe pages SL-5ff

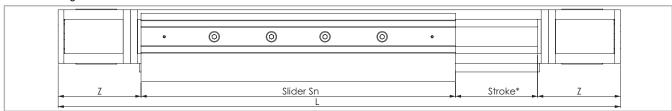
Tab. 60

Technical data	Туре
	E55
Standard belt tension [N]	220
Moment at no load [Nm]	0.3
Max. traversing speed [m/s]	3
Max. acceleration [m/s²]	10
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV28 / ULV18
Slider type	CS28 spec. / CPA 18
Moment of inertia ly [cm4]	34.6
Moment of inertia Iz [cm ⁴]	41.7
Pitch diameter of pulley [m]	0.04138
Moment of inertia of each pulley [gmm²]	45633
Stroke per shaft revolution [mm]	130
Mass of slider [g]	635
Weight with zero stroke [g]	3167
Weight with 1 m stroke [g]	5055
Max. stroke [mm]	5500
Working temperature	from -20 °C to + 80 °C

E75

E75 system

^{*} For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.

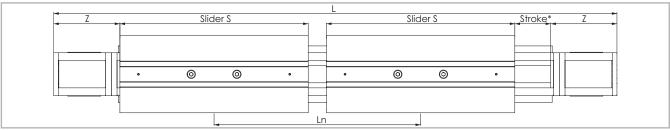

Fig. 46

Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
E75	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	5	95	4.85	Ø 55	285	36	14.5	2.3	70.4	116	3420

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-35ff

Tab. 62

E75L with long slider



^{*}The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 47

Туре	S _{min}	S _{max}	Sn	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]
E75L	440	700	$Sn = S_{min} + n \cdot 10$	116	3000

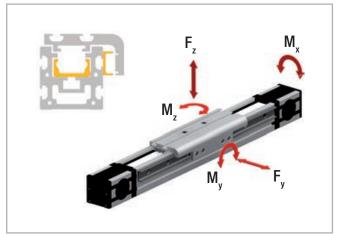
E75D with double slider

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 48

Туре	S	L _{min}	L **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
E75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000

 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance $L_{\mbox{\tiny min}}$


 $^{^{\}star\star}$ Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 67

Tab. 63

 $^{^{**}}$ Maximum distance $L_{\mbox{\tiny max}}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 67

Load ratings, moments and characteristic data

E75

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
E75	30RPP8	30	0.185

Tab. 65

Belt length (mm) = $2 \times L - 213$ Standard slider **Belt length (mm)** = $2 \times L - S_n + 72$ Long slider **Belt length (mm)** = $2 \times L - L_n - 213$ Double slider

Fig. 49

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
E75	12280	5500	3710	85.5	163	209
E75-L	24560	11000	7420	171	575 to 1540	852 to 2282
E75-D	24560	11000	7420	171	1543 to 12673	2288 to 18788

For the calculation of the allowed moments, please see pages SL-5ff

Tab. 66

Technical data	Туре
	E75
Standard belt tension [N]	800
Moment at no load [Nm]	1.3
Max. traversing speed [m/s]	5
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	TLV43 / ULV28
Slider type	CS43 spec. / CPA 28
Moment of inertia ly [cm ⁴]	127
Moment of inertia Iz [cm4]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	1772
Weight with zero stroke [g]	7544
Weight with 1 m stroke [g]	10751
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

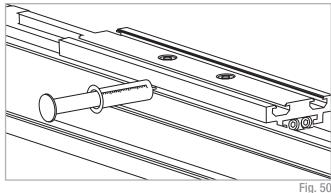
- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500

Tab. 68

Relubrication of the guide rails

These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

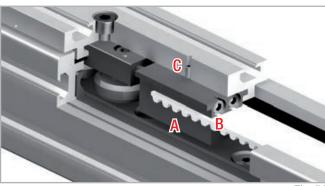

1. Relubrication using a grease gun:

This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 50). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley. The advantage of this solution is the possibility of rail re-lubrication without machine downtime.

*(Any adapter that may be necessary must be manufactured on site)



Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 51).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen. Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

- 6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

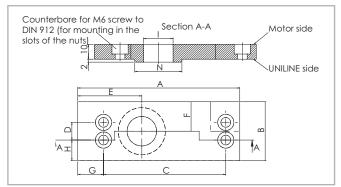
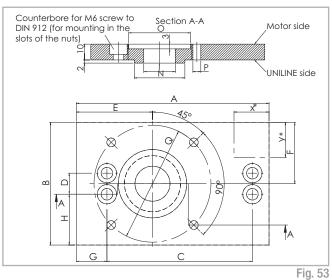


Fig. 52

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50.5	27.5	18	15	Ø 30	Ø 47
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

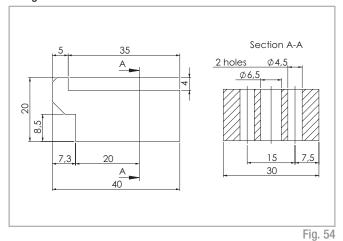

Tab. 69

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes
55	NEMA 34
75	NEMA 42

Tab. 70

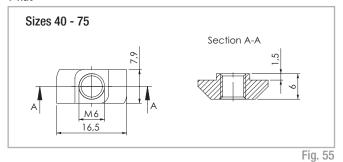

Size	A [mm]	B [mm]		D [mm]	E [mm]		G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50.5	50	18	37.5	30	Ø 47	Ø 74	Ø 5.5	Ø 98.4
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7

Tab. 71

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2



Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut

The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

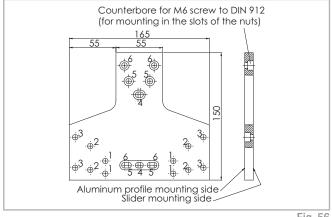


Fig. 56

Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6

Tab. 72

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

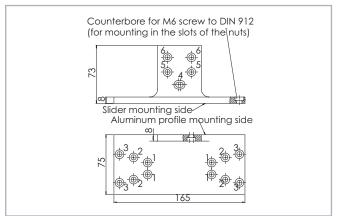


Fig. 57

Note

This adapter plate can be used with types E and ED only to a limited extent. For further information, please contact our Application Engineering Department.

Size	Fixing holes for the slider	Fixing holes for the profile
55	Holes 2	Holes 5
75	Holes 3	Holes 6

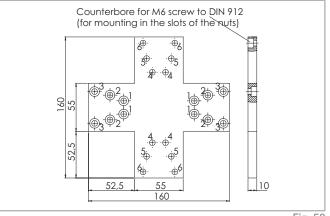
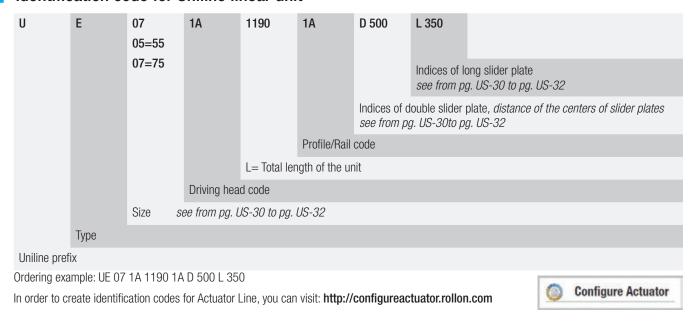
Tab. 73

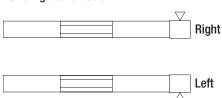
X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
55	Holes 2	Holes 5
75	Holes 3	Holes 6

Tab. 74


Fig. 58

Ordering key / ~

Identification code for Uniline linear unit

Left / right orientation

Accessories

Standard motor adapter plate

E	E	07	AC2
		05=55 07=75	Standard motor adapter plates see pg. US-35
		Size	see pg. US-35
7	Гуре		

Ordering example: E07-AC2

NEMA motor adapter plates

E	07	AC1
	05=55 07=75	NEMA motor adapter plates see pg. US-35
	Size	see pg. US-35
Туре		

Ordering example: E07-AC1

T-connection plate Order code: APC-1, s. pg. US-36

Angle connection plate Order code: APC-2, s. pg. US-37

X connection plate Order code: APC-3, s. pg. US-37

Fixing clamp Order code: APF-2, s. pg. US-36

Motor connection bores

	Si	ze	
Hole [Ø]	55	75	Head code
	12G8 / 4js9	14G8 / 5js9	1A
Metric [mm]	10G8 / 3js9	16G8 / 5js9	2A
with slot for key	14G8 / 5js9	19G8 / 6js9	3A
	16G8 / 5js9		4A
Metric [mm] for compression		18	1B
coupling		24	2B
	1/2 / 1/8	5/8 / 3/16	1P
Inch [in] with slot for key	3/8 / 1/8		2P
	5/8 / 3/16		3P

The highlighted connection bores are standard connections

Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline ED series / ~

Uniline ED series description



Fig. 59

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders and steel-reinforced polyurethane belts in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the ED series, a compensating bearing rail (U-rail) is mounted horizontally in the aluminum profile, and for increased moment support, two more compensating bearing rails (U-rail) are flanged to the profile externally. Versions with long (L) or double (D) sliders in one axis are possible.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:Type ED: 75
- Length and stroke tolerances:
 For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in)
 For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline ED series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^$

- High speed
- Low noise
- Low wear

Driving belt

The Rollon Uniline ED series linear units use steel reinforced polyurethane drive belts with RPP pitch and parabolic profiles. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can

Carriage

The carriage of the Rollon Uniline ED series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

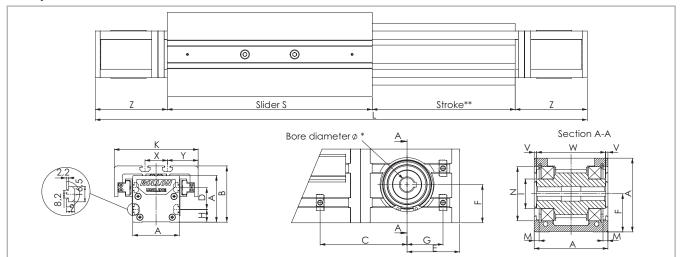
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 76

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg —— dm³	kN — mm²	10 ⁻⁶ K	 	J 	Ω . m . 10^{-9}	°C
2.7	69	23	200	880-900	33	600-655


Tab. 77

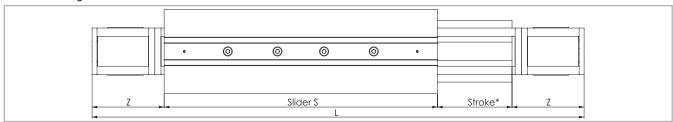
Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
205	165	10	60-80

ED75

ED75 system

* For information on the motor connection bores, see ordering key. ** The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 60

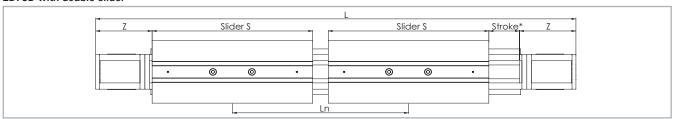
Туре	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Stroke** [mm]
ED75	75	90	71.5	35	53.5	38.8	34.5	20	Ø 29.5	135	4.85	Ø 55	330	36	49.5	2.3	70.4	116	2900

^{*} For the position of the T-nuts when using our motor adapter plates, see pg. US-45ff

Tab. 79

ED75L with long slider

*The length of the safety stroke is provided on request according to the customer's specific requirements.


Fig. 61

Туре	S _{min} *	S _{max}	Sn	Z	Stroke**
	[mm]	[mm]	[mm]	[mm]	[mm]
ED75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2500

 $^{^{\}star}\,$ The length of 440 mm is considered standard, all other lengths are considered special dimensions

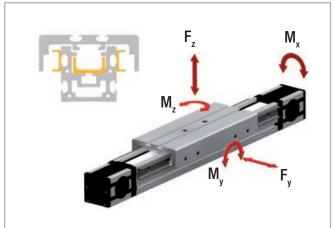
Tab. 80

ED75D with double slider

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 62

Туре	S	L _{min}	L _{max} **	Ln	Z	Stroke*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ED75D	330	416	2864	$Ln = L_{min} + n \cdot 8$	116	2450


 $^{^{\}star}$ Maximum stroke for a single-piece guiding rail and a minimum slider plate distance L_{\min}

^{**} Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 84

^{**} Maximum stroke for a single-piece guiding rail and a maximum slider plate length S_{max} For longer strokes, see tab. 84

^{***} Maximum distance $L_{\rm max}$ between the centres of slider plates at a stroke of 0 mm For longer strokes, see tab. 84

Type ED

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
ED75	30RPP8	30	0.185

Tab. 82

Belt length (mm) = $2 \times L - 258$ Standard slider Belt length (mm) = $2 \times L - S_n + 72$ Long slider Belt length (mm) = $2 \times L - L_n - 258$ Double slider

Fig. 63

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
ED75	9815	5500	8700	400.2	868	209
ED75-L	19630	11000	8700	400.2	1174 to 2305	852 to 2282
ED75-D	19630	11000	17400	800.4	3619 to 24917	2288 to 15752

For the calculation of the allowed moments, please see pages SL-5ff

Technical data	Туре
	ED75
Standard belt tension [N]	1000
Moment at no load [Nm]	1.5
Max. traversing speed [m/s]	5
Max. acceleration [m/s²]	15
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	ULV43 / ULV28
Slider type	CS43 spec. / CS28 spec.
Moment of inertia ly [cm ⁴]	127
Moment of inertia Iz [cm ⁴]	172
Pitch diameter of pulley [m]	0.05093
Moment of inertia of each pulley [gmm²]	139969
Stroke per shaft revolution [mm]	160
Mass of slider [g]	3770
Weight with zero stroke [g]	9850
Weight with 1 m stroke [g]	14400
Max. stroke [mm]	7500
Working temperature	from -20 °C to + 80 °C

Tab. 84

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Lubricants Thickeners		Dynamic viscosity [mPas]	
Roller bearing grease	Lithium soap	-30 to +170	<4500	

Tab. 85

Relubrication of the guide rails

- 1. Slide the slider plate to one end of the unit.
- At about half the stroke press and manually move the belt in order to see one of the two rails inside the unit (see Fig. 64).
 It may be necessary to release or loosen the belt tension. See chapter Belt tension (pg. US-59).
- 3. By using a grease syringe (not supplied by ROLLON) or an alternative tool (i.e. brush), apply a sufficient quantity of grease on the raceways.
- 4. If required, re-establish the recommended belt tension (see pg. US-59).
- 5. Finally slide the slider plate back and forth over the entire stroke, in order to distribute the grease over the entire length of the rail.

Fig. 64

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- 1. Unscrew the safety screws C (on top of the slider plate) from the belt tensioning device A (see fig. 65).
- 2. Also completely unscrew the belt tensioning screws B and remove the belt tensioning devices A from their housings.
- 3. Lift the toothed belt until the guide rails can be seen.

 Important: Ensure that the side seal is not damaged.
- 4. Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed. To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 5. Apply a sufficient amount of grease to the raceways.

- 6. Re-insert the belt tensioning devices A into their housings and mount the belt tensioning screws B. Re-adjust the belt tension (see pg. US-59).
- 7. Fasten the safety screws C.

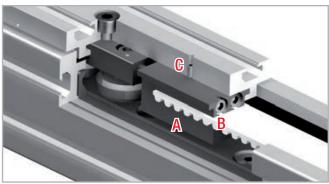


Fig. 65

Accessories

Adapter plates

Standard motor adapter plates AC2

Mounting plates for the most common motors or gearboxes. The connection bores for the motors or gearboxes must be made on site. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

^{*} Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm; Y = 35 mm

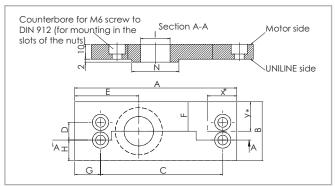
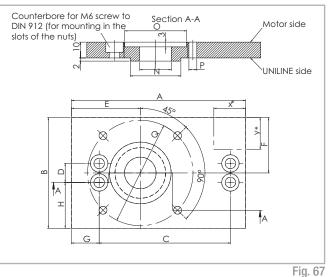


Fig. 66

Size	A	B	C	D	E	F	G	H	l	N
	[mm]									
75	135	70	106	35	53.5	35	19	17.5	Ø 35	Ø 55

Tab. 86

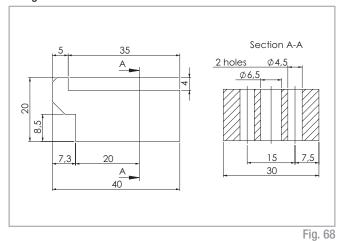

NEMA plates AC1-P

Mounting plates for NEMA motors or gearboxes. These plates are delivered ready-to-mount on the linear axes. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	NEMA Motors / Gearboxes
75	NEMA 42

Tab. 87

^{*} Area of plate needs to be cut if used for ED75 linear unit. (Adding 20 mm to total length of unit will render this modification unnecessary). Othewise it gets in contact with the outer rail. X = 20 mm; Y = 60 mm

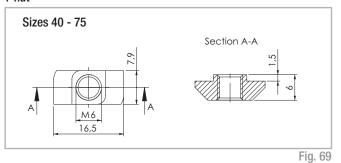

Size	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
75	135	120	106	35	53.5	60	19	42.5	35	Ø 55	Ø 57	Ø 7.1	Ø 125.7

Tab. 88

Synchronous use of linear axes in pairs

If two axes are to be used in parallel using a connecting shaft, please specify when ordering, to ensure that the key slots of the pulleys are synchronized.

Fixing brackets APF-2

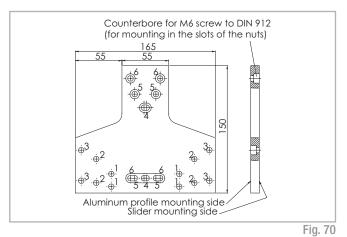


Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut



The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
75	Holes 3	Holes 6

Tab. 89

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

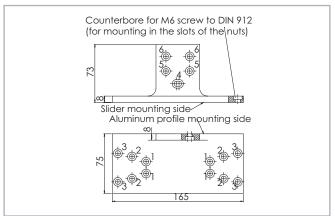


Fig. 71

Note

This adapter plate can be used with types E and ED only to a limited extent. For further information, please contact our Application Engineering Department.

Size	Fixing holes for the slider	Fixing holes for the profile
75	Holes 3	Holes 6

Tab. 90

X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
75	Holes 3	Holes 6

Tab. 91

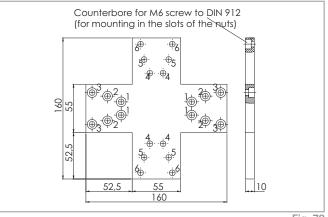
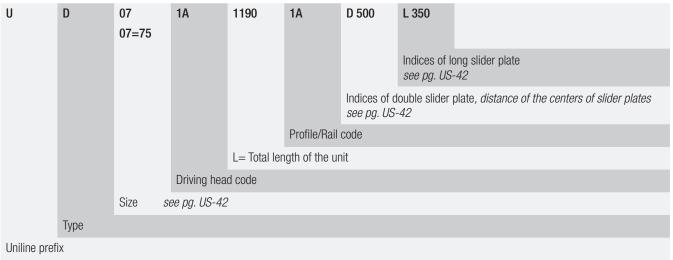



Fig. 72

Ordering key / ~

Identification code for Uniline linear unit



Ordering example: UD 07 1A 1190 1A D 500 L 350

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Accessories

Standard motor adapter plate

D	07	AC2
	07=75	Standard motor adapter plates see pg. US-45
	Size se	ee pg. US-45
Туре		

Ordering example: D07-AC2

NEMA motor adapter plates

D	07	AC1
	07=75	NEMA motor adapter plates see pg. US-45
	Size se	ee pg. US-45
Type		

Ordering example: D07-AC1

T-connection plateOrder code: APC-1, s. pg. US-46Angle connection plateOrder code: APC-2, s. pg. US-47X connection plateOrder code: APC-3, s. pg. US-47Fixing clampOrder code: APF-2, s. pg. US-46

Motor connection bores

	Size	
Hole [Ø]	75	Head code
	14G8 / 5js9	1A
Metric [mm]	16G8 / 5js9	2A
with slot for key	19G8 / 6js9	3A
		4A
Metric [mm]	18	1B
for compression coupling	24	2B
	5/8 / 3/16	1P
Inch [in] with slot for key		2P
		3P

Tab. 92

The highlighted connection bores are standard connections

Metric: key seat for keys to DIN 6885 form A Inch: key seat for keys to BS 46 Part 1: 1958

Uniline H series / v

Uniline H series description

Fig. 73

Uniline is a family of ready-to-install linear actuators. They consist of internal Compact Rail roller sliders in a rigid aluminum profile. Longitudinal seals enclose the system. This arrangement provides the best protection for the actuator from soiling and damage. In the H series, the compensating bearing rail (U-rail) is mounted horizontally in the aluminum profile. The H series is used as a compensating bearing axis for load absorption of radial forces, and in combination with the other series, as support bearing for the resulting moments. Versions with long (L) or double (D) sliders in one axis are possible. H series is a slave actuator, it has not the driving belt.

The most important characteristics:

- Compact design
- Protected internal linear guides
- High traversing speeds
- Grease-free operation possible (depending on the application. For further information, please contact our Application Engineering department)
- High versatility
- Long strokes
- Versions with long or multiple sliders available in one linear axis

Preferred areas of application:

- Handling and automation
- Multi-axis gantries
- Packaging machines
- Cutting machines
- Displaceable panels
- Painting installations
- Welding robots
- Special machines

Technical data:

- Available sizes [mm]:Type H: 40, 55, 75
- Length and stroke tolerances:
 For strokes <1 m: +0 mm to +10 mm (+0 in to 0.4 in)
 For strokes >1 m: +0 mm to +15 mm (+0 in to 0.59 in)

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon Uniline series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Carriage

The carriage of the Rollon Uniline H series linear units are made entirely of anodized aluminum. Each carriage has mounting T-slots for the connection to the moving element. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

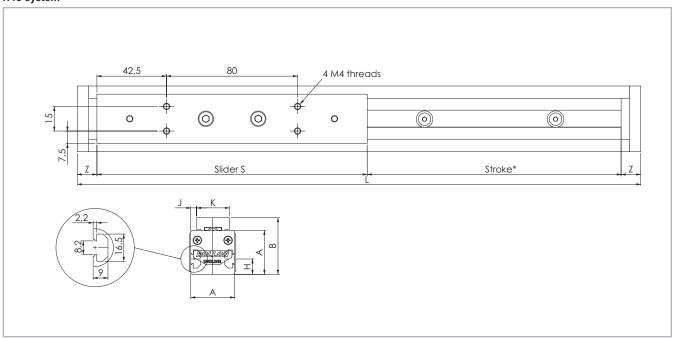
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 93

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655


Tab. 94

Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
205	165	10	60-80

H40

H40 system

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 74

Type*	A	B _{nom}	B _{min}	B _{max}	D	H	J	K	S	X	Y	Z	Stroke**
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
H40	40	51.5	51.2	52.6	-	14	5	30	165	-	-	12	1900

 $^{^\}star$ Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 98

Tab. 96

H40

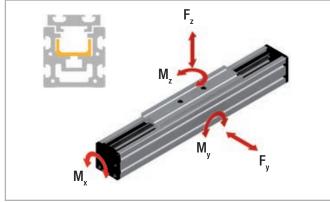
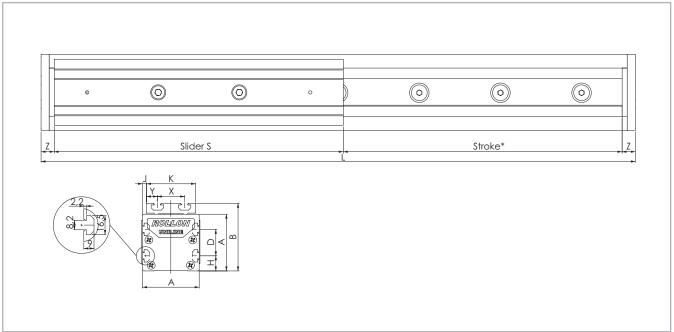


Fig. 75

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H40	1530	820				13.1
H40-L	3060	1640	0	0	0	61 to 192
H40-D	3060	1640				192 to 1558


For the calculation of the allowed moments, please see pages SL-5ff

Tab. 97

Technical data	Туре
	H40
Max. traversing speed [m/s]	3
Max. acceleration [m/s²]	10
Repeat accuracy [mm]	0.1
Linear accuracy [mm]	0.8
Compact Rail guiding rail	ULV18
Slider type	CS18 spec.
Moment of inertia ly [cm⁴]	12
Moment of inertia Iz [cm ⁴]	13.6
Mass of slider [g]	220
Weight with zero stroke [g]	860
Weight with 1 m stroke [g]	3383
Max. stroke [mm]	3500
Working temperature	from -20 °C to + 80 °C

▶ H55

H55 system

^{*}The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 76

Type*	A [mm]	B _{nom} [mm]	B _{min} [mm]	B _{max} [mm]	D [mm]	H [mm]	J [mm]	K [mm]	S [mm]	X [mm]	Y [mm]	Z [mm]	Stroke** [mm]
H55	55	71	70.4	72.3	25	15	1.5	52	200	28	12	13	3070

^{*} Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 101

Tab. 99

H55

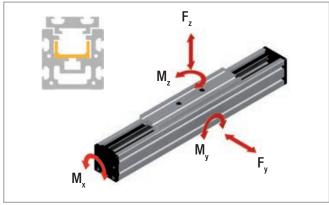
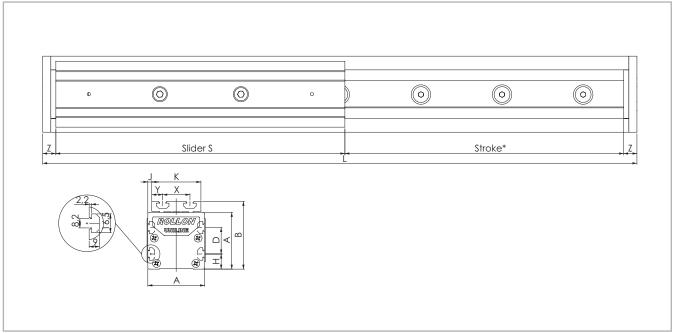


Fig. 77

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H55	4260	2175				54.5
H55-L	8520	4350	0	0	0	239 to 652
H55-D	8520	4350				652 to 6677


For the calculation of the allowed moments, please see pages $\ensuremath{\mathsf{SL-5ff}}$

Tab. 100

Technical data	Туре			
	H55			
Max. traversing speed [m/s]	5			
Max. acceleration [m/s²]	15			
Repeat accuracy [mm]	0.1			
Linear accuracy [mm]	0.8			
Compact Rail guiding rail	ULV28			
Slider type	CS28 spec.			
Moment of inertia ly [cm4]	34.6			
Moment of inertia Iz [cm⁴]	41.7			
Mass of slider [g]	475			
Weight with zero stroke [g]	1460			
Weight with 1 m stroke [g]	4357			
Max. stroke [mm]	5500			
Working temperature	from -20 °C to + 80 °C			
	Tah 101			

► H75

H75 system

^{*} The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 78

Type*	A	B _{nom}	B _{min}	B _{max}	D	H	J	K	S	X	Y	Z	Stroke**
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
H75	75	90	88.6	92.5	35	20	5	65	285	36	14.5	13	3420

^{*} Including long or double slider. See chapter 3 Product dimensions Types A...L and A...D ** Maximum stroke for a single-piece guiding rail. For longer strokes, see tab. 104

Tab. 102

H75

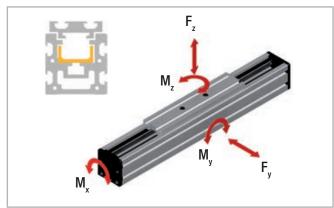


Fig. 79

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H75	12280	5500				209
H75-L	24560	11000	0	0	0	852 to 2282
H75-D	24560	11000				2288 to 18788

For the calculation of the allowed moments, please see pages SL-5ff

Tab. 103

Technical data	Туре			
	H75			
Max. traversing speed [m/s]	7			
Max. acceleration [m/s²]	15			
Repeat accuracy [mm]	0.1			
Linear accuracy [mm]	0.8			
Compact Rail guiding rail	ULV43			
Slider type	CS43 spec.			
Moment of inertia ly [cm⁴]	127			
Moment of inertia Iz [cm ⁴]	172			
Mass of slider [g]	1242			
Weight with zero stroke [g]	4160			
Weight with 1 m stroke [g]	9381			
Max. stroke [mm]	7500			
Working temperature	from -20 °C to + 80 °C			

Lubrication

The raceways of the guide rails in the Uniline linear axes are prelubricated. To achieve the calculated service life, a lubrication film must always be present between the raceway and the roller. The lubrication film also provides anticorrosion protection to the ground raceways. An approximate value for the lubrication period is every 100 km or every six months. The recommended lubricant is a lithium-based roller bearing grease of medium consistency.

Lubrication of the raceways

Proper lubrication under normal conditions:

- reduces friction
- reduces wear
- reduces stress on the contact faces
- reduces running noise

Lubricants	Thickeners	Temperature range [°C]	Dynamic viscosity [mPas]
Roller bearing grease	Lithium soap	-30 to +170	<4500
			Tab. 105

Relubrication of the guide rails

These types of rails have a lubricating conduit on the side of the slider plate through which the lubricant can be applied directly to the raceways. Lubrication can be done in one of two ways:

1. Relubrication using a grease gun:

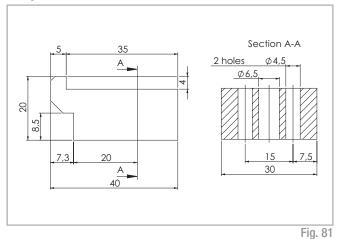

This is done by inserting the tip of the grease gun into the conduit at the slider plate and injecting the grease inside (see fig. 80). Please note that the grease has to fill the whole conduit in order to lubricate the rail properly; for this reason sufficient grease must be used.

2. Automatic lubrication system:

To connect the unit to an automatic greasing system, use a proper adapter/connector* that attaches to the threaded hole on the side of the trolley.

The advantage of this solution is the possibility of rail re-lubrication without machine downtime.

*(Any adapter that may be necessary must be manufactured on site)

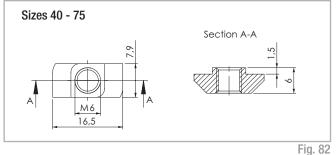

Cleaning the guide rails

It is always recommended to clean the slider rail prior to any relubrication, in order to remove grease residues. This can be done while performing maintenance work or during a scheduled machine stop.

- Clean the rail raceways with a clean and dry cloth. Ensure that all grease and dirt residues from previous work processes are removed.
 To ensure that the rails are cleaned over their entire length, the slider plate should be moved once over its entire length.
- 2. Apply a sufficient amount of grease to the raceways.

Accessories

Fixing brackets APF-2



Fixing clamp for simple mounting of a linear axis on a mounting surface or for connecting two units with or without a connection plate (see pg. US-63).

A spacer* may be necessary.

*(Any spacer that may be necessary must be manufactured on site)

T-nut

The maximum tightening torque is 10 Nm.

Assembly kits

T-connection plate APC-1

T-connection plate allows two units to be mounted perpendicular to each other (see pg. US-60). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

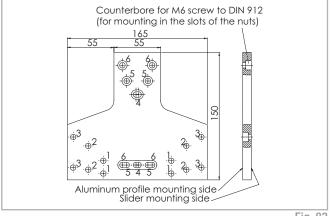
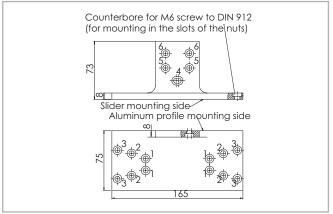


Fig. 83


Note

In case of use of APC-1 plates with E and ED series, please consult Rollon Technical Dpt. In standard there is an interference between U-rail and APC-1 plate. A special version with shorter U-rail at both extremities will be offered.

Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6

Angle connection plate APC-2

allows the right angle mounting of two units. The trolley of one unit can be mounted to the side of the other (see pg. US-61). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting to the linear units.

Fi	g.	84

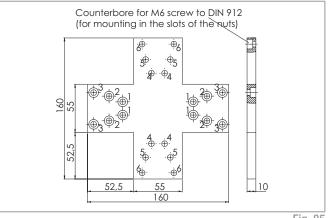
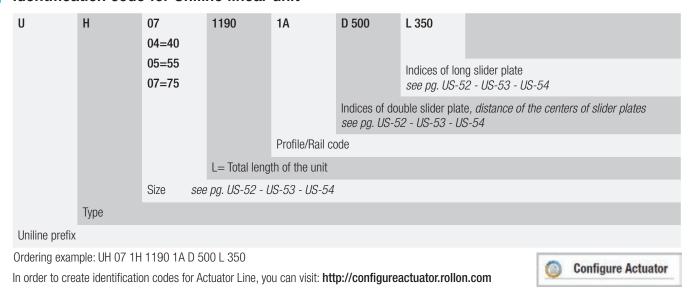
Size	Fixing holes for the slider	Fixing holes for the profile
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6

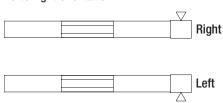
Tab. 107

X connection plate APC-3

X connection plate for mounting two sliders perpendicular to each other (see pg. US-62). The plate will not interfere with the strokes of either unit. All plates are delivered with M6 x 10 screws to DIN 912 and T-nuts for mounting on the linear units.

Size	Fixing holes for slider 1	Fixing holes for slider 2
40	Holes 1	Holes 4
55	Holes 2	Holes 5
75	Holes 3	Holes 6


Fig. 85

Ordering key / ~

Identification code for Uniline linear unit

Left / right orientation

Belt tension / ~

All Uniline linear axes are all supplied with a standard belt tension suitable for most applications (see tab. 109).

Size	40	55	75	ED75
Belt tension [N]	160	220	800	1000

Tab. 109

The belt tensioning system (located at the ends of the slider plates for sizes 45 to 75) allows the toothed belt tension to be set in accordance with requirements.

To set the belt tension for sizes 40 to 75, the following steps must be followed (the reference values are standard values):

- 1. Determine the deviation of the belt tension from the standard value.
- 2. Figures 87 and 88 show how many turns the belt tensioning screws B must be for the required belt tension deviation.
- 3. Calcualte the length of the belt (m), with the formula:
 - L = 2 x stroke (m) + 0.515 m (size 40);
 - L = 2 x stroke (m) + 0.630 m (size 55);
 - L = 2 x stroke (m) + 0.792 m (size 75).
- 4. Multiply the number of turns (see step 2) by the toothed belt length m (see step 3) to calculate the required number of turns to achieve the new desired belt tension..
- 5. Unscrew the safety screw C.
- 6. Turn the belt tensioning screws B in accordance with the above explanation. Re-tighten the safety screw C.

Example:

Increasing the belt tension from 220 N to 330 N for an A55 - 1070:

- 1. deviation = 330 N 220 N = 110 N.
- 2. Figures 87 and 88 show that the value by which the belt tensioning screws B must be turned to increase the belt tension by 110 N is 0.5 turns.
- 3. Formula for calculating the toothed belt length:

$$L = 2 \text{ x stroke (m)} + 0.630 \text{ m} = 2 \text{ x } 1.070 + 0.630 = 2.77 \text{ m}.$$

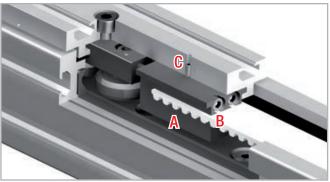


Fig. 86

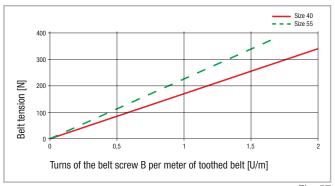


Fig. 87

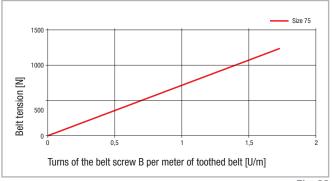


Fig. 88

- 4. This means that the required number of turns is: 0.5 rpm x 2.77 m = 1.4 turns.
- 5. Unscrew the safety screw C.
- 6. Turn the belt tensioning screws B by 1.4 turns with the aid of an external reference.
- 7. Re-tighten the safety screw C.

Note:

If the linear unit is used such that the load acts directly on the toothed belt, it is important not to exceed the specified values for the belt tension. Otherwise, the positional accuracy and stability of the toothed belt cannot be guaranteed. If higher values are required for the belt tension, please contact our Application Engineering Department.

Installation instructions

Motor adapter plates AC2 and AC1-P, sizes 40 - 75

To connect the linear units to the motor and gearbox, suitable adapter plates must be used. Rollon offers these plates in two different designs (see chapter Accessories). The standard plates are already provided with the holes required for mounting to the linear unit. The fixing holes must be made on site. Ensure that the mounted plate will not interfere with the stroke of the traversing slider plate.

Fig. 89

Connection to motor and gearbox

- 1. Attach the motor adapter plate to the motor or gearbox.
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the unit.
- 3. Insert the connecting shaft into the drive head by aligning the key in the key slot.
- 4. Attach the motor adapter plate to the drive head of the linear axis by means of nuts and make sure that the nuts in the slots were rotated by 90° (see Accessories). Ensure correct fit of the adapter plate.

Note:

- The connecting plates for the Uniline A40 are delivered with four fixing holes, even though only two holes are required for the connection. The presence of four holes give the plate a symmetric design which allows it to be used on any side of the unit.
- Due to the constructive design of the aluminum profile, only three fixing holes can be used the for the Uniline C series. (see pg. US-18, fig. 24).

T-connection plate APC-1, sizes 40 - 75

Connection of two linear axes is achieved by means of the T-connection plate APC-1 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Prepare the connection plate by inserting the screws into the existing holes on the APC-1 (see fig. 90).
- 2. Connect the T-nuts by introducing the screws without tightening them and align the nuts in parallel to the slots of the unit.
- 3. Place the plate against the long side of unit 1 and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.
- 4. To fasten the plate to unit 2, insert the screws from the the long side of unit 1 (see fig. 91).
- 5. Connect the T-nuts by introducing the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 2.
- 6. Place the plate against the slider plate and tighten the screws. Important: Please make sure that the nuts in the slots were rotated by 90°.

Fig. 90

Fig. 91

Example 1: System consisting of 2 X-axes and 1 Y-axis

The connection of the two units is attained by means of the parallel slider plates and the drive heads. For this configuration, we recommend using our connection plate APC-1.

Fig. 92

Angle connection plate APC-2, sizes 40 - 75

Connection of two linear axes is achieved by means of the angle connection plate APC-2. To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Insert the screws to be used for the connection to unit 1 into the prepared holes (see fig. 93).
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plates.
- 3. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.
- 4. To fix the connection plate to unit 2, insert the screws into the prepared holes on the short plate side (see fig. 94).
- 5. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the aluminum profile of unit 2.
- 6. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90° .

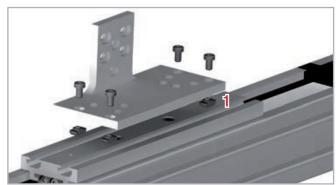


Fig. 93

Fig. 94

Example 2 – System consisting of 1 X-axis and 1 Z-axis

With this configuration, the Z-axis is connected to the slider plate of the X-axis by means of the angle connection plate APC-2.

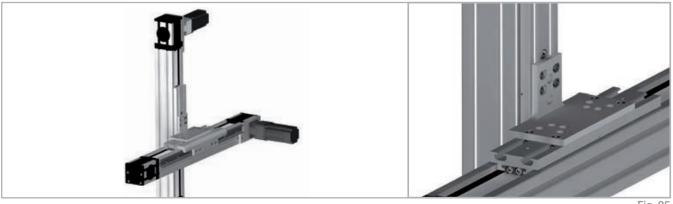


Fig. 95

X connection plate APC-3, sizes 40 - 75

Connection of the two linear axes is achieved by means of the X connection plate APC-3 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Insert the screws from one side of the connection plate into the prepared holes (see fig. 96).
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 1.
- 3. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90° .
- 4. Insert the screws from the other side of the connection plate (see fig. 97).
- 5. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plate of unit 2.
- 6. Place the connection plate against the slider plate and tighten the screws. Ensure that the nuts in the slots were rotated by 90°.

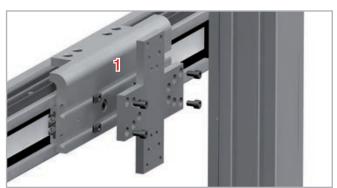


Fig. 96

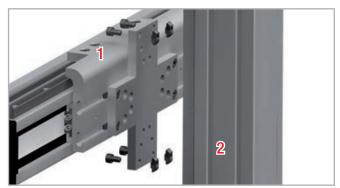


Fig. 97

Example 3 - System consisting of 2 X-axes, 1 Y-axis and 1 Z-axis

Connect four linear units to create a 3-axis gantry. The vertical axis is arranged to be self-supporting on the central unit. To do so, connect the two slider plates to each other, using the X connection plate APC-3.

The connection of the two parallel axes to the central unit is attained by means of the T-connection plate APC-1.

Fig. 98

Fixing clamp APF-2, sizes 40 - 75

Connection of two linear axes is achieved by means of the fixing clamps APF-2 (see chapter Accessories). To mount the above-mentioned configuration, the following steps should be carried out:

- 1. Insert the fastening screws into the clamp and, if necessary, place a spacer* between the clamp and the slider plate.
 - *(Any spacer that is to be used must be manufactured on site)
- 2. Connect the T-nuts by inserting the screws without tightening them and align the nuts in parallel to the slots of the slider plates.
- 3. Insert the projecting part of the clamp into the lower slot of the aluminum profile of unit 1.
- 4. Position the clamp lengthwise according to the desired position of the slider plate of unit 2.

- 5. Tighten the fastening screws. Ensure that the nuts in the slots were rotated by 90°.
- 6. Repeat this operation for the required number of fixing clamps.

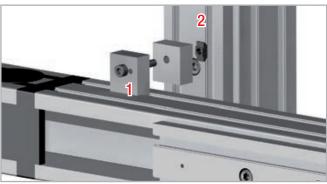


Fig. 99

Example 4 – System consisting of 1 Y-axis and 2 Z-axes

The connection of the Y-axis to the parallel slider plates is attained via the fixing clamps APF-2.

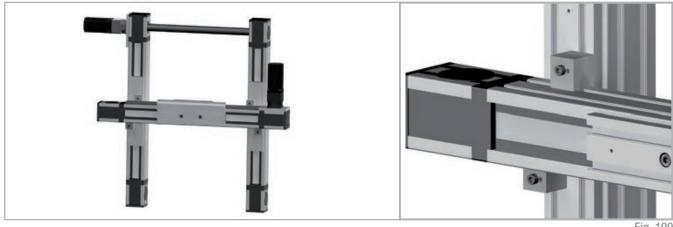


Fig. 100

Modline

MCR/MCH series / ~

MCR/MCH series description

Fig. 1

The MCR/MCH units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Reduced weight ensured by the light frame and the aluminum sliders
- Three different sizes available: 65mm, 80mm, 105mm
- High sliding speed

MCR

Featuring four + four rollers with a Gothic arch outer profile and flat outer profile, sliding on hardened steel bars placed inside the profile.

MCH

Featuring a recirculating ball linear guide rail placed inside the profile.

The components

Extruded bodies

The anodized aluminum extrusion used for the profile of the Rollon MCR/MCH series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complaint with EN 755-9 standards.

Driving belt

The Rollon MCR/MCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

Carriage

The carriage of the Rollon MCR/MCH series linear units is made of anodized aluminum. Two different length carriages are available for size 80 and 105.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg dm³	kN — mm²	10 ⁻⁶ K	 		Ω . m . 10^{-9}	°C
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	$\frac{N}{}$ mm ²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

MCR with gothic arch bearing guides

- Hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with four + four bearing assemblies, four having a gothic arch groove machined into its outer race, to run on the steel rods, and four having flat outer ring.
- The bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- The driving belt is supported by the entire length of the profile to avoid deflection as well as to protect the linear guide.

MCH with ball bearing guides

- A recirculating ball guide with high load capacity is mounted in a dedicated seat inside the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)

The linear motion system described above offers:

- High permissible bending moments
- High speed and acceleration
- High load capacity
- Low friction
- Long life
- Low noise

MCR

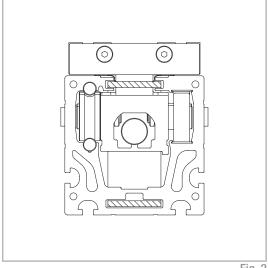


Fig. 2

MCH

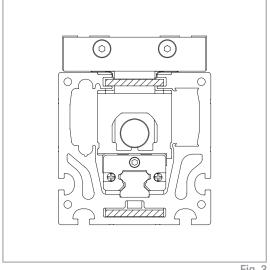
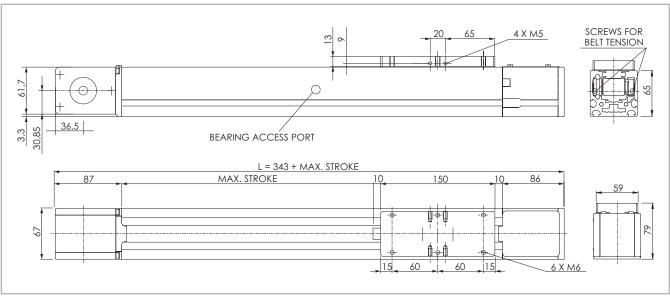



Fig. 3

MCR 65

MCR 65 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

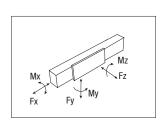
Technical data

	Туре
	MCR 65
Max. useful stroke length [mm] *1	5830
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	20
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.87
Zero travel weight [kg]	3.7
Weight for 100 mm useful stroke [kg]	0.475
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g mm²]	267443
Rail size [mm]	Ø8

 $^{^{\}star} 1)$ It is possible to obtain strokes up to 9000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCR 65	804,878	678,230	1,483,108
			Tab. 5


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

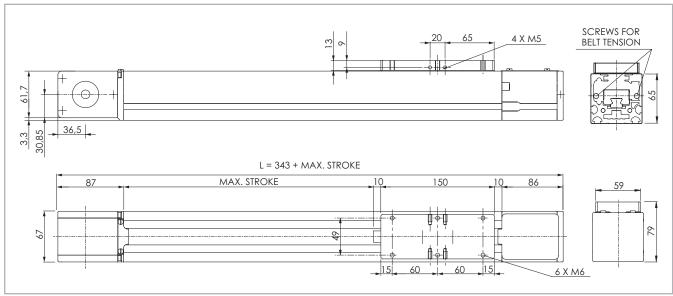
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 65	32 AT 05	32	0.105

Tab. 6

Belt length (mm) = $2 \times L - 69$

MCR 65 - Load capacity

Туре	F [N	: X V]	F _y [N]	F [t	: z N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 65	1344	960	1964	2192	9195	65.1	132	93.9


Tab. 4

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

 $^{^{\}star}2)$ Positioning repeatability is dependent on the type of transmission used

MCH 65

MCH 65 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

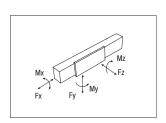
Technical data

	Туре
	MCH 65
Max. useful stroke length [mm] *1	5830
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	30
Type of belt	32 AT 05
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	0.9
Zero travel weight [kg]	3.85
Weight for 100 mm useful stroke [kg]	0.58
Starting torque [Nm]	0.3
Moment of inertia of pulleys [g mm²]	267443
Rail size [mm]	15

^{*1)} It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
MCH 65	804,878	678,230	1,483,108
			Tab. 9


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

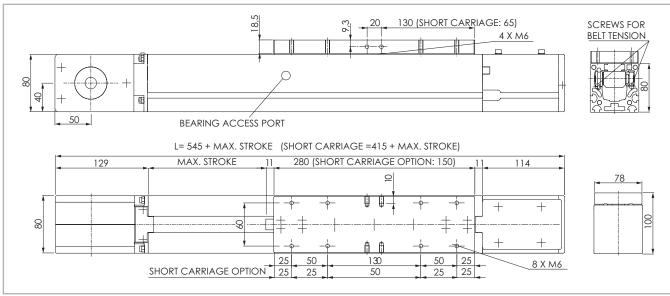
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 65	32 AT 05	32	0.105

Tab. 10

Belt length (mm) = $2 \times L - 69$

MCH 65 - Load capacity

Туре	F [1	: x V]	F [t	: v <mark>j</mark>	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 65	1344	960	30560	19890	30560	240	1406	1406


Tab. 8

See verification under static load and lifetime on page SL-2 and SL-3

^{2) 1} obligating reportability to deportable on the type of transmission a

MCR 80

MCR 80 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.6

Technical data

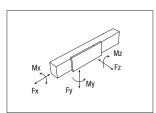
	Ту	ре
	MCR 80	MCR 80 C
Max. useful stroke length [mm] *1	5700	5830
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s²]	20	20
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.2	1.25
Zero travel weight [kg]	8.8	6.95
Weight for 100 mm useful stroke [kg]	0.7	0.7
Starting torque [Nm]	0.7	0.7
Moment of inertia of pulleys [g mm²]	1174346	1174346
Rail size [mm]	Ø8	Ø8

 $^{^{\}star} 1)$ It is possible to obtain strokes up to 9000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
MCR 80	1,791,166	1,468,518	3,259,684

Tab. 13


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

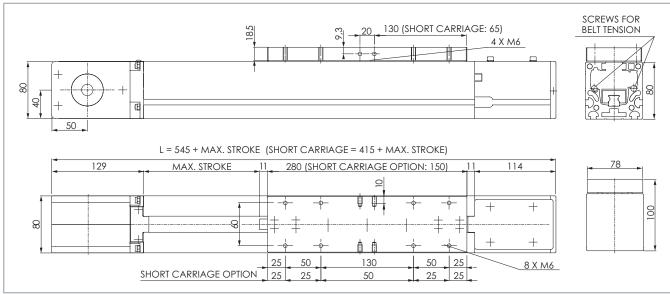
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 80	32 AT 10	32	0.185

Tab. 14

Belt length (mm) = $2 \times L - 182$ Short carriage (mm) = $2 \times L - 52$

MCR 80 - Load capacity

Туре	F [I	: Ň Į	F _y [N]	F [I	: v N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 80	2656	1760	1964	2579	9195	85.4	361	193
MCR 80 C	2656	1760	1964	2579	9195	85.4	156	93.9


Tab. 12

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

 $^{^{\}star}2)$ Positioning repeatability is dependent on the type of transmission used

MCH 80

MCH 80 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 7

Technical data

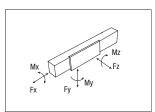
	Ту	ре
	MCH 80	MCH 80 C
Max. useful stroke length [mm] *1	5700	5830
Max. positioning repeatability [mm]*2	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s ²]	40	40
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 22	Z 22
Pulley pitch diameter [mm]	70.03	70.03
Carriage displacement per pulley turn [mm]	220	220
Carriage weight [kg]	2.45	1.3
Zero travel weight [kg]	9.4	7.1
Weight for 100 mm useful stroke [kg]	0.79	0.79
Starting torque [Nm]	0.9	0.9
Moment of inertia of pulleys [g mm²]	1174346	1174346
Rail size [mm]	15	15

^{*1)} It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
MCH 80	1,791,166	1,468,518	3,259,684

Tab. 17


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

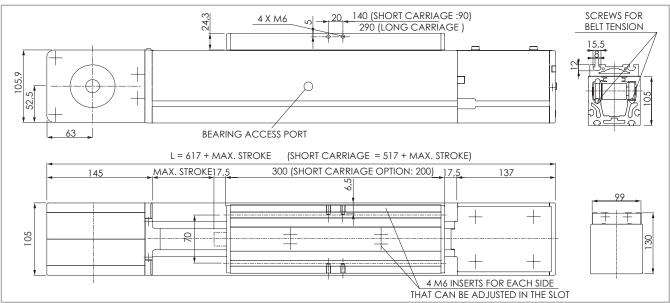
Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 80	32 AT 10	32	0.185

Tab. 18

Belt length (mm) = $2 \times L - 182$ Short carriage (mm) = $2 \times L - 52$

MCH 80 - Load capacity

Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 80	2656	1760	30560	19890	30560	240	3285	3285
MCH 80 C	2656	1760	15280	9945	15280	120	90	90


Tab. 16

See verification under static load and lifetime on page SL-2 and SL-3

z) r obligating repositionity to department on the type of transmission about

MCR 105

MCR 105 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 8

Technical data

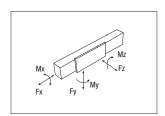
	Туре		
	MCR 105	MCR 105 C	
Max. useful stroke length [mm]	10100	10100	
Max. positioning repeatability [mm]*1	± 0.1	± 0.1	
Max. speed [m/s]	5	5	
Max. acceleration [m/s²]	20	20	
Type of belt	40 AT 10	40 AT 10	
Type of pulley	Z 29	Z 29	
Pulley pitch diameter [mm]	92.31	92.31	
Carriage displacement per pulley turn [mm]	290	290	
Carriage weight [kg]	3.51	2.56	
Zero travel weight [kg]	17.15	14.9	
Weight for 100 mm useful stroke [kg]	1.2	1.2	
Starting torque [Nm]	1.2	1.2	
Moment of inertia of pulleys [g mm²]	4482922	4482922	
Rail size [mm]	Ø10	Ø10	
*1) Positioning repeatability is dependent on the type of transmission used		Tab. 20	

Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p	
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]	
MCR 105	4,476,959	5,675,808	10,152,767	

Tab. 21

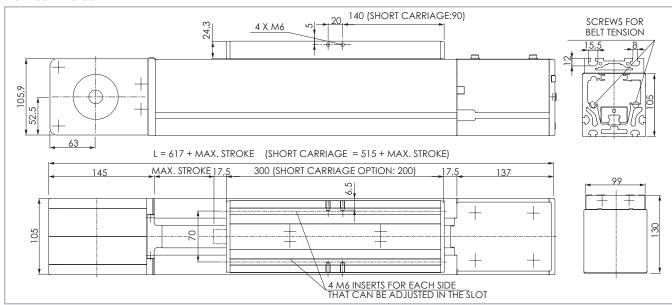

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCR 105	40 AT 10	40	0.231

Tab. 22

Belt length (mm) = $2 \times L - 165$ Short carriage (mm) = $2 \times L - 65$


MCR 105 - Load capacity

Туре	F _{.x} [N]		F [N]	F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 105	3984	2640	4250	7812	26997	340	1033	417
MCR 105 C	3984	2640	4250	7812	26997	340	544	250

See verification under static load and lifetime on page SL-2 and SL-3

MCH 105

MCH 105 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.9

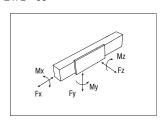
Technical data

	Ту	ре
	MCH 105	MCH 105 C
Max. useful stroke length [mm]	10.100	10.100
Max. positioning repeatability [mm]*1	± 0.1	± 0.1
Max. speed [m/s]	5	5
Max. acceleration [m/s²]	50	50
Type of belt	40 AT 10	40 AT 10
Type of pulley	Z 32	Z 32
Pulley pitch diameter [mm]	92.31	92.31
Carriage displacement per pulley turn [mm]	290	290
Carriage weight [kg]	3.5	2.3
Zero travel weight [kg]	17.5	14.4
Weight for 100 mm useful stroke [kg]	1.36	1.36
Starting torque [Nm]	1.5	1.5
Moment of inertia of pulleys [g mm²]	4482922	4482922
Rail size [mm]	20	20
*1) Positioning repeatability is dependent on the type of transmission used		Tab. 24

Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
MCH 105	4,476,959	5,675,808	10,152,767
			Tab. 25


Driving belt

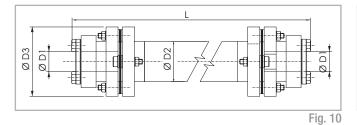
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
MCH 105	40 AT 10	40	0.231

Tab. 26

Belt length (mm) = $2 \times L - 165$ Short carriage (mm) = $2 \times L - 65$

MCH 105 - Load capacity

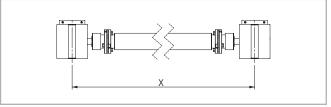
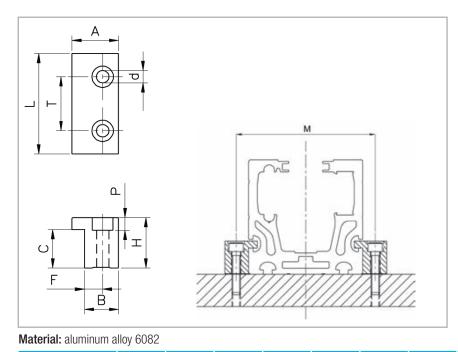

Туре	F [1	: × V]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 105	3984	2640	51260	36637	51260	520	5536	5536
MCH 105 C	3984	2640	25630	18319	25630	260	190	190

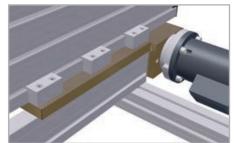
See verification under static load and lifetime on page SL-2 and SL-3

Linear units in parallel

Synchronisation kit for use of MCR/MCH linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.


Fig. 11

Unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
MCR/MCH 65	AP 12	12	25	45	GK12P1A	L= X-80 [mm]
MCR/MCH 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
MCR/MCH 105	AP 25	25	70	99	GK25P1A	L= X-130 [mm]

Tab. 28

Accessories

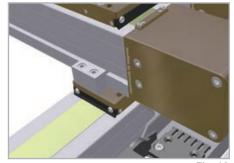
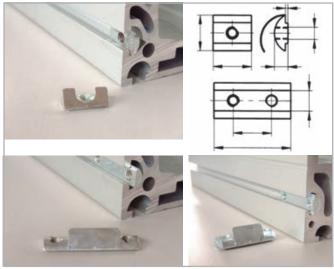



Fig. 12

Unit	А	L	Т	d	Н	Р	С	F	В	M	Code
MCR/MCH 65	25	50	25	6.7	20	6.8	13.5	10	18	87	415.0380
MCR/MCH 80	25	50	25	6.7	25	6.8	18.6	10	18	100	415.0760
MCR/MCH 105	30	50	25	9	30	9.5	23.6	12	22	129	415.0761

Insertable nuts and plates

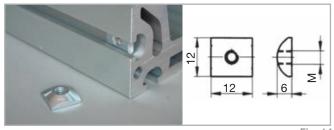
Spring nut

	:	~		4	0
Г	I	y	=		ú

Plate suitable for every kind of module (8 mm slot).

Material: nut in galvanised steel welded to the harmonic steel spring.

Single plate	MC 80-105	MC 65
M5	A32-55	B32-55
M6	A32-65	B32-65
M8	A32-85	B32-85
		Tab. 30

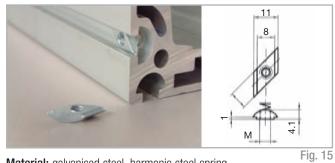

Double plate	MC 80-105	MC 65
M6	A32-67	B32-67

Tab. 31

Size					
Base module	D	Н	L	L1	Т
MC 80-105	14	7.8	20	40	30
MC 65	11	4.1	20	40	30

Tab. 32

Simple nut

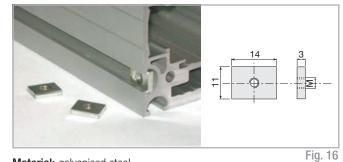


Thread	Code
M5	209.2431
M6	209.2432
M8	209.2433
	Tab. 33

Fig. 14

Material: galvanised steel. Insert through the end of the profile. Suitable for series: MC 80-105

Front insertable spring nut


Material: galvanised steel, harmonic steel spring.

To be inserted through the slot.

Suitable for series: MC 65

Thread	Code
M3	BD31-30
M4	BD31-40
M5	BD31-50
M6	BD31-60

Simple nut

Material: galvanised steel.

To be inserted through the slot.

Suitable for series: MC 65

Thread	Code
M4	D32.40
M5	D32.50
M6	D32.60
	Tah 35

Sensor brackets

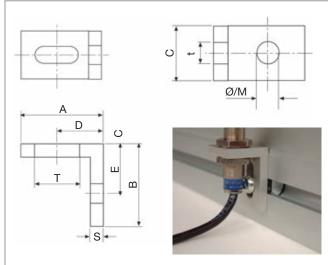


Fig. 17

Material: natural, anodized anticorodal alloy.

Thre	ad							Co	de
Α	В	С	D	Е	S	Txt	Ø/M	Ø	M
45	45	20	25	25	5	20X6.5	6	A30-76	A 30-86
35	25	20	19	15	5	20X6.5	4	A30-54	A30-64
35	25	20	19	15	5	20X6.5	5	A30-55	A30-65
35	25	20	19	15	5	20X6.5	6	A30-56	A30-66
25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66

Suitable for all the modules

Tab. 36

Steel strip protection for series MCR/MCH 80-105

Material: Stainless steel foil.

Optional: For additional protection from dust and debris, a magnetic seal strip can be added to the profile to cover the belt way.

Due to the magnetic strip, it is best to avoid use in the presence of ferrous debris.

 $\mathbf{M} = \text{Threaded version}$

 $\mathbf{0}$ = Passing through hole version

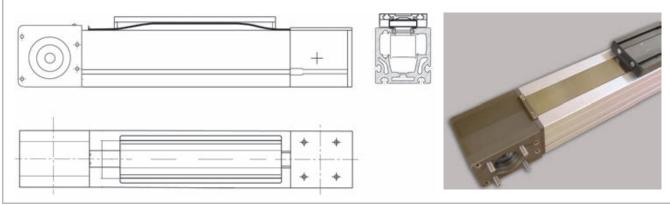
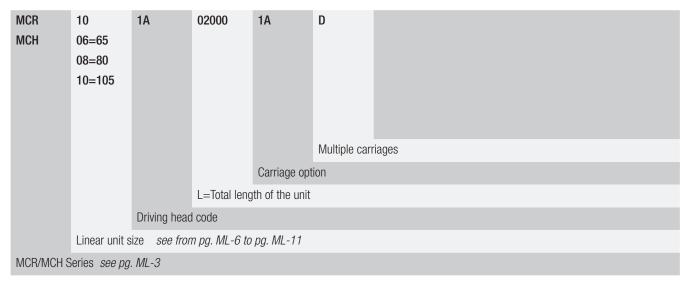



Fig. 18

Ordering key /

▶ Identification codes for the MCR/MCH series

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

		∇	Right
			Left

TCR/TCS series V

TCR/TCS series description

Fig. 19

The TCR/TCS series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting and operations in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in different sizes ranging from 140 to 360 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary maintenance.

TCR

Features a dual Prismatic Rail system.

TCS

Features a dual rail system with four recirculating ball bearing runner blocks.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TCR/ TCS series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon TCR/TCS series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size, and low noise. Used in conjunction

Carriage

The carriage of the Rollon TCR/TCS series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accommodate a vast array of applications.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 37

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	K	m.K	kg . K		
2.7	70	23.8	200	880-900	33	600-655

Tab. 38

Mechanical characteristics

Rm	Rp (02)	А	НВ
N mm²	N —— mm²	%	_
250	200	10	75

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

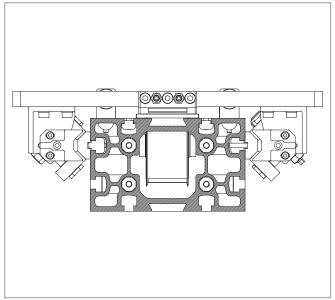
TCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution TCR is specifically dedicated for dirty environments and high dynamics in automation.

- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise


TCS with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.

The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

TCR section

TCS section

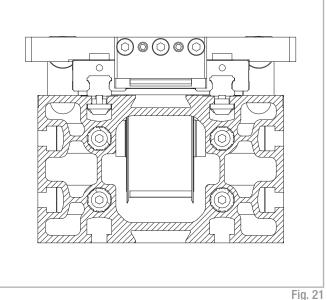
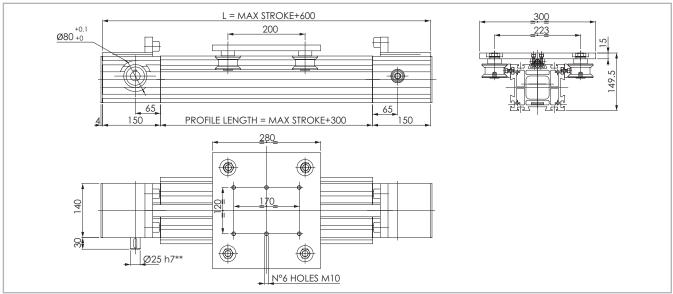



Fig. 20

TCR 140 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

** Output shaft is the only option available

Fig.22

Technical data

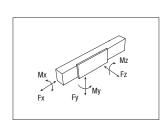
iediiiidai uata	
	Туре
	TCR 140
Max. useful stroke length [mm]	9700
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	20
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	6.0
Zero travel weight [kg]	21.2
Weight for 100 mm useful stroke [kg]	2.2
Starting torque [Nm]	3
Moment of inertia of pulleys [g mm²]	978467
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 40

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]	
TCR 140	11,482,500	8,919,600	20,402,100	
			T-1-44	

Tab. 41

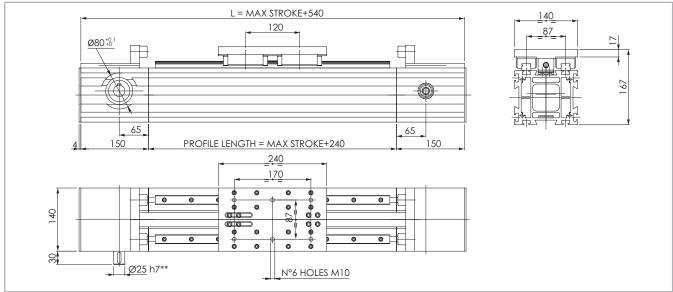

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 140	32 AT 10	32	0.185

Tab. 42

Belt length (mm) = $2 \times L$ - 180


TCR 140 - Load capacity

Туре	F [t	: X N]	F [t	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 140	3187	2170	6000	23405	4000	594	400	600

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 43

TCS 140 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

** Output shaft is the only option available

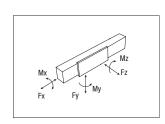
Fig. 23

Technical data

	Туре
	TCS 140
Max. useful stroke length [mm]	9760
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 32
Pulley pitch diameter [mm]	101.86
Carriage displacement per pulley turn [mm]	320
Carriage weight [kg]	4.2
Zero travel weight [kg]	18
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g mm²]	978467
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 44

 $[\]mbox{^*1})$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

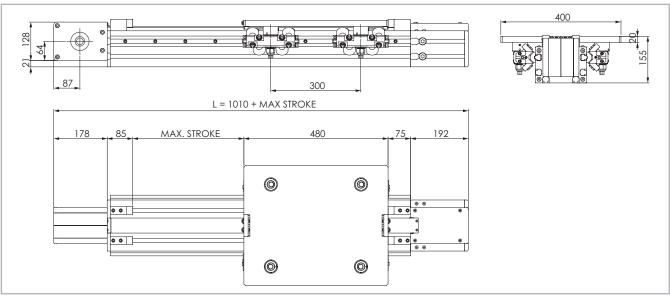

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 140	11,482,500	8,919,600	20,402,100
			Tab. 45

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 140	32 AT 10	32	0.185
			Tab. 46

Belt length (mm) = $2 \times L - 100$



TCS 140 - Load capacity

Туре	Type F _x [N]		F [N	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 140	3187	2170	153600	70798	153600	6682	9216	9216

See verification under static load and lifetime on page SL-2 and SL-3

TCR 170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 24

Technical data

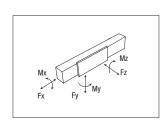
	Туре
	TCR 170
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.2
Zero travel weight [kg]	51.1
Weight for 100 mm useful stroke [kg]	2.4
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm²]	7574717
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 48

 $^{^{\!\}star}$ 1) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	լ _ր
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
TCR 170	19,734,283	9,835,781	29,570,064

Tab. 49

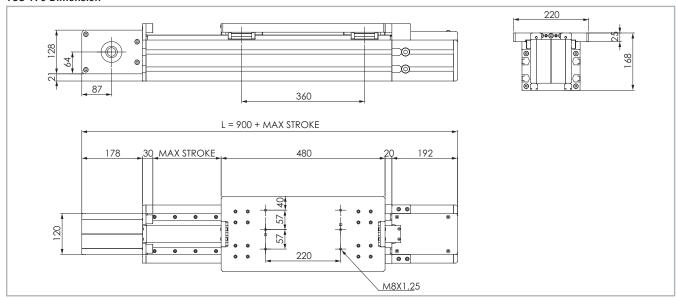

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 170	50 AT 10 HP	50	0.290

Tab. 50

Belt length (mm) = $2 \times L - 250$



TCR 170 - Load capacity

Туре	F _x [N]		F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 170	4980	3300	14142	65928	14142	1202	2121	2121

See verification under static load and lifetime on page SL-2 and SL-3

TCS 170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 25

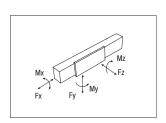
Technical data

	Туре
	TCS 170
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	34.2
Weight for 100 mm useful stroke [kg]	2,2
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm ²]	7574717
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 52

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	 [1 ⁰⁷ mm⁴]
TCS 170	19,734,283	9,835,781	29,570,064
			Tab. 53

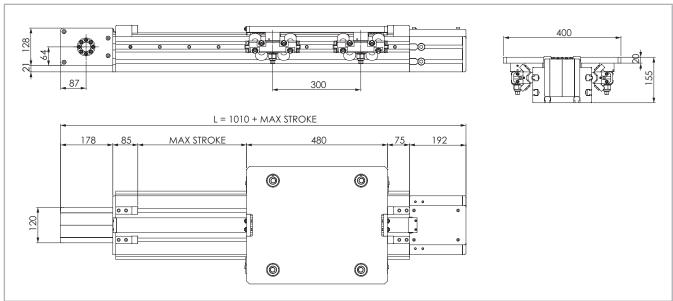

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 170	50 AT 10 HP	50	0.290

Tab. 54

Belt length (mm) = $2 \times L - 250$



TCS 170 - Load capacity

Туре	F _x [N]		F [N	; ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 170	4980	3300	153600	70798	153600	7680	27648	27648

See verification under static load and lifetime on page SL-2 and SL-3

TCR 200 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.26

Technical data

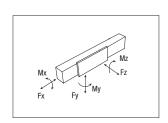
iconincai data	
	Туре
	TCR 200
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	20
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	54.5
Weight for 100 mm useful stroke [kg]	2.7
Starting torque [Nm]	4.2
Moment of inertia of pulleys [g mm²]	7574717
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 56

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
TCR 200	32,697,979	12,893,004	45,860,983

Tab. 57

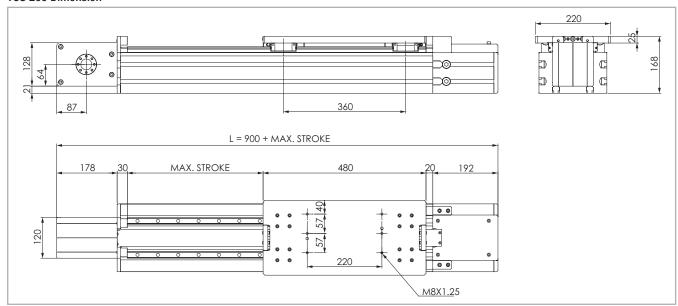

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 200	50 AT 10 HP	50	0.290

Tab. 58

Belt length (mm) = $2 \times L - 250$



TCR 200 - Load capacity

Туре	F [I	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 200	4980	3300	14142	65928	14142	1414	2121	2121

See verification under static load and lifetime on page SL-2 and SL-3

TCS 200 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 27

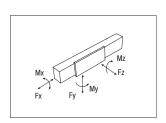
Technical data

	Туре
	TCS 200
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	8.6
Zero travel weight [kg]	39.7
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	4.8
Moment of inertia of pulleys [g mm²]	7574717
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 60

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
TCS 200	32,697,979	12,893,004	45,860,983

Tab. 61

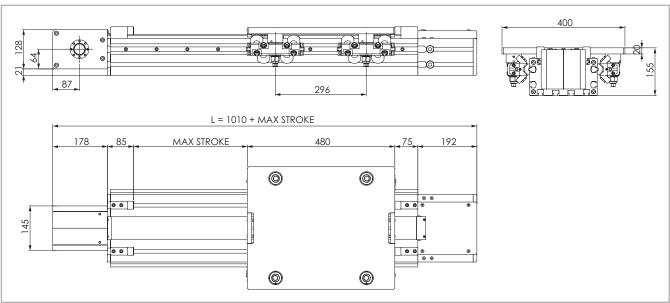

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 200	50 AT 10 HP	50	0.290

Tab. 62

Belt length (mm) = $2 \times L - 250$



TCS 200 - Load capacity

Туре	F [I	: X V]	F [N	; ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 200	4980	3300	153600	70798	153600	7680	27648	27648

See verification under static load and lifetime on page SL-2 and SL-3

TCR 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 28

Technical data

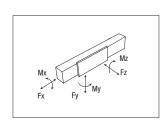
Technical data	
	Туре
	TCR 220
Max. useful stroke length [mm]	11360
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	17.3
Zero travel weight [kg]	60.1
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	5.8
Moment of inertia of pulleys [g mm²]	9829829
Rail size [mm]	35x16
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 64

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

l _× [mm⁴]	l _y [mm⁴]	Ι _ρ [10 ⁷ mm⁴]
46,248,422	15,591,381	61,839,803
		l

Tab. 65

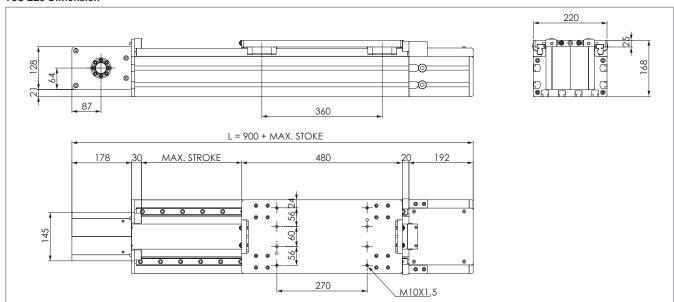

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 220	75 AT 10 HP	75	0.435

Tab. 66

Belt length (mm) = $2 \times L - 250$


TCR 220 - Load capacity

Туре	F [t	: X N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 220	7470	4950	14.142	65928	14142	1556	2093	2093

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 67

TCS 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 29

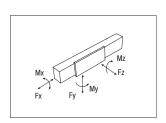
Technical data

	Туре
	TCS 220
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s ²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	9.5
Zero travel weight [kg]	49.3
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	6.9
Moment of inertia of pulleys [g mm²]	9829829
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 68

Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
TCS 220	46,248,422	15,591,381	61,839,803
			Tab. 69

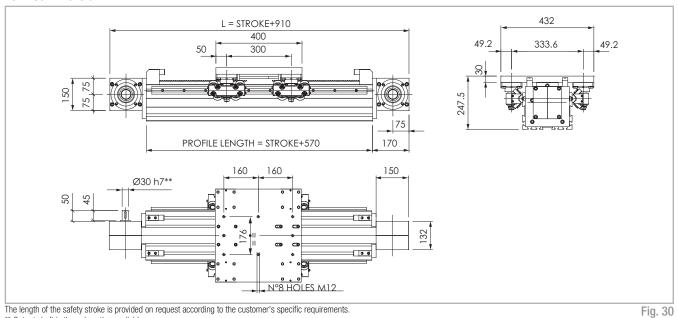

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 220	75 AT 10 HP	75	0.435

Tab. 70

Belt length (mm) = $2 \times L - 250$



TCS 220 - Load capacity

Туре	F [1	: X V]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 220	7470	4950	258800	116833	258800	19410	46584	46584

See verification under static load and lifetime on page SL-2 and SL-3

TCR 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

** Output shaft is the only option available

Technical data

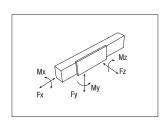
	Туре
	TCR 230
Max. useful stroke length [mm]	11430
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	20
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	23.0
Zero travel weight [kg]	60
Weight for 100 mm useful stroke [kg]	3.3
Starting torque [Nm]	10.5
Moment of inertia of pulleys [g mm²]	12020635
Rail size [mm]	35x16

^{*1)} Positioning repeatability is dependent on the type of transmission used

Tab. 72

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
TCR 230	65,009,000	37,783,000	102,792,000
			Tab. 73

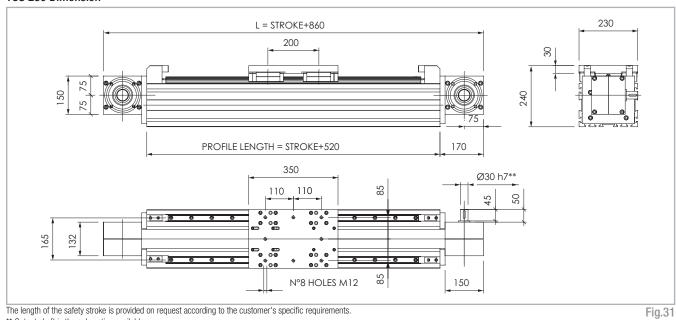

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 230	75 AT 10	75	0.435

Tab. 74

Belt length (mm) = $2 \times L - 100$



TCR 230 - Load capacity

Туре	F [t	: X V]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 230	7470	5220	14142	65928	14142	1626	2121	2121

See verification under static load and lifetime on page SL-2 and SL-3

TCS 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

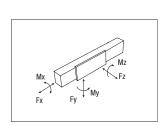
Technical data

Iconincai uata	
	Туре
	TCS 230
Max. useful stroke length [mm]	11480
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	75 AT 10
Type of pulley	Z 40
Pulley pitch diameter [mm]	127.32
Carriage displacement per pulley turn [mm]	400
Carriage weight [kg]	10.5
Zero travel weight [kg]	43.5
Weight for 100 mm useful stroke [kg]	3.7
Starting torque [Nm]	11.5
Moment of inertia of pulleys [g mm²]	12020635
Rail size [mm]	30
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 76

 $^{^{\}star}$ 1) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _× [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]	
TCS 230	65,009,000	37,783,000	102,792,000	
			Tab. 77	

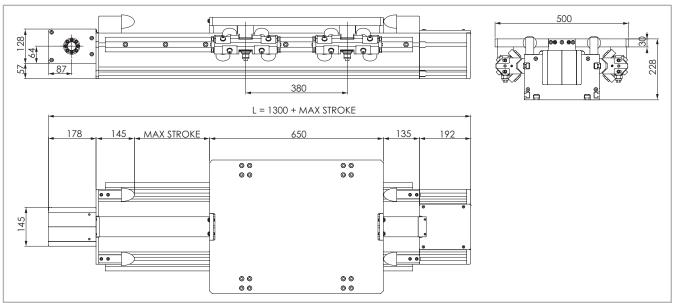

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 230	75 AT 10	75	0.435

Tab. 48

Belt length (mm) = $2 \times L - 60$


TCS 230 - Load capacity

Туре	F [I	: X N]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 230	7470	5220	355200	172074	355200	29304	35520	35520

See verification under static load and lifetime on page SL-2 and SL-3

^{**} Output shaft is the only option available

TCR 280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 32

Technical data

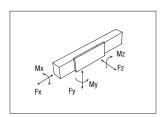
	Туре
	TCR 280
Max. useful stroke length [mm]	11070
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	20
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	47.3
Zero travel weight [kg]	126.1
Weight for 100 mm useful stroke [kg]	4.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm²]	9829829
Rail size [mm]	55x25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 80

¹⁾ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]		
TCR 280	126,456,500	48,292,512	174,749,312		
			T-I- 04		

Tab. 81

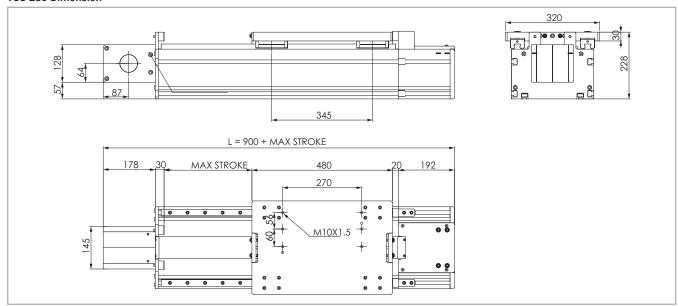

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCR 280	75 AT 10 HP	75	0.435

Tab. 82

Belt length (mm) = $2 \times L - 230$



TCR 280 - Load capacity

Туре	F _x [N]		F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 280	7470	4950	24042	112593	24042	3366	4568	4568

See verification under static load and lifetime on page SL-2 and SL-3

TCS 280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

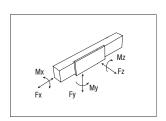
Fig. 33

Technical data

	Туре
	TCS 280
Max. useful stroke length [mm]	11470
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	75 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	18
Zero travel weight [kg]	65.1
Weight for 100 mm useful stroke [kg]	4.6
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm²]	9829829
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 84

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
TCS 280	126,456,800	48,292,512	174,749,312
			Tab. 85

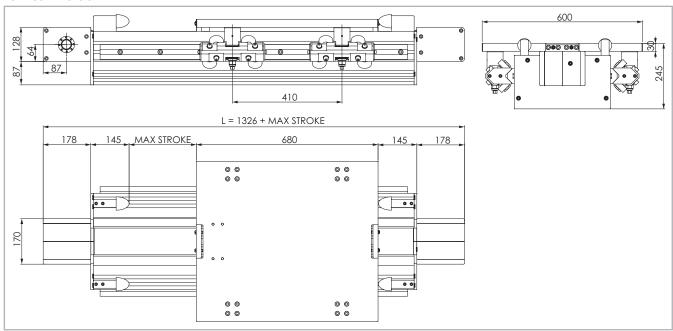

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 280	75 AT 10 HP	75	0.435

Tab. 86

Belt length (mm) = $2 \times L - 230$



TCS 280 - Load capacity

Туре	Type F _x [N]		F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 280	7470	4950	258800	116833	258800	31056	46584	46584

See verification under static load and lifetime on page SL-2 and SL-3

TCR 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 34

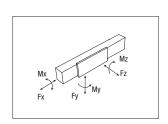
Technical data

Technical data	
	Туре
	TCR 360
Max. useful stroke length [mm]	11030
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	10
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	56.3
Zero travel weight [kg]	163
Weight for 100 mm useful stroke [kg]	6.8
Starting torque [Nm]	8.5
Moment of inertia of pulleys [g mm²]	14085272
Rail size [mm]	55x25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 88

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	 [10 ⁷ mm⁴]
TCR 360	317,212,806	103,285,258	420,498,064
			Tab. 89

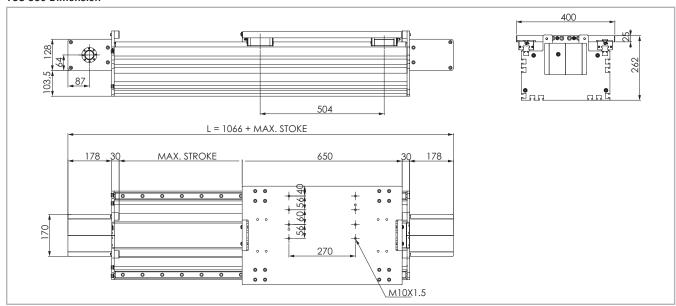

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]	
TCR 360	100 AT 10 HP	100	0.58	

Tab. 90

Belt length (mm) =



TCR 360 - Load capacity

Туре	F [I	F _x [N]		: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 360	9960	6600	24042	112593	24042	4327	4929	4929

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

TCS 360 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

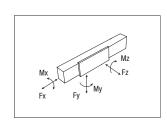
Fig. 35

Technical data

	Туре
	TCS 360
Max. useful stroke length [mm]	11290
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	5
Max. acceleration [m/s²]	50
Type of belt	100 AT 10 HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.2
Zero travel weight [kg]	104.6
Weight for 100 mm useful stroke [kg]	6.9
Starting torque [Nm]	8.3
Moment of inertia of pulleys [g mm²]	14085272
Rail size [mm]	30
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 92

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l [mm⁴]	l _p [10 ⁷ mm⁴]
TCS 360	317,212,806	103,285,258	420,498,064
			Tab. 93


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
TCS 360	100 AT 10 HP	100	0.580

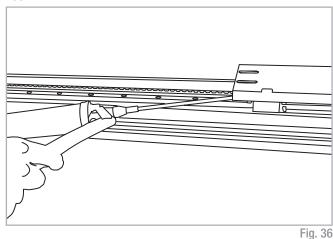
Tab. 94

Belt length (mm) = $2 \times L - 260$

TCS 360 - Load capacity

Туре	F [1	: X N]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 360	9960	6600	266400	142231	266400	42624	61272	61272

See verification under static load and lifetime on page SL-2 and SL-3


Lubrication

TCS linear units with ball bearing guides

TCS Linear units are equipped with ball bearing carriage fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment. Lubrication interval between maintenance every 2000 Km or 1 year of use, based on the value reached first.

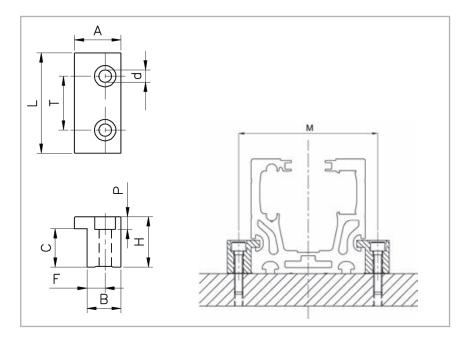
If a long service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

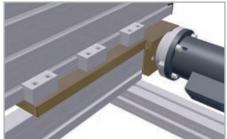
TCS

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease [cm³]
TCS 140	1.4
TCS 170	1.4
TCS 200	1.4
TCS 220	2.0
TCS 230	4.2
TCS 280	2.0
TCS 360	3.2

Tab. 96


- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice


TCR linear units with roller guides

Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might be indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Accessories

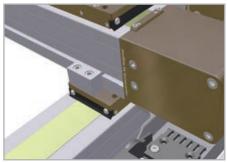
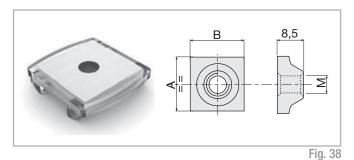


Fig.37

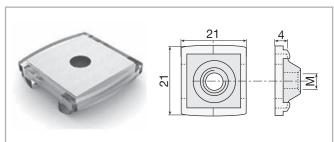
Material: aluminum alloy 6082


Unit	bxh	Α	L	Т	d	Н	Р	С	F	В	M	Code		
TCR/TCS 170	120x170										198			
TCR/TCS 200	120x200	30	90	50	11	40	11	28.3	14	25	228	415.0762		
TCR/TCS 220	120x220			0									248	
TCR/TCS 280	170x280	30	90	50	11	20	11	11.3	14	25	308	415.0763		
TCR/TCS 280 Vert.	280x170	30	90	50	11	20	11	13.5	14	25	198	915.1174		

Semi-rounded threaded inserts with spring

Threaded plate for base profile 45, 50 and 60. Material: galvanised steel. Important: to be inserted through the longitudinal slots before assembling.

Suitable for series:


TC 170-180-200-220-360

АхВ				
18x18	20x20			
209.0031	209.0023			
209.0032	209.0019			
209.033	209.1202			
209.0034	209.0467			
	18x18 209.0031 209.0032 209.033			

Tab. 98

Plastic compound spring for vertical positioning of insert.

Spring	Code
Suitable for all inserts 18x18	101.0732

Tab. 99

Assembly brackets

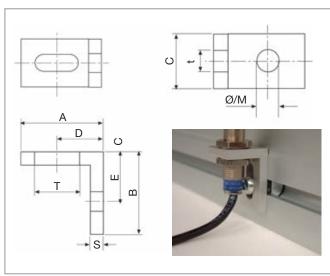
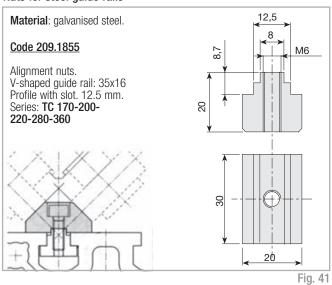
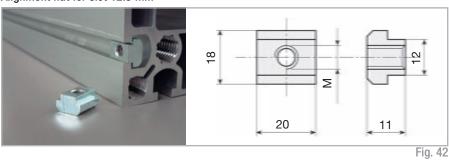


Fig. 40

Material: natural, anodized anticorodal alloy.

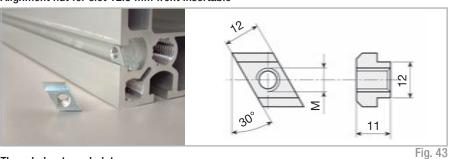

	Thre	ad							Co	de
	Α	В	С	D	Е	S	Txt	Ø/M	Ø	M
	45	45	20	25	25	5	20X6.5	6	A30-76	A 30-86
	35	25	20	19	15	5	20X6.5	4	A30-54	A30-64
	35	25	20	19	15	5	20X6.5	5	A30-55	A30-65
	35	25	20	19	15	5	20X6.5	6	A30-56	A30-66
	25	25	15	14	15	4	13.5X5.5	3	B30-53	B30-63
	25	25	14	14	15	4	13.5X5.5	4	B30-54	B30-64
	25	25	15	14	15	4	13.5X5.5	5	B30-55	B30-65
	25	25	15	14	15	4	13.5X5.5	6	B30-56	B30-66
9	Suitable for all the modules Tal									Tab. 100

 $\mathbf{M} = \text{Threaded version}$


 $\mathbf{Ø} = \text{Passing trough hole version}$

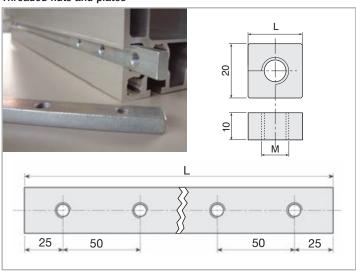
Alignment nuts

Nuts for steel guide rails


Alignment nut for slot 12.5 mm

 $\begin{tabular}{ll} \textbf{Material}: galvanised steel. Suitable for series: \\ \textbf{TC 170-200-280-360} \end{tabular}$

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 101


Alignment nut for slot 12.5 mm front insertable

Material: galvanised steel. Suitable for series: **TC 170-200-280-360**

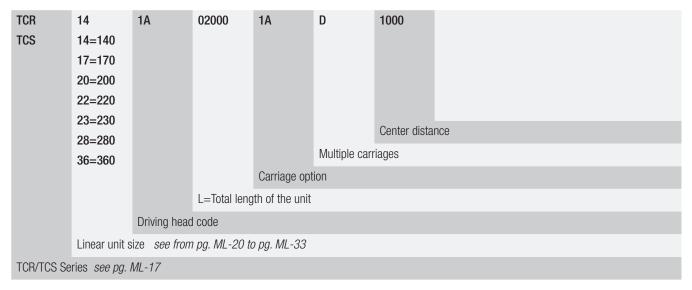
Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 102

Threaded nuts and plates

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

Material: galvanised steel. Suitable for series:

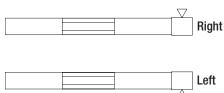
TC 170-200-220-280-360


Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Hole centre-distance: 50 mm.

Tab. 103 ML-37

Ordering key / ~


Identification codes for the TCR/TCS series

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ZCR/ZCH series /

ZCR/ZCH series description

Fig. 45

The ZCR/ZCH series linear units are designed to meet the vertical motion requirements in gantry applications or where the aluminum profile must be moving and the carriage must be fixed. The self-supporting extruded and anodized aluminum structure is available in different sizes from 60 to 220 mm. Being a rigid system, it is ideal for a "Z" axis in a 3-axis system. In addition, the ZCR/ZCH series has been specifically designed and configured to be easily assembled with the R-SMART, TCR/TCS series and ROBOT series.

ZCR

Features a dual Prismatic Rail system.

ZCH

Features a dual recirculating ball guide system.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon ZCR/ZCH series linear units were designed and manufactured in cooperation with a leading company in this field, to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below) was extruded with dimensional tolerances complying with EN 755-9 standards.

backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon ZCR/ZCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a

Carriage

The carriage of the Rollon ZCR/ZCH series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 104

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22.111.10	U
2.7	70	23.8	200	880-900	33	600-655

Tab. 105

Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
250	200	10	75

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

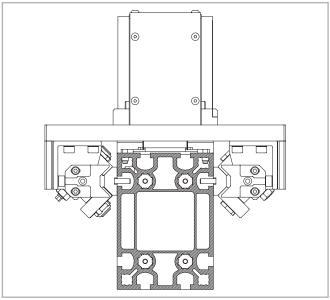
ZCR with Prismatic Rail:

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution ZCR is specifically dedicated for dirty environments and high dynamics in automation.

- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise


ZCH with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled on preloaded ball bearing blocks that allow to withstand loading in the four main directions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides.

The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

ZCR section

ZCH section

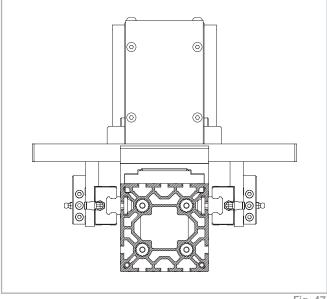
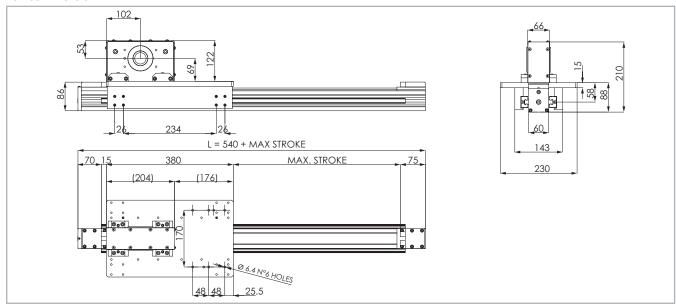



Fig. 46

Fig. 47

ZCH 60

ZCH 60 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.48

Technical data

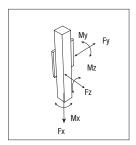
	Туре
	ZCH 60
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	40
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.1
Zero travel weight [kg]	15.8
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.8
Rail size [mm]	15
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 107

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
ZCH 60	433,914	426,003	859,918

Tab. 108

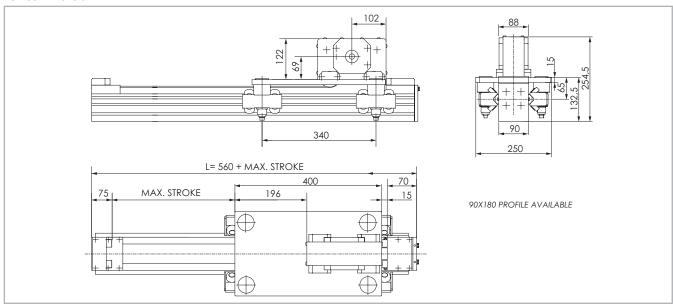

Tab. 109

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 60	32 AT 10 HF	32	0.185

Belt length (mm) = L + 190


ZCH 60 - Load capacity

Туре	F [1	: X V]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 60	2656	1760	61120	39780	61120	2216	7946	7946

See verification under static load and lifetime on page SL-2 and SL-3

ZCR 90

ZCR 90 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 49

Technical data

	Туре
	ZCR 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	11.6
Zero travel weight [kg]	19.4
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.8
Rail size [mm]	28.6x11

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Tab. 111

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
ZCR 90	1,969,731	1,950,080	3,919,811

Tab. 112

Driving belt

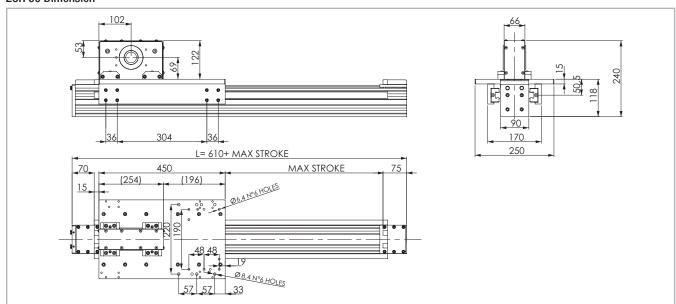
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 90	32 AT 10 HF	32	0.185
			Tab. 113

Belt length (mm) = L + 190

My Fy

ZCR 90 - Load capacity


Туре	F [t	: X N]	F [I	= V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCR 90	2656	1760	7637	28286	7637	344	1298	1298

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 114

ZCH 90

ZCH 90 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 50

Technical data

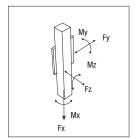
	Туре
	ZCH 90
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	20
Type of belt	32 AT 10 HF
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	12.8
Zero travel weight [kg]	20.6
Weight for 100 mm useful stroke [kg]	1.3
Starting torque [Nm]	1.8
Rail size [mm]	20

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p	
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]	
ZCH 90	1,969,731	1,950,080	3,919,811	

Tab. 116


Tab. 117

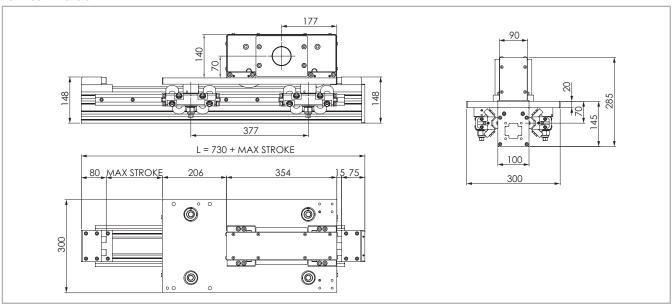
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 90	32 AT 10 HF	32	0.185

Belt length (mm) = L + 190

ZCH 90 - Load capacity


Туре	F [I	: X V]	F _.	,]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 90	2656	1760	102520	73274	102520	5510	14865	14865

Tab. 115

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

ZCR 100

ZCR 100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 51

Technical data

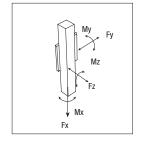
	Туре
	ZCR 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	27.6
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	1.3
Starting torque [Nm]	4.5
Rail size [mm]	35x16

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	_p	
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]	
ZCR 100	3,637,190	3,457,193	7,094,383	

Tab. 120


Driving belt

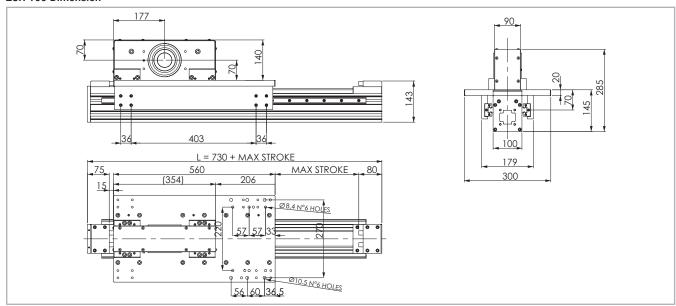
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 100	50 AT 10 HPF	50	0.290

Belt length (mm) = L + 250

Tab. 121

ZCR 100 - Load capacity


Туре	F _x [N]		F [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 100	4980	3480	14142	65298	14142	707	2666	2666

Tab. 119

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

ZCH 100

ZCH 100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 52

Technical data

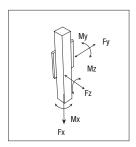
	Туре
	ZCH 100
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s ²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.1
Zero travel weight [kg]	37.4
Weight for 100 mm useful stroke [kg]	1.5
Starting torque [Nm]	4.5
Rail size [mm]	20
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 123

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
ZCH 100	3,637,190	3,457,193	7,094,383

Tab. 124

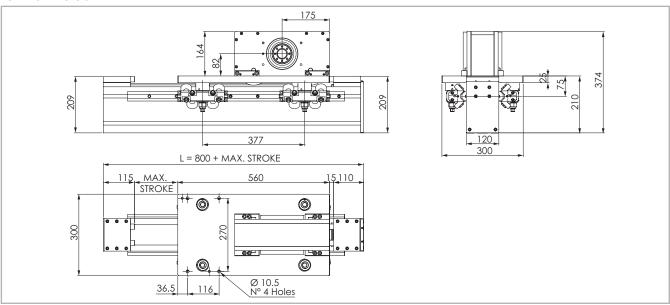

Tab. 125

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 100	50 AT 10 HPF	50	0.290

Belt length (mm) = L + 250


ZCH 100 - Load capacity

Туре	F [I	: X N]	F [N	: Ĭ]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 100	4980	3480	102520	73274	102520	6023	22503	22503

See verification under static load and lifetime on page SL-2 and SL-3

ZCR 170

ZCR 170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 53

Technical data

	Туре
	ZCR 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	55.4
Weight for 100 mm useful stroke [kg]	2.6
Starting torque [Nm]	7.8
Rail size [mm]	35x16

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Tab. 127

Moments of inertia of the aluminum body

Туре	l mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
ZCR 170	19,734,283	9,835,781	29,570,064
			Tab. 128

Driving belt

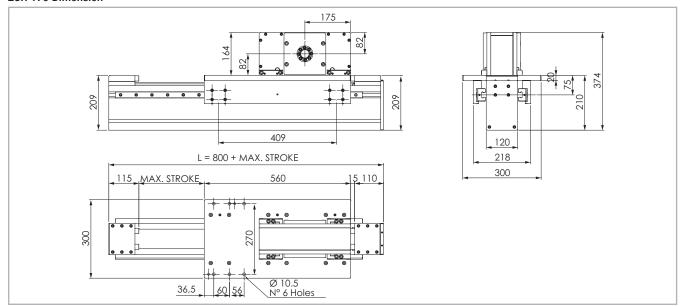
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 170	75 AT 10 HPF	75	0.435
			Tab. 129

Belt length (mm) = L + 280

My Fy

ZCR 170 - Load capacity


Туре	F [t	: X V]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 170	7470	5220	14142	65298	14142	849	2666	2666

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Tab. 136

ZCH 170

ZCH 170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.54

Technical data

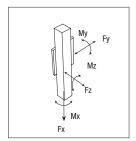
	Туре
	ZCH 170
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	53.7
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	7.8
Rail size [mm]	25

 $^{^{\}star}$ 1) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I [10 ⁷ mm⁴]
ZCH 170	19,734,283	9,835,781	29,570,064

Tab. 131


Tab. 132

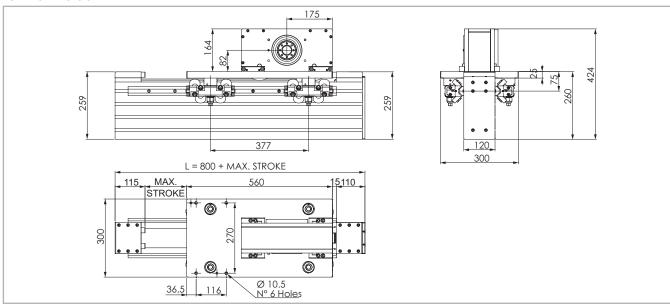
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 170	75 AT 10 HPF	75	0.435

Belt length (mm) = L + 280

ZCH 170 - Load capacity


Туре	F [1	: X V]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 170	7470	5220	174480	124770	174480	12388	35681	35681

Tab. 130

See verification under static load and lifetime on page SL-2 and SL-3

ZCR 220

ZCR 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 55

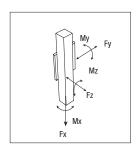
Technical data

	Туре
	ZCR 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	32.5
Zero travel weight [kg]	61
Weight for 100 mm useful stroke [kg]	3.2
Starting torque [Nm]	7.8
Rail size [mm]	35x16

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Tab. 134

Moments of inertia of the aluminum body

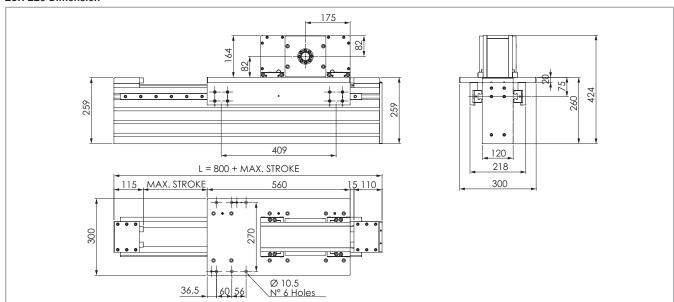

Туре	l [mm⁴]	l [mm⁴]	I _p [10 ⁷ mm⁴]
ZCR 220	46,248,422	15,591,381	61,839,803
			Tab. 135

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCR 220	75 AT 10 HPF	75	0.435
			Tab. 136

Belt length (mm) = L + 280


ZCR 220 - Load capacity

Туре	F [t	: X V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 220	7470	5220	14142	65298	14142	849	2666	2666

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

ZCH 220

ZCH 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig.56

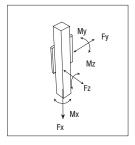
Technical data

	Туре
	ZCH 220
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	4
Max. acceleration [m/s²]	25
Type of belt	75 AT 10 HPF
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	34.4
Zero travel weight [kg]	60.7
Weight for 100 mm useful stroke [kg]	3.5
Starting torque [Nm]	7.8
Rail size [mm]	25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 138

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l mm⁴]	l _y [mm⁴]	 [10 ⁷ mm⁴]
ZCH 220	46,248,422	15,591,381	61,839,803
			Tab. 139


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZCH 220	75 AT 10 HPF	75	0.435

Tab. 140

Belt length (mm) = L + 280

ZCH 220 - Load capacity

Туре	F [1	: X V]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCH 220	7470	5220	174480	124770	174480	12388	35681	35681

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

ZCH linear units with ball bearing guides

The ball bearing carriages of the ZCH versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every

2000 Km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

ZCH

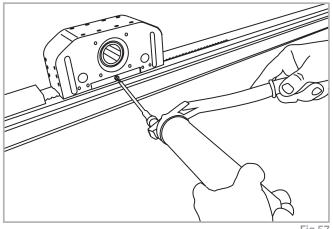


Fig.57

Quantity of lubricant necessary for re-lubrication for each block:

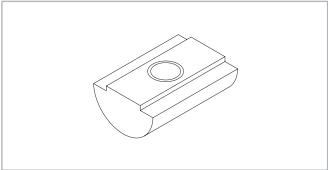
Туре	Quantity of Grease [cm³]
ZCH 60	0.2
ZCH 90	0.5
ZCH 100	0.5
ZCH 170	0.6
ZCH 220	0.6

Tab. 142

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.

Contact Rollon for further advice

ZCR linear units with roller guides


Roller slides are provided with a permanent lubrication system which, if properly used, eliminates the need for any further maintenance, also considering the average life of any handling device. For applications on plants with a high number of daily cycles, or with a significant build-up of impurities, please check the need for lubrication, seals and additional tanks with our technical dept. Do not use solvents to clean rollers or roller slides, as you could unintentionally remove the grease lubricating coat applied to the rolling elements during assembly. Use lithium soap based mineral grease according to DIN 51825 - K3N.

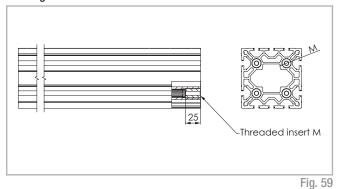
If properly assembled, guide rails do not require any lubrication, which would attract impurities and have negative consequences. Should there be any surface defects on the guide rails and/or on the rolling parts, such as pitting or erosion, this might indicative of an excessive loading. In this case, all worn parts must be replaced and the load geometry and alignment checked.

Accessories

To install accessories on ZCH series aluminum profile we recommend to use the T-nuts shown below

T-nuts

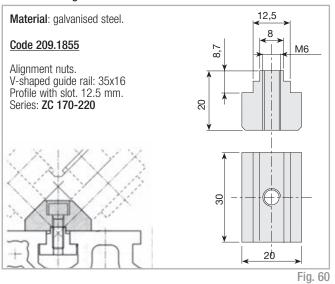
Steel nuts to be used in the slots of the body.

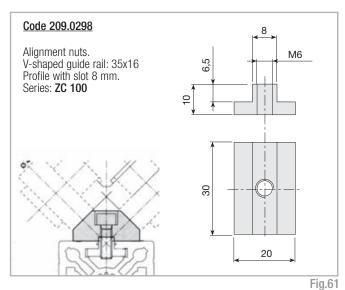

Fig.58

Units (mm)

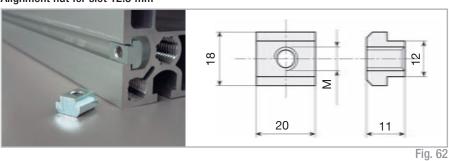
	Hole	Length	Code Rollon
ZCH 60	M4	8	1001046
ZCH 90	M5	10	1000627
ZCH 100	M6	13	1000043
ZCR 90	M4	8	1000627
ZCR 100	M5	10	1000043

Tab. 143

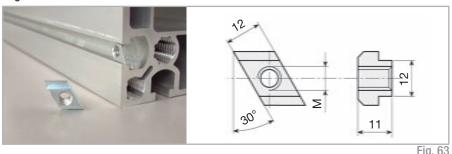

Bushings for ZCR/ZCH series



	Threaded insert Nb. x M				
ZCH 60	1 x M6	1 x M8	1 x M10		
ZCH 90	4 x M6	4 x M8	4 x M10		
ZCH 100	4 x M6	4 x M8	4 x M10		
ZCH 170		4 x M8	4 x M10	4 x M12	
ZCH 220		4 x M8	4 x M10	4 x M12	

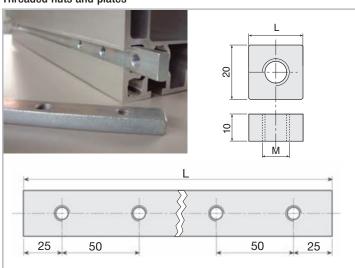

Alignment nuts

Nuts for steel guide rails


Alignment nut for slot 12.5 mm

Material: galvanised steel. Suitable for series: **ZC 170-220**

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124
	Tab. 145

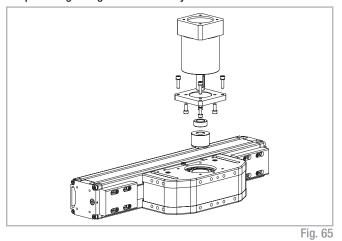

Alignment nut for slot 12.5 mm front insertable

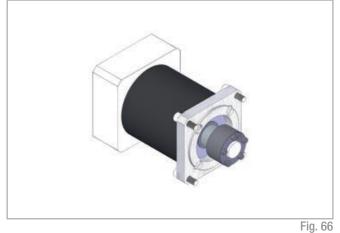
 ${f Material}$: galvanised steel. Suitable for series: ${f ZC}$ 170-220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125
	Tab. 146

Threaded nuts and plates

M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.


Material: galvanised steel. Suitable for series:

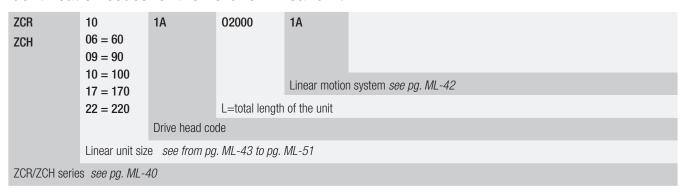

ZC 170-220

20 110 220			
Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

Fig.64 * Hole centre-distance: 50 mm.

Adapter flange for gearbox assembly

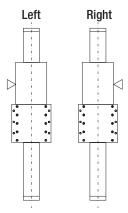
Assembly kit includes: shrink disk; adapter plate; fixing hardware


Gearbox type (not included) Kit Code Unit 4001915 MP080 ZCH 60/90 CP080 4001970 PSF221 4001917 LP120; PE5; LC120 4001856 SP100; P5 4001857 PSF321 4001858 **ZCH 100** PSF521 4001859 EP120TT 4001860 MP105 4001861 MP080 4001951

Tab. 148

For other gearbox type ask Rollon

Ordering key / ~


▶ Identification codes for the ZCR/ZCH linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

ZMCH series / ~

ZMCH series description

Fig. 67

ZMCH

The ZMCH series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the aluminum profile must be moving and the carriage must be fixed.

The self-supporting extruded and anodized aluminum structure is available in three sizes. Since it is a rigid system, it is ideal for a "Z" axis in a 3-axis system by using a linear guide rail.

In addition, the ZMCH series has been specifically designed and configured to be easily assembled with the R-SMART, TCS/TCR series and ROBOT series.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon ZMCH series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards.

characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Driving belt

The Rollon ZMCH series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission

Carriage

The carriage of the Rollon ZMCH series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 149

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10	Ü
2.7	70	23.8	200	880-900	33	600-655

Tab. 150

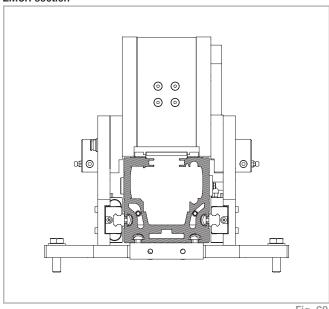
Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
250	200	10	75

Tab. 151

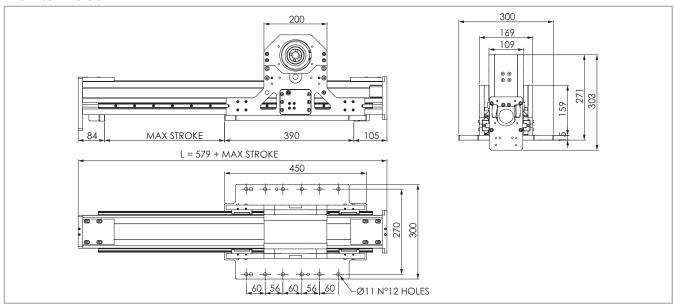
The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon ZMCH System series systems feature a linear motion system with ball bearing guides:


ZMCH with recirculating ball guides:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on pre-loaded ball bearing blocks that enables the carriage to withstand loading in the four main directions
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:


- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

ZMCH section

ZMCH 105

ZMCH 105 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 69

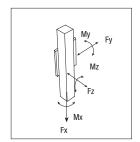
Technical data

	Туре
	ZMCH 105
Max. useful stroke length [mm]	2100
Max. positioning repeatability [mm]*1	± 0.1
Max. speed [m/s]	3
Max. acceleration [m/s²]	25
Type of belt	50 AT 10 HPF
Type of pulley	Z 29
Pulley pitch diameter [mm]	92.31
Carriage displacement per pulley turn [mm]	290
Carriage weight [kg]	16.5
Zero travel weight [kg]	28
Weight for 100 mm useful stroke [kg]	1.5
Starting torque [Nm]	4.4
Rail size [mm]	15

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Tab. 152

Moments of inertia of the aluminum body


Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
ZMCH 105	5,675,808	4,476,959	10,152,767
			Tab. 153

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight per meter [kg/m]
ZMCH 105	50 AT 10 HPF	50	0.290
			Tab. 154

Belt length (mm) = L + 260

ZMCH 105 - Load capacity

Туре	F [t	: X N]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZMCH 105	4980	5850	61120	39780	61120	3591	10390	10390

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Lubrication

ZMCH linear units with ball bearing guides

The ball bearing carriages are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 km or 1 year of use, based on the value reached first. If a longer

service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

ZMCH

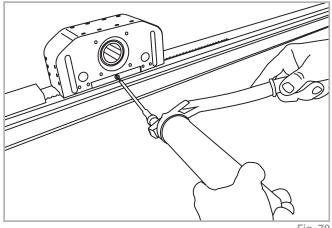
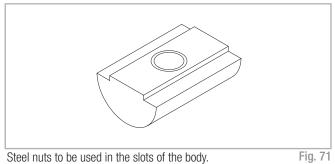


Fig. 70

Quantity of lubricant necessary for re-lubrication for each block:

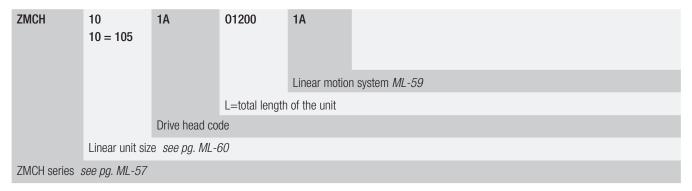

Туре	Quantity of Grease [cm³]
ZMCH 105	0.2

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Accessories

To install accessories on ZMCH series aluminum profile we recommend to use the T-nuts shown below

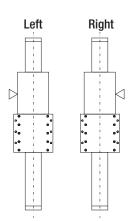
T-nuts


Steel nuts to be used in the slots of the body.

Units (mm)

	Hole	Length	Code Rollon
ZMCH 105	M4	8	1001046

Ordering key / ~

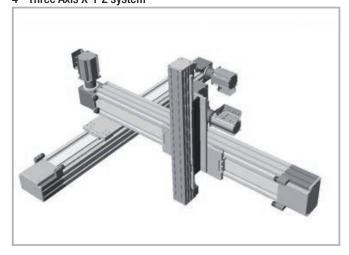

Identification codes for the ZMCH series

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

Multiaxis systems

1 - Two axis Y-Z system


2 - Two axis X-Y system


3 - Three axis X-Y-Z system

4 - Three Axis X-Y-Z system

5 - Two axis Y-Z system

6 - Two axis Y-Z system

TH series / ~

TH series description

Fig. 1

TH linear actuators are rigid and compact, ball screw driven linear units, that enable high positioning accuracy and repeatability in all process phases. With optimal performance assured, TH actuators have a repeatability within 5 μ m.

Thrust force transmission is achieved by means of super high efficient ball screws, which are available in several precision classes and a variety of leads. Linear motion is based on two or four preloaded re-circulating ball bearing blocks, with ball retainer technology, mounted on two precision aligned parallel rails. The TH series is available in single carriage or double carriage versions to meet different load requirements.

The TH linear units also feature safe rail and screw lubrication through a dedicated channel for each component. The incredibly compact structure of the TH actuator makes it the ideal solution for applications where space is limited.

- Extremely compact dimensions
- High positioning accuracy
- High load capacity and stiffness
- Preloaded ball screw
- Block with ball retainer
- Internal protected rails and ball screw
- Safe lubrication through dedicated channels for each component (block and ball screw)

The components

Aluminum base unit and carriage

The anodized extrusions used for the profile and carriages of the Rollon TH-series linear units were designed and manufactured in cooperation with industry experts to achieve high-level accuracy and to maximize mechanical properties. The anodized aluminum alloy 6060 used and was extruded with dimensional tolerances complying with UNI 3879 standards.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TH series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

Drive system

Rollon TH-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 7, however ISO 5 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

Protection

Rollon TH series linear units are equipped with sealing strips in order to protect the mechanical components inside the linear unit against contaminants. In addition, the ball bearing guides and ball screws have their own protection system, including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 m 10-9	°C
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	-0
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

TH 70 SP2

TH 70 SP2 Dimensions (single carriage)

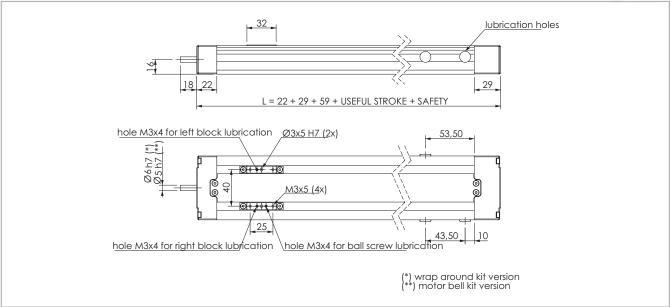


Fig. 2

Technical data

	Туре
	TH 70 SP2
Max. useful stroke length [mm]	591
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.152
Zero travel weight [kg]	0.58
Weight for 100 mm useful stroke [kg]	0.26
Rail size [mm]	9 mini

Moments of inertia of the aluminum body

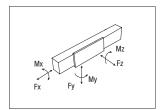
Туре		l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 70 SP2	0.0054	0.0367	0.042

Tab. 6

Tab. 4

Tab. 5

Ball screw precision


Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5* ISO 7		ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.02	0.02

 $^{^{\}star}$ ISO5 available only for max stroke 370mm.

TH 70 SP2 - Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
TH 70 SP2	8-2.5	2220	1470		

Tab. 7

TH 70 SP2 - Load capacity

Туре	F _y [N]		F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 70 SP2	4990	3140	4990	99.8	12.8	12.8

TH 70 SP4

TH 70 SP4 Dimensions (dual carriage)

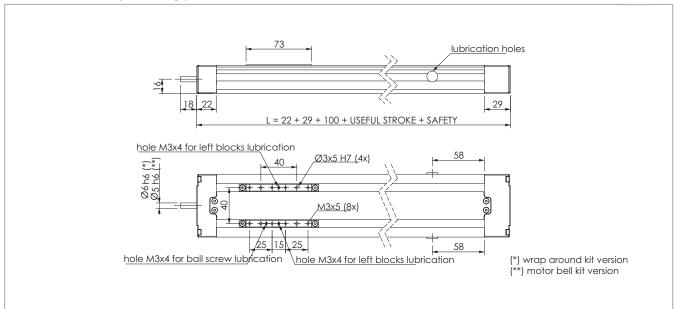


Fig. 3

Technical data

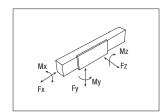
	Туре
	TH 70 SP4
Max. useful stroke length [mm]	550
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.268
Zero travel weight [kg]	0.8
Weight for 100 mm useful stroke [kg]	0.26
Rail size [mm]	9 mini

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 70 SP4	0.0054	0.0367	0.042

Tab. 11

Tab. 9

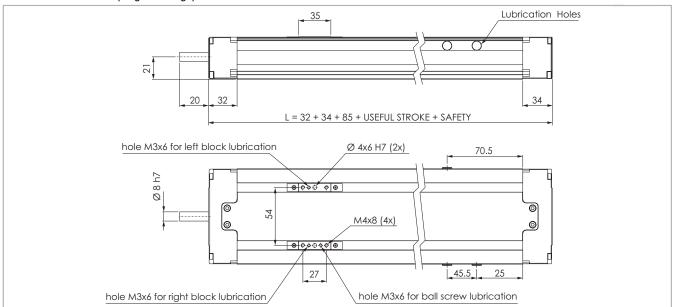

Ball screw precision

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
			ISO 5*	ISO 7
TH 70 / 8-2.5	0.023	0.05	0.02	0.02
* ISO5 available only for max	stroke 330mm.			Tab. 10

TH 70 SP4 - Load capacity F_x

Туре	F _x [N]				
	Screw Stat. Dyn				
TH 70 SP4	8-2.5	2220	1470		

Tab. 12


TH 70 SP4 - Load capacity

Туре	F	: Vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 70 SP4	9980	6280	9980	200	319	319

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

TH 90 SP2

TH 90 SP2 Dimensions (single carriage)

Technical data

	Туре
	TH 90 SP2
Max. useful stroke length [mm]	665
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.65
Zero travel weight [kg]	1.41
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini

Tab. 14

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 90 SP2	0.0130	0.0968	0.1098

Starting torque

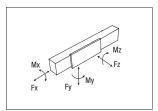
Туре	Ball Screw	[Nm]
TH 90 SP2	12-05	0.07
	12-10	0.08

Tab. 17

Fig. 4

Tab. 16

Ball screw precision

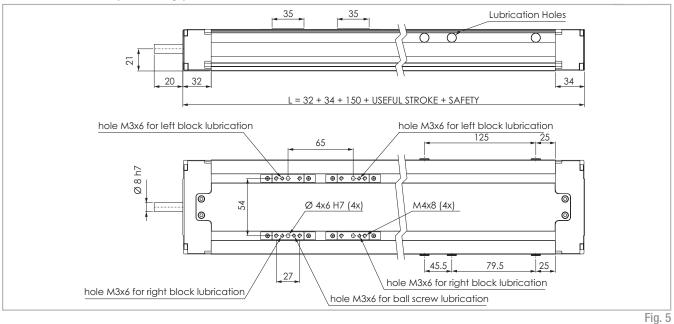

Туре	Max. positioning precision [mm/300mm]			eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TH 90 / 12-05	0.023	0.05	0.02	0.02
TH 90 / 12-10	0.023	0.05	0.02	0.02

Tab. 15

TH 90 SP2 - Load capacity F_x

Туре		F _x [N]	
	Screw	Stat.	Dyn.
TH OO CD2	12-05	9000	4300
TH 90 SP2	12-10	6600	3600

Tab. 18



TH 90 SP2 - Load capacity

Туре	F [N	: Ň]	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 90 SP2	7060	6350	7060	192	24	24

TH 90 SP4

TH 90 SP4 Dimensions (dual carriage)

Technical data

	Туре
	TH 90 SP4
Max. useful stroke length [mm]	600
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	0.90
Zero travel weight [kg]	2.04
Weight for 100 mm useful stroke [kg]	0.6
Rail size [mm]	12 mini
	Tah 20

Tab. 20

Moments of inertia of the aluminum body

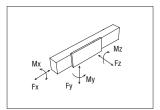
Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 90 SP4	0.0130	0.0968	0.1098
			Tab. 22

Starting torque

12-05 0.07	Туре	Ball Screw	[Nm]
	TH 00 CD4	12-05	0.07
12-10 0.08	TH 90 SP4	12-10	0.08

Tab. 23

Ball screw precision

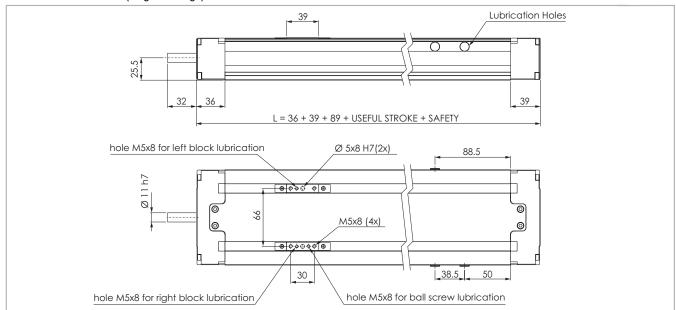

Туре	Max. positioning precision [mm/300mm]		Max. repeatability precision [mm]	
TH 90 / 12-05	0.023	0.05	0.02	0.02
TH 90 / 12-10	0.023	0.05	0.02	0.02

Tab. 21

TH 90 SP4 - Load capacity F_x

Туре	F _x [N]				
	Screw	Stat.	Dyn		
TH 00 CD4	12-05	9000	4300		
TH 90 SP4	12-10	6600	3600		

Tab. 24


TH 90 SP4 - Load capacity

Туре	F [1	: V V	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 90 SP4	14120	12699	14120	384	459	459

See verification under static load and lifetime on page SL-2 and SL-3

TH 110 SP2

TH 110 SP2 Dimensions (single carriage)

Technical data

Ball screw precision

TH 110 / 16-05

TH 110 / 16-10

TH 110 / 16-16

Type

Toolingar data					
	Туре				
	TH 110 SP2				
Max. useful stroke length [mm]	1411				
Max. speed [m/s]	See page PS-14				
Carriage weight [kg]	0.76				
Zero travel weight [kg]	2.65				
Weight for 100 mm useful stroke [kg]	0.83				
Rail size [mm]	15				

Max. positioning

precision [mm/300mm]

ISO 7

0.05

0.05

0.05

ISO 5

0.023

0.023

0.023

Tab. 26

Max. repeatability

precision [mm]

ISO 5

0.005

0.005

0.005

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 110 SP2	0.0287	0.2040	0.2327
			Tab. 28

Starting torque

Туре	Ball Screw	[Nm]
TH 110 SP2	16-05	0.16
	16-10	0.23
	16-16	0.27

TH 110 SP2 - Load capacity F,

Туре		F _x [N]	
	Screw	Stat.	Dyn.
TH 110 SP2	16-05	17400	11800
	16-10	18300	10500
	16-16	18800	10300
			Tab. 30

Tab. 27

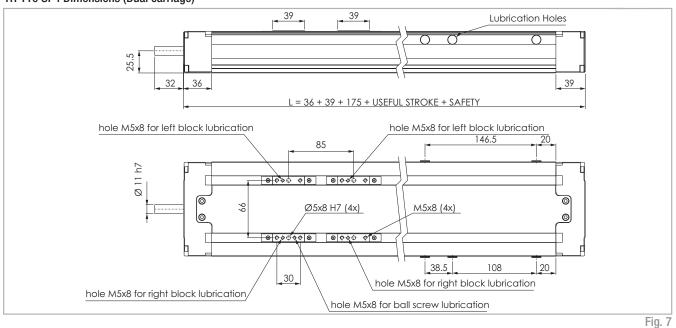
ISO 7

0.045

0.045

0.045

Mx Fz Fz Fz


TH 110 SP2 - Load capacity

Туре	F [1	: Vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 110 SP2	48400	22541	48400	1549	350	350

Fig. 6

TH 110 SP4

TH 110 SP4 Dimensions (Dual carriage)

Technical data

Ball screw precision

TH 110 / 16-05

TH 110 / 16-10

TH 110 / 16-16

Туре

	Туре
	TH 110 SP4
Max. useful stroke length [mm]	1325
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	1.26
Zero travel weight [kg]	4.00
Weight for 100 mm useful stroke [kg]	0.83
Rail size [mm]	15

Max. positioning

precision [mm/300mm]

ISO 5

0.023

0.023

0.023

ISO 7

0.05

0.05

0.05

Tab. 32

Max. repeatability

precision [mm]

ISO 5

0.005

0.005

0.005

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
TH 110 SP4	0.0287	0.2040	0.2327
			Tab. 34

Starting torque

Туре	Ball Screw	[Nm]
TH 110 SP4	16-05	0.16
	16-10	0.23
	16-16	0.27

TH 110 SP4 - Load capacity F_x

Туре	F _x [N]		
	Screw	Stat.	Dyn
TH 110 SP4	16-05	17400	11800
	16-10	18300	10500
	16-16	18800	10300
			Tab. 36

Tab. 33

ISO 7

0.045

0.045

0.045

TH 110 SP4 - Load capacity

Туре	F []	: Vj	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 110 SP4	96800	45082	96800	3098	2606	2606

See verification under static load and lifetime on page SL-2 and SL-3

TH 145 SP2

TH 145 SP2 Dimensions (single carriage)

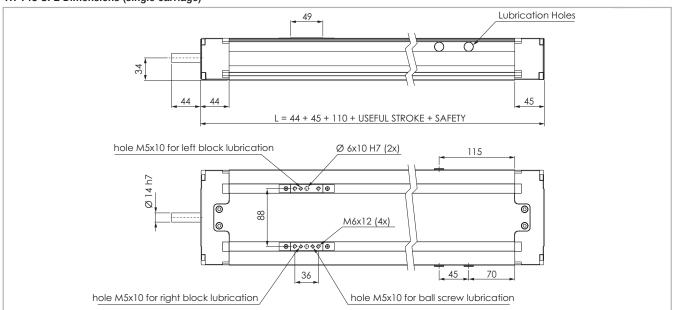


Fig. 8

Technical data

	Туре
	TH 145 SP2
Max. useful stroke length [mm]	1690
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	1.45
Zero travel weight [kg]	5.9
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20

Tab. 38

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP2	0.090	0.659	0.749
			Tab. 40

Starting torque

Туре	Ball Screw	[Nm]
TH 145 SP2	20-05	0.22
	20-20	0.35
	25-10	0.29

Tab. 41

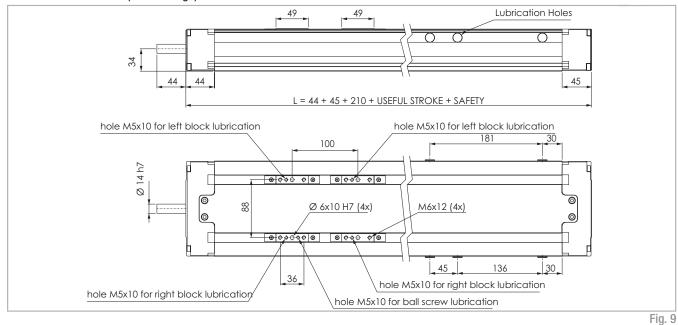
Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	IS0 7	ISO 5	IS0 7
TH 145 / 20-05	0.023	0.05	0.005	0.045
TH 145 / 20-20	0.023	0.05	0.005	0.045
TH 145 / 25-10	0.023	0.05	0.005	0.045

Tab. 39

TH 145 SP2 - Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
TH 145 SP2	20-05	25900	14600			
	20-20	23900	13400			
	25-10	32600	16000			
			Tab. 42			


Mx Mz Fz Fz

TH 145 SP2 - Load capacity

Туре	F []	: VJ	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.		
TH 145 SP2	76800	35399	76800	3341	668	668		

TH 145 SP4

TH 145 SP4 Dimensions (dual carriage)

Technical data

Ball screw precision

TH 145 / 20-05

TH 145 / 20-20

TH 145 / 25-10

Type

	Туре
	TH 145 SP4
Max. useful stroke length [mm]	1590
Max. speed [m/s]	See page PS-14
Carriage weight [kg]	2.42
Zero travel weight [kg]	8.3
Weight for 100 mm useful stroke [kg]	1.6
Rail size [mm]	20

Tab. 44

ISO 7

0.045

0.045

0.045

Tab. 45

Max. repeatability

precision [mm]

ISO 5

0.005

0.005

0.005

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 145 SP4	0.090	0.659	0.749

Starting torque

Туре	Ball Screw	[Nm]
	20-05	0.22
TH 145 SP4	20-20	0.35
	25-10	0.29

TH 145 SP4 - Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
	20-05	25900	14600			
TH 145 SP4	20-20	23900	13400			
	25-10	32600	16000			

_____Tab. 48

Mx Fz Fz Fy My

Max. positioning

precision [mm/300mm]

ISO 7

0.05

0.05

0.05

ISO 5

0.023

0.023

0.023

TH 145 SP4 - Load capacity

Туре	F [N	: Ňj	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.		
TH 145 SP4	153600	70798	153600	6682	5053	5053		

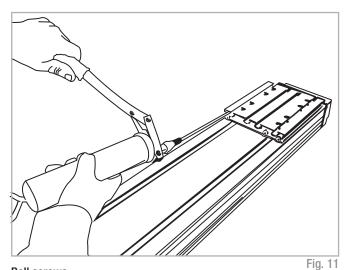
See verification under static load and lifetime on page SL-2 and SL-3

Tab. 46

Motor connections

Fig. 10

Units	[mm]


UIIIS [III	Ш																				
Туре	А	В	С	D	Е	F	G	Н	1	L	M		0	Р	Q	R	S	Т	U	V	Z
TH 70	28	2.5	18	M4x8	-	5 or 6	33	7.5	32	31.3	70	-	-	-	-	-	-	-	-	-	-
TH 90	28	2.5	20	M4x8	-	8	41	8	40	39	90	4	4.5	-	4.8	-	-	5.5	3.8	2.7	1.3
TH 110	40	2.5	32	M4x8	M6x10	11	40	10	50	49	110	4	-	-	4.8	2.5	-	5.5	3.8	2.7	1.3
TH 145	48	2.5	44	M6x10	M6x12	14	40	12	65	64	145	4	9.5	8	5.7	2.5	5.2	5.5	3.8	2.7	1.3

Lubrication

TH linear units with ball bearing guides

TH Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

Ball screws

The ball screw nuts for the Rollon TH series linear slides should be re-lubricated every 100 km.

Туре	Quantity [cm³] for grease nipple
08-2.5	0.1
12-05	0.2
12-10	0.2
16-05	0.41
16-10	0.78
16-16	0.6
20-05	0.79
20-20	1.2
25-10	1.2

Tab. 51

service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Amount of lubricant needed to lubricate carriages:

Туре	Quantity [cm³]
TH 70	0.23
TH 90	0.5
TH 110	0.7
TH 145	1.4

Insert grease gun into the specific grease nipples.

- Tab. 52
- Type of lubrificant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

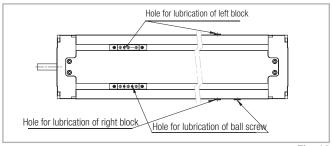
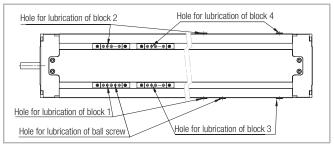



Fig. 12

Please refer to page PS-5 for the position of the holes for lubrication for TH 90 SP 4. Fig. 13

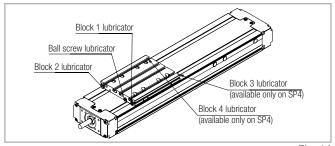


Fig. 14

Critical speed

The maximum linear speed of Rollon TH series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.



Fig. 15

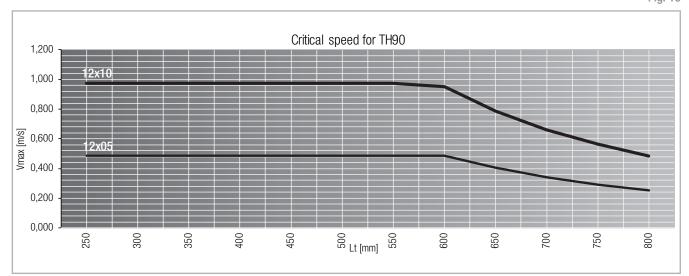


Fig. 16

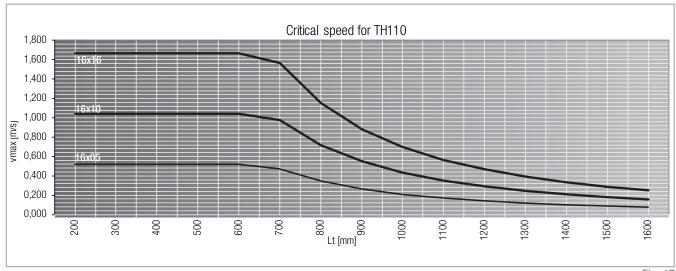


Fig. 17

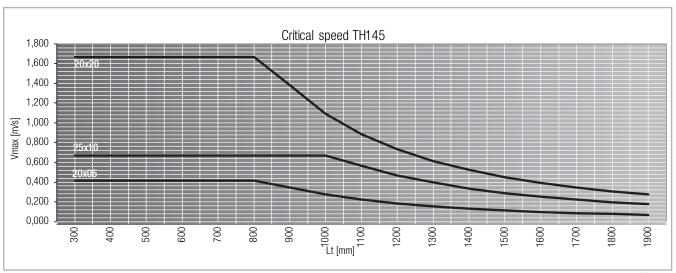
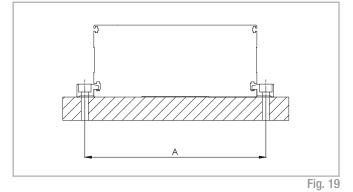



Fig. 18

Accessories

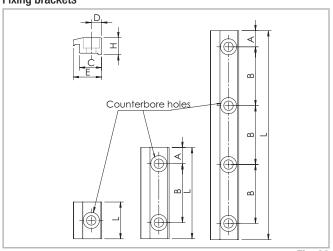
Fixing by brackets

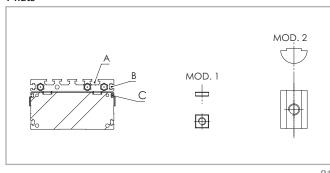
Units (mm)

Туре	A Unit mm
TH 70	82
TH 90	102
TH 110	126
TH 145	161

Tab. 53

Fixing brackets




Fig. 20

Dimensions (mm)

Туре	N° holes	Counterbore for screw	А	В	С	D	Е	Н	L	Code Rollon
TH 70	1	M4	-	-	12.5	6.5	15	9	22	1005198
	2	M4	11	40	10.5	4.5	14.5	9.1	62	1003385
TH 90	4	M4	8.5	30	10.5	4.5	14.5	9.1	107	1003509
111 90	4	M4	8.5	20	10.5	4.5	14.5	9.1	77	1003510
	1	M4	-	-	10.5	4.5	14.5	9.1	25	1003612
	4	M5	8.5	30	15	7	19.3	11.5	107	1002805
TU 440	4	M6	11	40	15	7	19.3	11.5	142	1002864
TH 110 TH 145	1	M6	-	-	15	7	19	11.5	25	1002970
111 143	2	M6	11	40	15	7	19	11.5	62	1002971
	4	M5	20	20	15	7	19	11.5	100	1003311

Tab. 54

T nuts

21

Units (mm)

Туре	A	В	С
TH 70	Mod. 1 M4 - 963.0407.81	Mod. 1 M4 - 963.0407.81	-
TH 90	Mod. 2 M5 - 6000436	-	Mod. 1 M2.5 - 6001361
TH 110	Mod. 2 M5 - 6000436	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361
TH 145	Mod. 2 M6 - 6000437	Mod. 1 M4 - 963.0407.81	Mod. 1 M2.5 - 6001361

Proximity

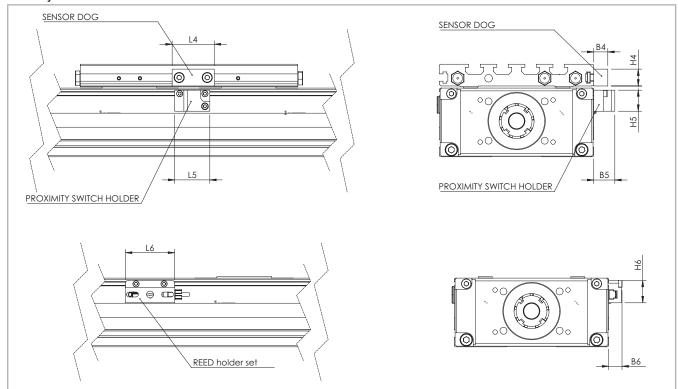


Fig. 22

Units (mm)

	В4	B5	В6	L4	L5	L6	H4	Н5	Н6	Sensor	Proximity holder set	Sensor dog	REED holder set
TH 70	8	10	8	30	25	35	10	18	18	Ø 6.5	G001975	G001976	G001974
TH 90	10	15	9.5	12	25	35	6	15	16	Ø 8	G001193	G001203	G001204
TH 110	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
TH 145	10	15	9.5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204

Tab. 56

External carriage

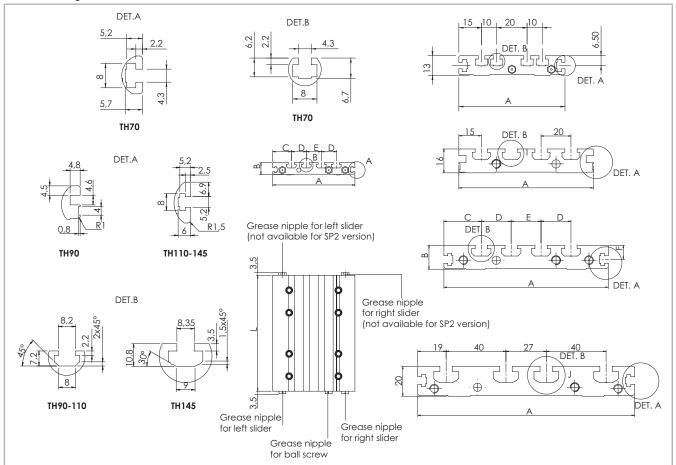


Fig. 23

External carriage for SP2	Туре	А	В	C	D	E	F	L	Code
	TH 70	70	13	15	10	20	6,5	60	G001957
	TH 90	90	16	15	20	20	6.8	60	G001195
	TH 110	110	16	25	20	20	9.5	60	G001059
	TH 145	145	20	19	40	27	9.5	80	G001062

Tab. 57

External carriage for SP4	Туре	А	В	С	D	E	F	L	Code
4	TH 70	70	13	15	10	20	6,5	95	G001958
6//1	TH 90	90	16	15	20	20	6.8	125	G001194
2	TH 110	110	16	25	20	20	9.5	155	G001060
	TH 145	145	20	19	40	27	9.5	190	G001061

Tab. 58

Coupling	Motor bell Kit

Tab. 59

Assembly kits

Fig. 25

For the direct assembly of TH linear units on multiple axis system Rollon offers dedicated assembly kits. The table below shows the allowed combinations as well as the assembly kit codes.

	Kit	Code
	TH 90 - TH 90 XY ₂	G001199
	TH 90 - TH 110 XY ₂	G001199
4	TH 90 - TH 110 XZ	G001205
	TH 110 - TH 110 XY ₂	G001080
4	TH 110 - TH 110 XZ	G001083
	TH 110 - TH 145 XY ₂	G001079
4	TH 110 - TH 145 XZ	G001084
	TH 145 - TH 145 XY ₂	G001081
4	TH 145 - TH 145 XZ	G001085
	TH 90 - TH 90 XY1	G001483
	TH 90 - TH 90 XY3	G001483 + G001194
	TH 110 - TH 110 XY ₁	G001173
	TH 110 - TH 110 XY ₂	G001173 + G001060
	TH 145 - TH 145 XY1	G001362
	TH 145 - TH 145 XY2	G001362 + G001061

Wrap around kit

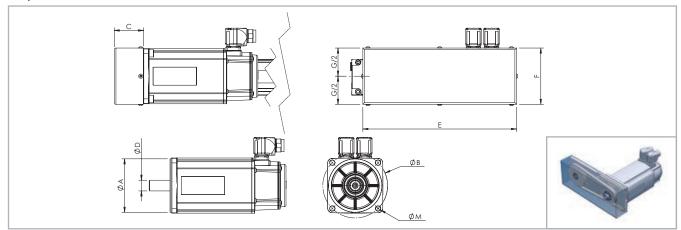


Fig. 28

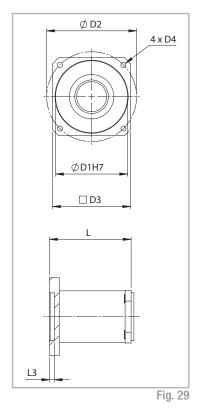
Unit	Ratio	А	В	С	D	Е	F	M	Code
TH 90	1:1	Ø 40	Ø 63	30	Ø 9	168	63	M4	G001592
TH 110	1:1	Ø 40	Ø 63	40.5	Ø 9	233	88	M4	G001011
TH 110	1:1	Ø 50	Ø 70	40.5	Ø 14	233	88	M4	G001055
TH 110	1:1	Ø 60	Ø 75	40.5	Ø 14	233	88	M6	G001013
TH 145	1:1	Ø 80	Ø 100	52	Ø 14	273	100	M6	G000984
TH 145	1:1	Ø 95	Ø 115	52	Ø 19	273	100	M8	G000988

For further information please contact Rollon Technical Dept.

Tab. 61

Code

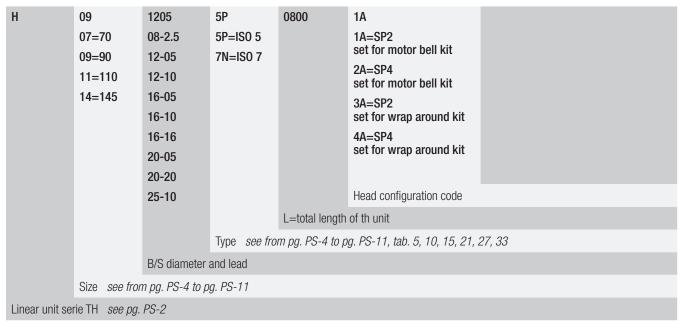
Mounting of the motor


Rollon TH Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

Unit

D1

The types of bells available for the related units are shown in the table motor mounts:


D4

TH70	Ø 30	Ø 45	38	M3	52	4	G002000
TH70	Ø 40	Ø 63	54	M4	49	3.5	G002001
TH70	Ø 50	Ø 70	60	M4	59	4	G002002
TH90	Ø 40	Ø 63	56	M5	50	3	G001192
TH110	Ø 60	Ø 75	65	M6	68	4	G001051
TH110	Ø 73,1	Ø 98,4	86	M5	76.7	2	G001074
TH110	Ø 60	Ø 75	65	M5	68	4	G001119
TH110	Ø 50	Ø 70	65	Ø 5.4	75	11	G001200
TH145	Ø 50	Ø 70	80x60	M4	92	21	G000979
TH145	Ø 70	Ø 85	80x85	M6	92	4	G001066
TH145	Ø 70	Ø 90	80x85	M5	92	5	G001067
TH145	Ø 80	Ø 100	90	M6	92	4	G001068
TH145	Ø 50	Ø 65	80x85	M5	92	21	G001069
TH145	Ø 60	Ø 75	80x85	M6	92	4	G001070
TH145	Ø 50	Ø 70	80x85	M5	92	21	G001071
TH145	Ø 73	Ø 98,4	85	M5	92	4	G001072
TH145	Ø 55	68X40	85x60	Ø6,4	82	11	G001073

Ordering key // V

Identification code for the TH linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

TT series / ~

TT series description

Fig. 30

TT

The TT is a linear actuator series mainly used for high accuracy positioning within a 10 μ m range and precision repeatability within 5 μ m. Manufactured using a very rigid extruded anodized aluminum base structure, this actuator series is designed for high loads and precise movements that are typically required in machine tools and other exacting machine design applications.

All mounting surfaces and reference datums have been produced to significantly reduce the deviations of pitch, yaw and roll along the entire stroke. The heavy duty carriage is driven by a C5 or C7 preloaded ball screw drive and the payload is supported by a system of four runner blocks mounted on two parallel linear guides. High speeds can be accomplished by specifying available super lead ball screw drivers.

The TT series contains all the necessary features and hardware to make multi-axis configurations and assembly easy. All TT units are 100% inspected and supplied with certificates of accuracy.

The components

Aluminum base unit and carriage

The base and carriages of the Rollon TT series linear units were designed and manufactured in co-operation with industry experts to obtain the high-level of accuracy and maximize mechanical properties. Anodized aluminum alloy 6060 was used with dimensional tolerances complying with UNI 3879 standards. To guarantee highly precise movement, the bodies are precision machined on all outer surfaces and in the areas where the mechanical components are fitted, such as ball bearing guides and ball screw supports.

Linear motion system

Precision ball bearing guides with ground rails and preloaded blocks are used on Rollon TT series linear units. Use of this technology makes it possible to obtain the following features:

- High accuracy running parallelism
- High positioning accuracy
- High level of rigidity
- Reduced wear
- Low resistance to movement

Drive system

Rollon TT-series linear units use precision ball screws with either preloaded or non-preloaded ball screw nuts. The standard precision class of the ball screws used is ISO 5, however ISO 7 precision class is also available upon request. The ballscrew on the TH unit is available in different diameters and leads (see specifications tables). Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- High load capacity and accurate thrust forces
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

Protection

Rollon TT-series linear units are equipped with bellows in order to protect the mechanical and electrical components inside the linear unit against contaminants. In addition to the bellows system, the ball bearing guides and ball screws have their own protection including scrapers and lip seals to remove contaminates from the raceways of the ball bearings.

General data about aluminum used: AL 6060

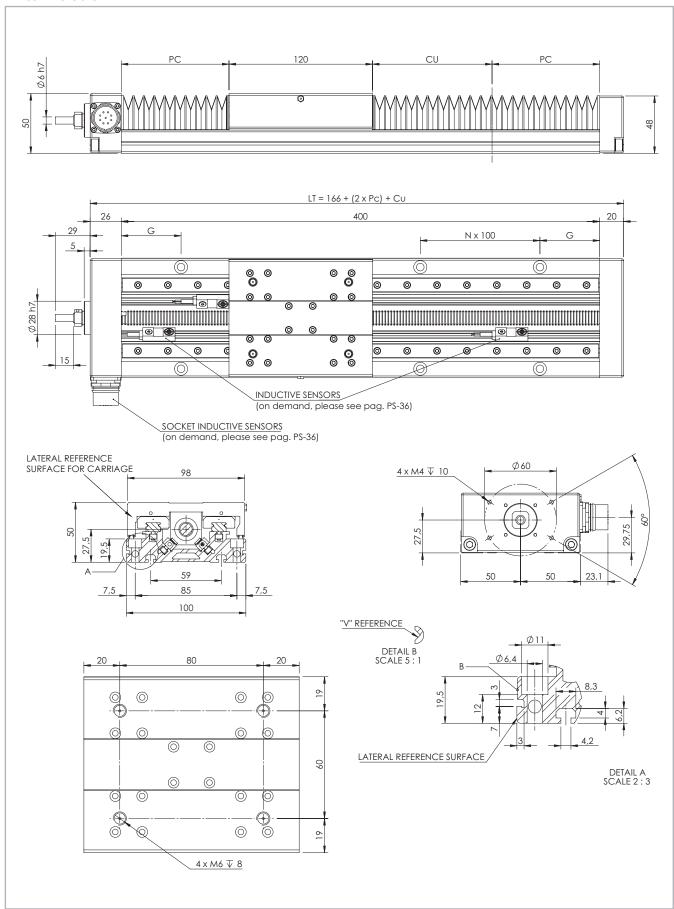
Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 63

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 m 10-9	90
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2.7	69	23	200	880-900	33	600-655


Tab. 64

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

TT 100

TT 100 Dimensions

Technical data

Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]
46	246	50	2.5
114	346	50	3
182	446	50	4
252	546	50	5
320	646	50	6
390	746	50	7
458	846	50	7
526	946	50	8
596	1046	50	9
664	1146	50	10
734	1246	50	11
802	1346	50	11
940	1546	50	13
Note: for the ballscrew 1	Tab. 66		

Technical data

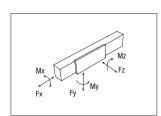
	Туре
	TT 100
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	0.93
Rail size [mm]	12 mini

Tab. 68

Moments of inertia of the aluminum body

Туре	_x	l _y	lր
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 100	0.006	0.144	0.150

Tab. 69

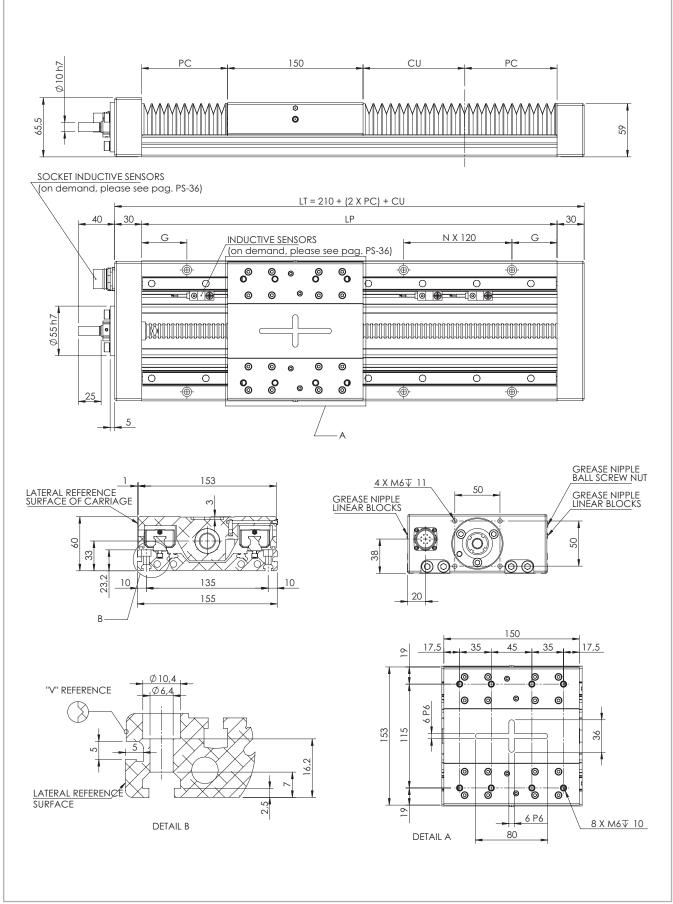

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 100 / 12-05	0.023	0.05	-	0.010
TT 100 / 12-10	0.023	0.05	-	0.010

Tab. 67

TT 100 - Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
TT 100	12-05	9000	4300			
			Tab. 70			


TT 100 - Load capacity

Туре	F [N]		F _z [N]	M _× [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 100	9980	6280	9980	274	349	349

See verification under static load and lifetime on page SL-2 and SL-3

TT 155

TT 155 Dimensions

Technical data

iconnical data					
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]		
92	340	20	7.5		
140	400	50	8.5		
188	460	20	9		
236	520	50	10		
282	580	20	11		
330	640	50	12		
378	700	20	13		
424	760	50	13		
520	880	50	15		
614	1000	50	17		
710	1120	50	18		
806	1240	50	20		
900	1360	50	21		
994	1480	50	23		
1090	1600	50	25		
1184	1720	50	26		
1280	1840	50	28		
1376	1960	50	30		
1470	2080	50	31		
Note: for the ballscrew Ø1	Tab. 72				

Technical data

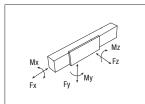
	Туре
	TT 155
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	2.93
Rail size [mm]	15

Tab. 74

Moments of inertia of the aluminum body

Туре	l _x	l _y	lր
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 155	0.009	0.531	0.54

Tab. 75

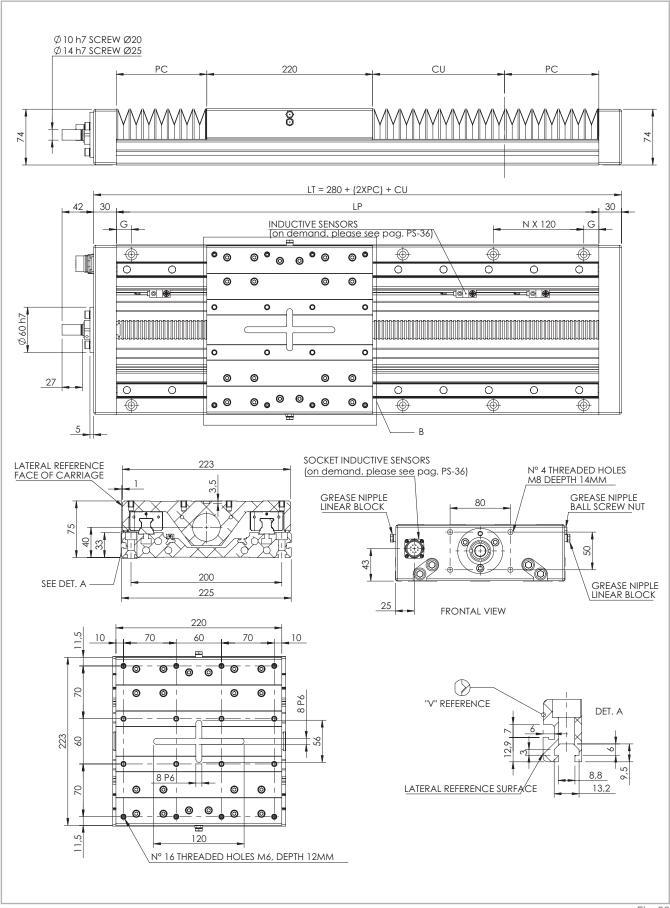

Ball screw precision

Туре	Max. positioning precision [mm/300mm]		Max. repeatability precision [mm]	
	ISO 5	ISO 7	ISO 5	ISO 7
TT 155 / 16-05	0.023	0.05	0.005	0.045
TT 155 / 16-10	0.023	0.05	0.005	0.045
TT 155 / 20-05	0.023	0.05	0.005	0.045
TT 155 / 20-20	0.023	0.05	0.005	0.045
				Tab. 73

TT 155 - Load capacity F_{χ}

Туре	F _x [N]				
	Screw	Stat.	Dyn.		
TT 155	16-05	17400	11800		
	16-10	18300	10500		
	20-05	25900	14600		
	20-20	23900	13400		
			Tab. 76		

Tab. 76


TT 155 - Load capacity

Туре	F [1	y J]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 155	96800	45082	96800	5082	2972	2972

See verification under static load and lifetime on page SL-2 and SL-3

TT 225

TT 225 Dimensions

Technical data

Useful stroke	Total length LT	G Dimension	Weight
CU [mm]	[mm]	[mm]	[Kg]
92	400	50	15
144	460	20	16
196	520	50	17
248	580	20	19
300	640	50	20
352	700	20	21
404	760	50	23
508	880	50	25
612	1000	50	28
714	1120	50	31
818	1240	50	33
922	1360	50	36
1026	1480	50	39
1234	1720	50	44
1440	1960	50	49
1648*	2200	50	54
1856*	2440	50	60
2062*	2680	50	65
2270*	2920	50	70

Note: for the ballscrew Ø20 the max. useful stroke is 1440 mm.
* For the indicated lengths Rollon does not guarantee the tolerance values shown on pag. PS-33

Tab. 78

Technical data

	Туре
	TT 225
Max. speed [m/s]	See page PS-35
Carriage weight [kg]	5.4
Rail size [mm]	20

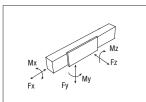
Tab. 80

Moments of inertia of the aluminum body

Туре		l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 225	0.038	2.289	2.327

Tab. 81

Ball screw precision


Туре		sitioning nm/300mm]	Max. repeatability precision [mm]	
	ISO 5 ISO 7		ISO 5	ISO 7
TT 225 / 20-05	0.023	0.05	0.005	0.045
TT 225 / 20-20	0.023	0.05	0.005	0.045
TT 225 / 25-05	0.023	0.05	0.005	0.045
TT 225 / 25-10	0.023	0.05	0.005	0.045
TT 225 / 25-25	0.023	0.05	0.005	0.045

Tab. 79

TT 225 - Load capacity F_x

Туре	F _x [N]					
	Screw	Stat.	Dyn.			
ТТ 225	20-05	25900	14600			
	20-20	23900	13400			
	25-05	41200	19800			
	25-10	32600	16000			
	25-25	30500	15100			

Tab. 82

TT 225 - Load capacity

Туре	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 225	153600	70798	153600	12288	9984	9984

See verification under static load and lifetime on page SL-2 and SL-3

TT 310

TT 310 Dimensions

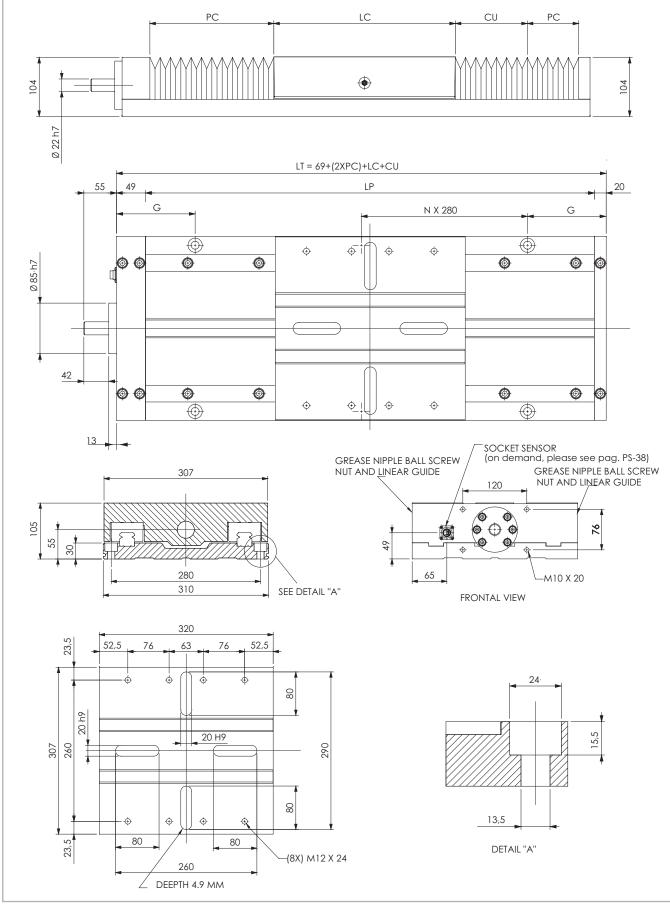


Fig. 34

Technical data

roominoar aata			
Useful stroke CU [mm]	Total length LT [mm]	G Dimension [mm]	Weight [Kg]
100	560	140	47
150	625	172.5	50
200	690	65	53
250	760	100	56
300	825	132.5	59
350	895	167.5	62
400	965	62.5	65
450	1030	95	68
500	1100	130	71
600*	1235	197.5	77
800*	1505	192.5	89
1000*	1750	175	100
1200*	2000	160	111
1600*	2495	127.5	133
2000*	2990	235	156
2400*	3485	202.5	178
3000*	4225	292.5	211

^{*} For the indicated lengths Rollon does not guarantee the tolerance values shown on pag. PS-33

Tab. 84

Technical data

	Туре
	TT 310
Max. speed [m/s]	See page PS-36
Carriage weight [kg]	16.6
Rail size [mm]	30

Tab. 86

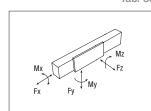
Moments of inertia of the aluminum body

Туре	l _x	l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 310	0.1251	8.56	8.008

Tab. 87

Ball screw precision

Туре		sitioning nm/300mm]	Max. repeatabilit precision [mm]		
	ISO 5	IS0 7	IS0 5	IS0 7	
TT 310 / 32-05	0.023	0.05	0.008	0.045	
TT 310 / 32-10	0.023	0.05	0.008	0.045	
TT 310 / 32-32	0.023	0.05	0.008	0.045	


Tab. 85

TT 310 - Load capacity F_x

Туре	F _x ⁻¹ [N]						
	Screw	Stat.	Dyn.				
	32-05	11538	8947				
TT 310	32-10	11538	8947				
	32-32	11538	8947				

*1 Referred to the Max axial load on the bearings not the Ball Screw

Tab. 88

TT 310 - Load capacity

Туре	F [J	: vj	F _z [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	
TT 310	230500	128492	274500	146031	30195	26625	22365	

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

Lubrication

TT linear units with ball bearing guides

TT Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 2000 Km or 1 year of use, based on the value reached first. If a longer

service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

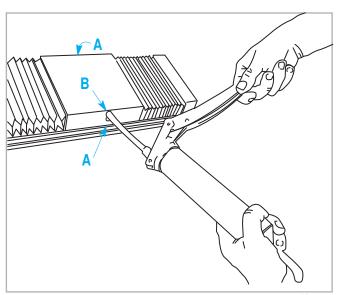


Fig. 35

- Insert the tip in the specific grease nipples:
- A Linear block B Ball screw nut
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication:

Туре	Quantity [cm³] for grease nipple
TT 100	1.4
TT 155	1.4
TT 225	2.8
TT 310	5.6

Tab. 90

Ball screws

The ball screw nuts of Rollon TT series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TT series actuators. The linear units are lubricated with class NLGI2 lithium soap grease.

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm³] for grease nipple
12-05	0.3
12-10	0.3
16-05	0.41
16-10	0.78
20-05	0.79
20-20	1
25-05	1.2
25-10	1.2
25-25	1.58
32-05	1.8
32-10	2.0
32-32	3.0
	Tah 01

Accuracy certificate

The Rollon TT series linear units are high accurate products. The base and the carriages are made of aluminum extrusions that are manufactured by means of high precision machining of all external faces and all mounting surfaces of mechanical components (linear guides, ball screw supports, etc.). This results in excellent repeatability, positioning accuracy and running parallelism. Rollon TT series linear units are 100% tested and will be delivered with a certificate of accuracy.

The certificate shows all parallel tolerances during the movement of the carriage on the base unit. The figures can be used for eventual electronic compensations during the movement of the linear units.

The maximum deviations are shown as follows:

G1 - rolling 50 µm

G2 - pitching 50 µm

G3 - yawing 50 µm

G4 - parallelism carriage/base unit 50µm

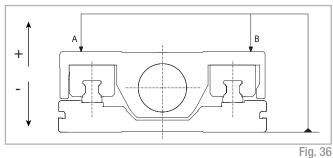
POSI	TIONING LIN	IEAR	STAGE TT SE	RIES	
TYPE AND MODEL					
Type	T155				
Stroke		mm			
Ball screw dlam. Ball screw lead	16				
Serial rif.	N° - 0407	mm			
SPECIFICATION					
Measurement pitch	20	mm			
Max error accepted on ex					
G1 G2	50 50	μm μm			
G3	50	μт			
G4	50	μm			
TEST RESULTS					
Max error on G1	9	μm			
Max error on G2	14	μm			
Max error on G3 Max error on G4	19 14	μm μm			
Max error on G4	17	pan .			
Date	19/10/07				
Temperature (C+)	(°C)20				
Cheched by					
Final test result:	POSITIVO				
Signature					
ROLLON	ROLLON S.p.A		Tel.: (+39) 039 62 59 1 Fax: (+39) 039 62 59 205		

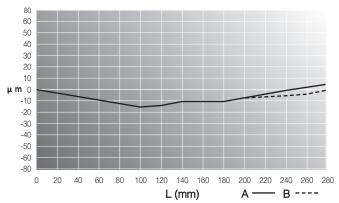
Screw	Fixing torques screws 12.9		
	On aluminum		
M6	10 Nm	14 Nm	
M6	10 Nm	14 Nm	
M8	15 Nm	30 Nm	
M12	60 Nm	120 Nm	
	M6 M8	On aluminum M6 10 Nm M6 10 Nm M8 15 Nm	

Tab. 92

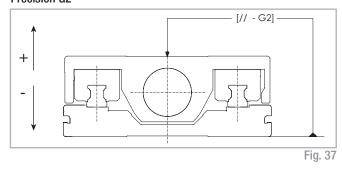
Note :Values for base unit length (Lt) <_ 2000 mm

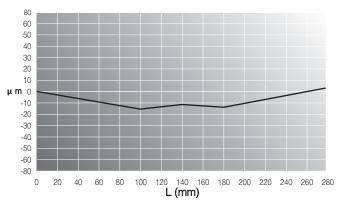
These values are measured while linear unit is fixed with brackets on a reference table with parallelism error $< 2 \, \mu m$.

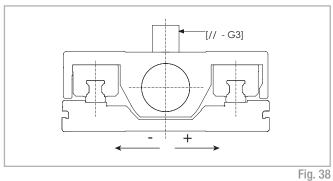

The fixing torques of the bolt must follow the indicated values in the table.

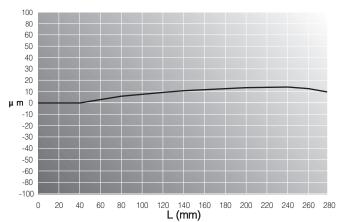

ATTENTION: The mentioned accuracy grades are valid only if the linear unit is fixed on a continuous mounting surface with the same length. The errors of the mounting surface may negatively influence the accuracy of the Rollon linear unit. Rollon does not guarantee the above mentioned parallelism tolerances for applications when the linear unit is mounted without support or as a cantilever.

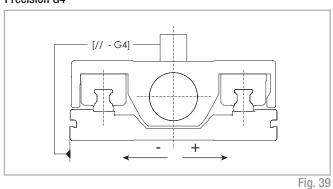
The graphs below show an example of measurement of accuracy along the stroke the deviation is given.

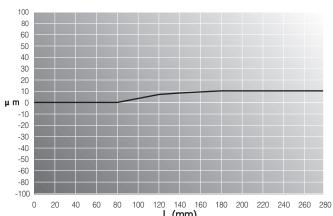

Each actuator delivered is provided with the graphs.


Precision G1




Precision G2




Precision G3

Precision G4

Critical speed

The maximum linear speed of Rollon TT series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

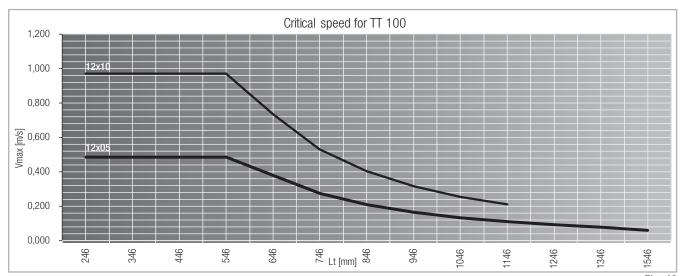


Fig. 40

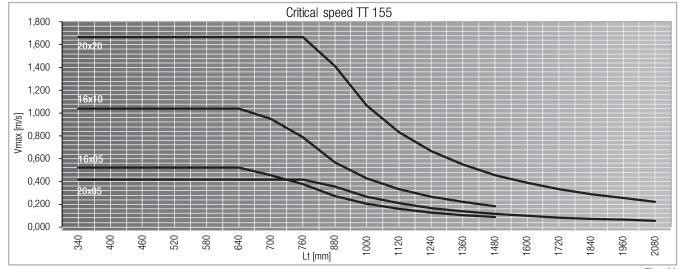


Fig. 41

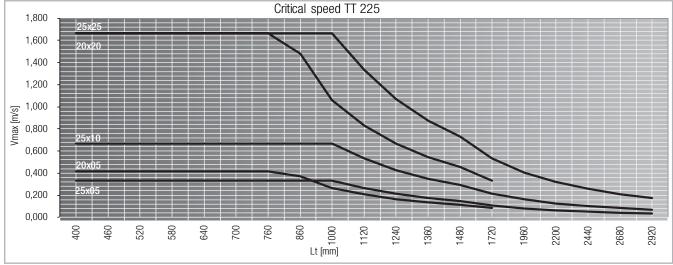


Fig. 42

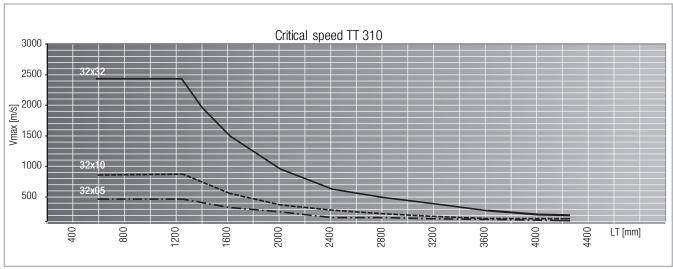


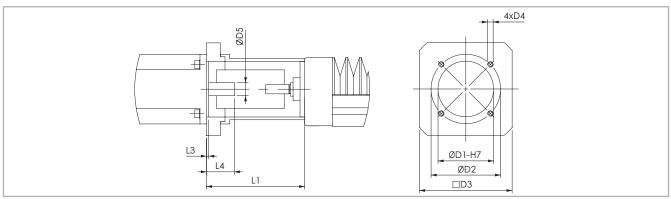
Fig. 43

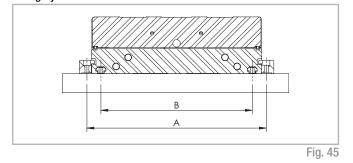
Accessories

Mounting of the motor

Rollon TT Series linear units can be supplied with different types of motor mounts, adapter flanges, and with torsionally stiff couplings for screw and motor connections that enable fast, hassle-free assembly of the motors.

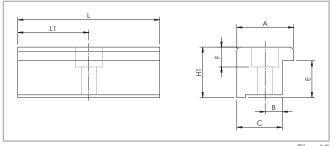
The types of bells available for the related units are shown in the table motor mounts:




Fig. 44

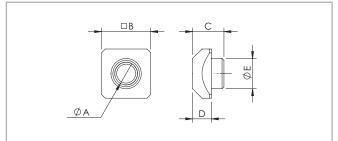
Units [mm]

Type of unit	Ø D1	Ø D2	Ø D3	D4	Ø	D5	Lt	L3		L4	Kit code
unit					min.	max.			min.	max.	Code
	60	75	65	M6	5	16	68	4	25	27	G000321
TT 100	73.1	98.4	86	M5	5	16	76.7	2	33.7	35.7	G000322
11 100	40	64.5	65	M5	5	16	68	4	25	27	G000336
	50	70	65	M5	5	16	77.5	3.5	34.5	36.5	G000433
	70	85	80	M6	10	20	90	4	20	34	G000311
	70	90	80	M5	10	20	90	5	20	34	G000312
	80	100	90	M6	10	20	90	4	20	34	G000313
	50	65	80	M5	10	20	90	5	20	34	G000314
TT 155	60	75	80	M6	10	20	90	4	20	34	G000315
	50	70	80	M5	10	20	90	5	20	34	G000316
	73	98.4	85	M5	10	20	90	4	20	34	G000317
	55.5	125.7	105	M6	10	20	100	5	30	44	G000318
	60	99	85	M6	10	20	98	4	28	42	G000319
	80	100	100	M6	10	28	106	5	30	48	G000302
	95	115	100	M8	10	28	106	5	30	48	G000303
	110	130	115	M8	10	28	106	5	30	48	G000304
	60	75	100	M6	10	28	106	5	30	48	G000305
TT 225	70	85	100	M6	10	28	106	5	30	48	G000306
11 225	70	90	100	M5	10	28	106	5	30	48	G000307
	50	70	96x75	M4	10	28	101	4	30	48	G000308
	55.5	125.7	105	M6	10	28	106	5	30	48	G000309
	73.1	98.4	96	M5	10	28	101	3	30	48	G000310
	130	165	150	M10	10	28	106	5	30	48	G000363
TT 310		Option									


Tab. 93

Fixing by brackets

Туре	A Unit mm	B Unit mm
TT 100	112	59
TT 155	167	135
TT 225	237	200


Fixing brackets

Туре	А	В	С	Е	F	D1	D2	H1	L	L1	Code Rollon
TT 100	18.5	6	16	7	4.5	9.5	5.3	9.8	50	25	1002353
TT 155	20	6	16	11	7	9.5	5.3	15.8	50	25	1002167
TT 225	20	6	16	13	7	9.5	5.3	17.8	50	25	1002354
											Tab. 98

Fig. 46

T nuts

			_	_
F	İ	q		47

Туре	Ø A	□В	С	D	ØE	Code Rollon
TT 100	M4	8	-	3.4	-	1001046
TT 155	M5	10	6.5	4.2	6.7	1000627
TT 225	M6	13	8.3	5	8	1000043

Tab. 99

Proximity	Туре	PNP-NO	PNP-NC
	TT 100	G001981	G001980
	TT 155	G001981	G001980
	TT 225	G001981	G001980
	TT 310	/	/

Tab. 95

End cap	Туре	Code
	TT 100	G000245
	TT 155	G000244
	TT 225	G000244
	TT 310	/

Tab. 100

Cable Strain Relief	Туре	Code
	TT 100	G000249
301	TT 155	G000248
(A)	TT 225	G000248
	TT 310	/

Tab. 96

9 Pin Fixed Connector	Туре	Code
1	TT 100	G000191
	TT 155	G000191
2//	TT 225	G000191
	TT 310	/

Tab. 101

9 Pin Back-Shell Connector	Туре	To crimp	To solder
	TT 100	6000516	6000589
200	TT 155	6000516	6000589
6	TT 225	6000516	6000589
	TT 310	/	/

Assembly kits

The Rollon TT series linear units must be mounted to the application's surface in an appropriate way in order to achieve maximum accuracy of the system. The evenness of the mounting surface determines the final result of the movement of the system. The aluminum base and the carriage of the Rollon TT linear units have a lateral reference surface, indicated by a groove (except on the TT 310). On the carriage's surface are two reference slots at 90° angles, useful for accurate mounting of

X-Y-systems. The Rollon TT series linear units can be fixed to the mounting surface from above the base unit by screws (fig. 48), through T-slots (fig. 49), or through appropriate mounting brackets (fig. 50), depending on the application. For high accuracy applications, Rollon recommends bolting the unit down from above. For mounting dimensions please refer to the dimensional drawings of the units.

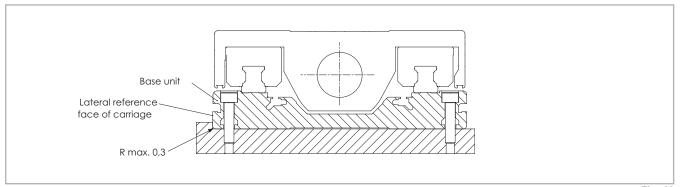


Fig. 48

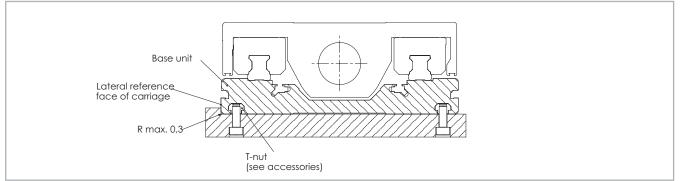


Fig. 49

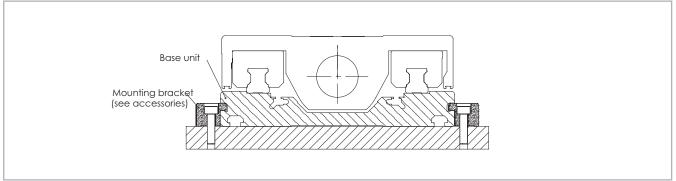
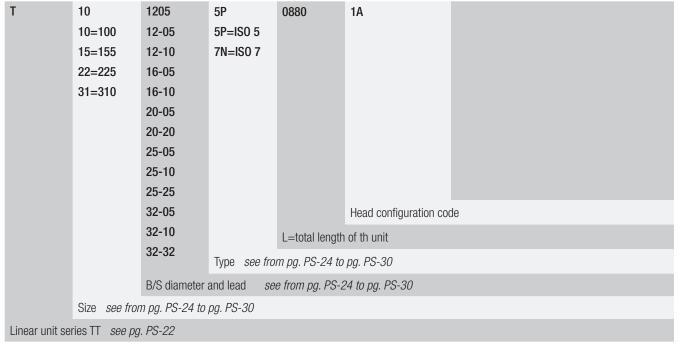
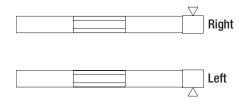



Fig. 50

Ordering key / V


Identification code for the TT linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

TV series / v

TV series description

Fig. 51

TV

TV series linear units have a rigid anodized aluminum extrusion with a square cross-section. Transmission of motion is achieved by means of a precision C5 or C7 rolled ball screw drive.

The payload is supported by a dual block, single linear guide system which ensures high precision and high rigidity.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon TV series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the accuracy and high mechanical properties necessary to accommodate the bending and torsional stresses. Aluminum alloy 6060 was used and was extruded with dimensional tolerances complying with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Drive system F

Rollon TV series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. Use of this type of technology makes it possible to obtain the following features:

- High speed (for long pitch screws)
- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

General data about aluminum used: AL 6060

Mg

0.35-0.60

Chemical composition [%]

Physical characteristics

Remainder

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg —	kN —	10-6	W	J	Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655
						Tab 102

Fe

0.30

Tab. 103

Impurites

0.05-0.15

Tab. 102

Carriage

The carriage of the Rollon TV series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator. The carriage is installed on 2 linear runner blocks on a single linear quide rail.

Protection

Mn

0.10

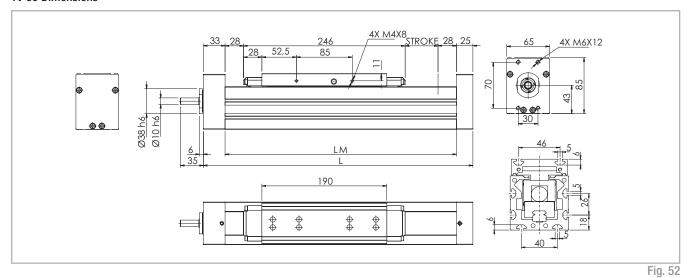
Zn

0.10

Cu

0.10

Rollon TV series linear units are equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.


Mechanical characteristics

Rm	Rp (02)	А	НВ
$\frac{N}{mm^2}$	N — mm²	%	_
205	165	10	60-80

0.30-0.60

TV 60

TV 60 Dimensions

Technical data

	Туре
	TV 60
Max. useful stroke length [mm]	2000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 58
Total length LT [mm]	Stroke + 360
Carriage weight [kg]	1.41
Zero travel weight [kg]	4.6
Weight for 100 mm useful stroke [kg]	0.65
Rail size [mm]	15

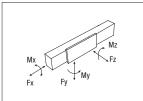
Tab. 105

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	IS0 7	ISO 5	IS0 7
TV 60 / 16-05	0.023	0.05	0.01	0.05
TV 60 / 16-10	0.023	0.05	0.01	0.05
TV 60 / 16-16	0.023	0.05	0.01	0.05
				Tab. 106

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TV 60	0.064	0.081	0.145

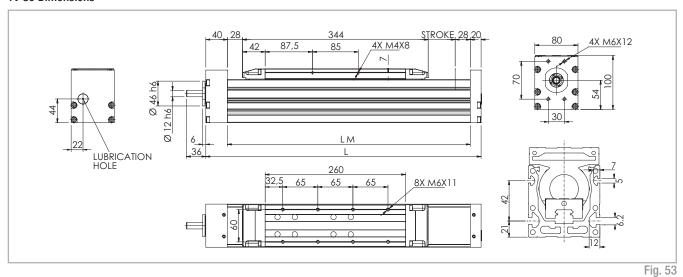

Tab. 107

TV 60 - Load capacity F

11 oo loo apasii, i x							
Туре	, F, [™] [N]						
	Screw	Stat.	Dyn.				
	16-05	4551	4327				
TV 60	16-10	4551	4327				
	16-16	4551	4327				

*1 Referred to the Max axial load on the bearings not the Ball Screw

Tab. 108



TV 60 - Load capacity

Туре	F [l	: V N]	F [t	: ^z N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 60	35000	18000	35000	18000	286	1353	1353

TV 80

TV 80 Dimensions

Technical data

	Туре
	TV 80
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 60
Total length LT [mm]	Stroke + 460
Carriage weight [kg]	2.5
Zero travel weight [kg]	7.8
Weight for 100 mm useful stroke [kg]	0.95
Rail size [mm]	20

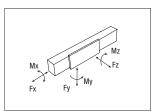
Tab. 110

Ball screw precision

Туре		sitioning nm/300mm] ISO 7	Max. repeatability precision [mm]		
TV 80 / 20-05	0.023	0.05	0.01	0.05	
TV 80 / 20-20	0.023	0.05	0.01	0.05	
				Tab. 111	

Moments of inertia of the aluminum body

Туре	l _x	l _y	lր
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TV 80	0.106	0.152	0.258

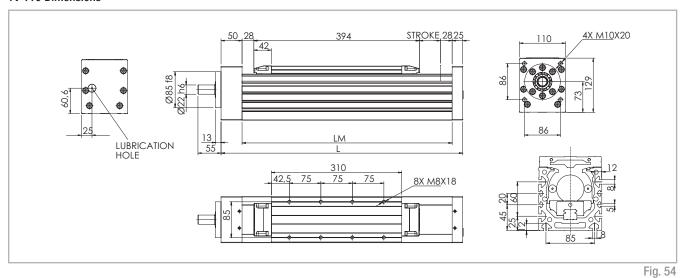

Tab. 112

TV 80 - Load capacity F_{χ}

Туре	F.*1 [Ň]						
	Screw	Stat.	Dyn.				
TV 00	20-05	5705	4912				
TV 80	20-20	5705	4912				

 $^{\star}1$ Referred to the Max axial load on the bearings not the Ball Screw

Tab. 113


TV 80 - Load capacity

Туре	F [N	, Ž	F [N	z J]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 80	59900	34200	59900	34200	646	1573	1573

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

TV 110

TV 110 Dimensions

Technical data

	Туре
	TV 110
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-47
Basement length LM [mm]	LT - 75
Total length LT [mm]	Stroke + 525
Carriage weight [kg]	5.33
Zero travel weight [kg]	16.8
Weight for 100 mm useful stroke [kg]	1.9
Rail size [mm]	25

Tab. 115

Ball screw precision

Туре		sitioning nm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TV 110 / 32-05	0.023	0.05	0.01	0.05
TV 110 / 32-10	0.023	0.05	0.01	0.05
TV 110 / 32-32	0.023	0.05	0.01	0.05
				Tab. 116

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TV 110	0.432	0.594	1.026

Tab. 117

TV 110 - Load capacity F_x

The second supposed by the second sec						
Туре	F,*1 [N]					
	Screw	Stat.	Dyn.			
	32-05	11538	8947			
TV 110	32-10	11538	8947			
	32-32	11538	8947			

*1 Referred to the Max axial load on the bearings not the Ball Screw

e Ball Screw

Tab. 118

Mx

Fx

Fy

My

TV 110 - Load capacity

Туре	F _y [N]		F _z [N]		M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 110	85000	49600	85000	49600	1080	2316	2316

Lubrication

TV 60, TV 80, TV 110 linear units

Rollon TV series linear units are equipped with ball bearing guides lubricated with grease lithium soap based grade 2. Re-lubrication is required every 3-6 months or approximately 2000 Km of linear travel. The application environment and applied loads may infl uence the re-lubrication periods.

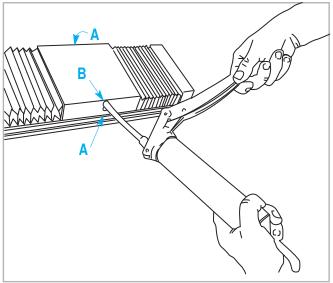


Fig. 55

- Insert the tip of the oil can in the specific grease nipples:
- A Linear block B Ball screw nut
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication:

Туре	Quantity [g] of grease for each nipple
TV 60	1.4
TV 80	2.6
TV 110	5.0

Tab. 120

Ball screws

The ball screw nuts of Rollon TV series linear units must be re-lubricated every 100 km.

Grease Nipples position

The position of grease nipples for the linear blocks and for the ball screw nuts are indicated in the specific drawings of each product.

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [g] for grease nipple
16-05	0.6
16-10	0.8
16-16	1.0
20-05	0.9
20-20	1.7
32-05	2.3
32-10	2.8
32-32	3.7

Critical speed

The maximum linear speed of Rollon TV series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

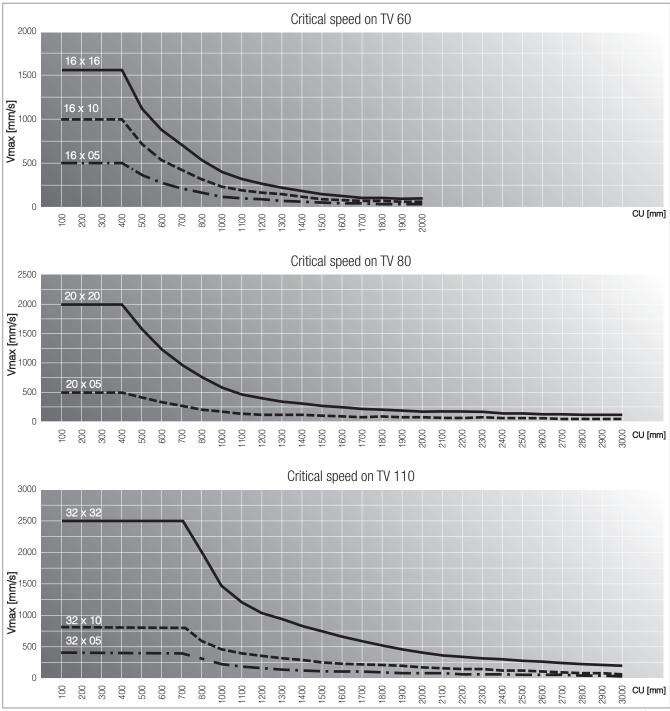
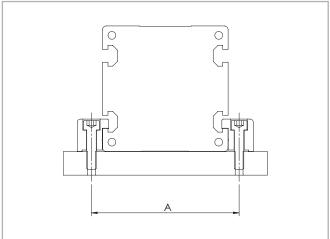



Fig. 56

Accessories

Fixing by brackets

The linear motion systems used for the Rollon TV series linear units enables them to support loads in any direction. They can therefore be installed in any position. To install the units, we recommend the use of the dedicated slots in the extruded bodies as shown below.

Туре	A [mm]
TV 60	77
TV 80	94
TV 110	130

Tab. 122

Fig. 57

Warning: Do not secure the linear units by means of the T-slots in the Drive head or Idle head at either end of the actuator.

Fixing bracket

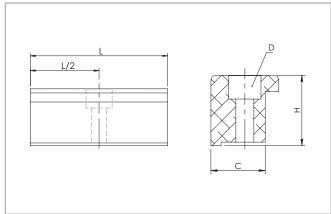


Fig. 58

Dimensions / Unit [mm]

Туре	С	Н	L	D	Code Rollon
TV 60	16	19.5	35	M5	1002358
TV 80	16	22.5	50	M6	1004552
TV 110	31	27	100	M10	1002360

Tab. 123

Anodized aluminum block for fixing the linear units through the side slots of the body.

T-nuts

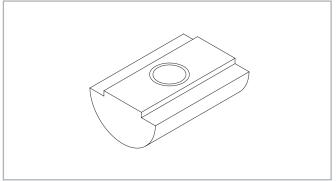


Fig. 59

Code Rollon

Slot dimension [mm]	M5	М6	M8
5	6001038	-	-
6.2	-	6001863	-
8	-	6001044	6001045
8.2	-	1000043	-

Steel nuts to be used in the slots of the body.

Proximity

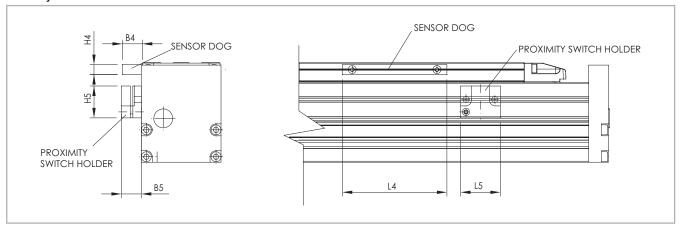
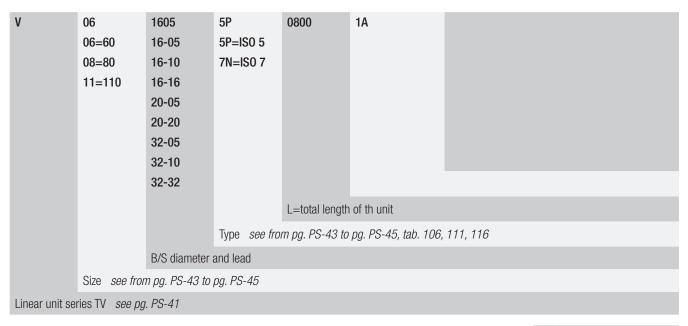


Fig. 60

Proximity switch holder

Red anodized aluminum block, equipped with T-nuts for fixing into the body slots.

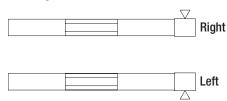
Sensor dog


Zinc-plated steel plate, mounted on the carriage and used for the proximity switch operation.

Unit [mm]

Туре	B4	В5	L4	L5	H4	Н5	Sensor	Proximity holder set	Sensor dog
TV 60	20	20	105	40	10	32	Ø12	G000849	G000581
TV 80	20	20	105	40	10	32	Ø12	G000849	G000581
TV 110	20	20	105	40	10	32	Ø12	G000850	G000581

Ordering key / V


Identification code for the TV linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

TVS series / v

TVS series description

Fig. 61

TVS

TVS series linear actuators have a rigid anodized and extruded aluminum alloy profile and transmission of motion is achieved by means of a precision rolled ball screw drive. Recirculating ball guides with cage as linear motion components ensure high precision and high rigidity. TVS linear actuators are available with profiles of different sizes: 170 - 220.

The components

Extruded bodies

The anodized 6060 aluminum alloy extrusion used for the profile of the Rollon TVS series linear units were designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Drive system

Rollon TVS series linear units use a precision rolled ball screw. The standard precision class of the ball screw used is ISO 7 without a preloaded nut. ISO 5 precision class with preloaded nut is available upon request. The ball screws of linear units can be supplied with different diameter and leads. This type of technology makes it possible to obtain the following features:

- Highly accurate thrust
- Superior mechanical performance
- Reduced wear
- Low resistance to movement

Carriage

The carriage of the Rollon TVS series linear units is made entirely of anodized aluminum. The dimensions vary depending on the size of the actuator.

Protection

Rollon TVS series linear units can be equipped with an external steel protective strip in order to protect mechanical components inside the linear units against contaminants. A resin deflector compresses the steel strip on its own magnetic base with very low friction.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 126

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22 . 111 . 10 -	U
2.7	69	23	200	880-900	33	600-655

Tab. 127

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet load capacity and precision conditions of a wide variety of applications.

TVS with recirculating ball guides

The recirculating ball guides used for TVS have the cage system. The cage included has two purposes: it reduces the friction between the guide and the slider, increasing their service life, and allows lubrication refills to be performed more rarely. The assembly of recirculating ball guides normally also involves the machining of the related seat in the profile. Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 5000km.

Main advantages of this configuration:

- High load capacity
- Long lasting
- High precision
- High rigidity

TVS section

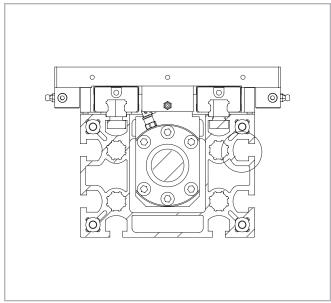
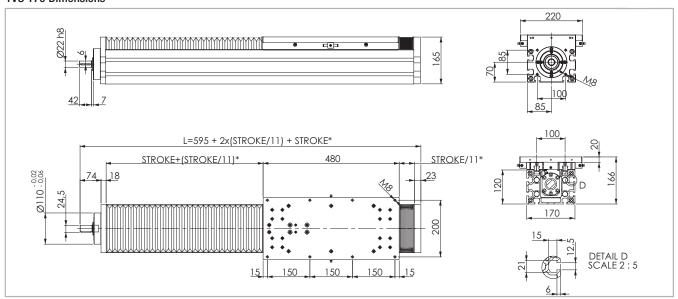



Fig. 62

TVS 170

TVS 170 Dimensions

^{*}To be calculated by Rollon technical department based on the stroke of the actuator.

Fig. 63

Technical data

	Туре
	TVS 170
Max. useful stroke length [mm]	3000
Max. speed [m/s]	See page PS-57
Carriage weight [kg]	9.9
Zero travel weight [kg]	28.9
Weight for 100 mm useful stroke [kg]	2.7
Rail size [mm]	20

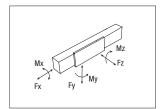
Tab. 129

Tab. 130

Ball screw precision

Туре	Max. pos precision [m		Max. repeatability precision [mm]		
	ISO 5	IS0 7	ISO 5	IS0 7	
TVS 170	0.023	0.05	0.02	0.02	

Moments of inertia of the aluminum body


Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TVS 170	19,438,900	7,986,000	27,424,900

Tab. 131

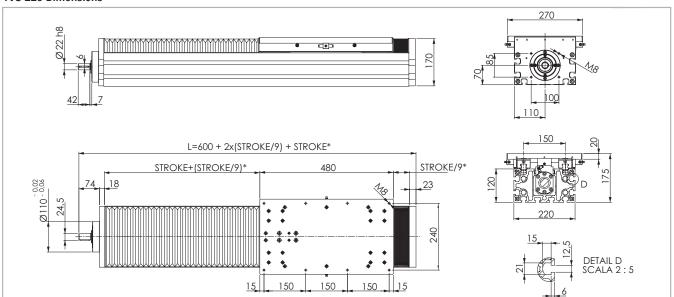
TVS 170 - Load capacity F_x

Туре	F <u>,</u> [N]				
	Screw	Stat.	Dyn		
	32-05	64200	25900		
TVS 170	32-10	66300	29800		
173 170	32-20	49700	24100		
	32-32	48600	22700		
	32-32	48600	22700		

Tab. 132

TVS 170 - Load capacity

Туре	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 170	153600	70798	153600	7680	29184	29184


See verification under static load and lifetime on page SL-2 and SL-3

Tab. 133

Note: for SP4 model the load capacities are valid only when the sliders are fixed together

TVS 220

TVS 220 Dimensions

 $^{{}^\}star \text{To}$ be calculated by Rollon technical department based on the stroke of the actuator.

Fig. 64

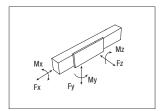
Technical data

	Туре	
	TVS 220	
Max. useful stroke length [mm]	3500	
Max. speed [m/s]	See page PS-57	
Carriage weight [kg]	13.3	
Zero travel weight [kg]	37.4	
Weight for 100 mm useful stroke [kg]	3.6	
Rail size [mm]	25	

Tab. 134

Ball screw precision

Туре		Max. positioning precision [mm/300mm]		eatability on [mm]
	ISO 5	ISO 7	ISO 5	IS0 7
TVS 220	0.023	0.05	0.02	0.02
				Tab. 135


Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
TVS 220	93,944,000	12,465,500	106,409,500
			Tab. 136

TVS 200 - Load capacity F_x

Туре	F <u>,</u> [N]		
	Screw	Stat.	Dyn
TVS 220	32-05	64200	25900
	32-10	66300	29800
	32-20	49700	24100
	32-32	48600	22700
			Tab 127

Tab. 137

TVS 220 - Load capacity

Туре	F [I	: Vj	F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 220	258800	116833	258800	19410	47360	47360

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

TVS linear units with ball bearing guides

TVS Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer

service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

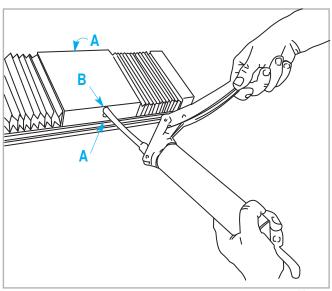


Fig. 65

Ball screws

The ball screw nuts of Rollon TVS-series linear units must be relubricated every 100 km.

Standard lubrication

Lubrication of the ball bearing blocks and the ball screw nut is facilitated by grease nipples located on the sides of the carriage of the Rollon TVS series actuators. The linear units are lubricated with class NLGI2 lithium soap grease.

- Insert the tip in the specific grease nipples:
- A Linear block B Ball screw nut
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Quantity of lubricant necessary for block re-lubrication:

Туре	Quantity [cm³] for grease nipple
TVS 170	0.7
TVS 220	1.4

Tab. 139

Amount of lubricant recommended for ball screw nut re-lubrication

Туре	Quantity [cm³] for grease nipple
32-05	1.8
32-10	2.0
32-20	2.0
32-32	3.0

Critical speed

The maximum linear speed of Rollon TVS series linear units depends on the critical speed of the screw (based on its diameter and length) and on the max. permissible speed of the ball screw nut used.

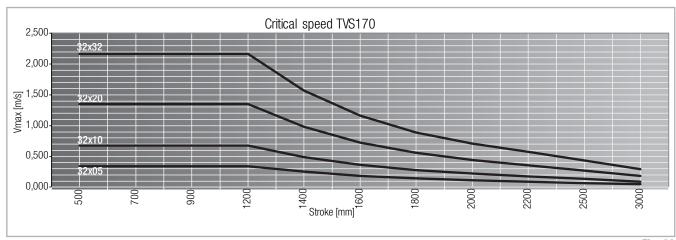


Fig. 66

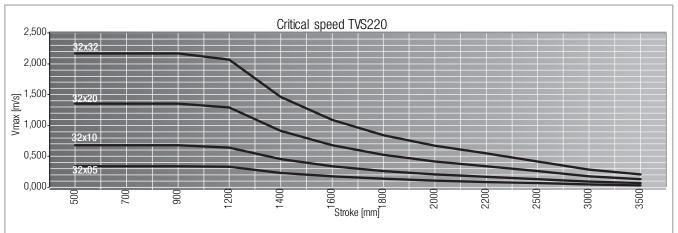
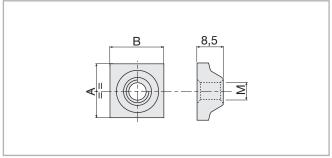


Fig. 67

Accessory


Semi-rounded threaded inserts with spring

Material: galvanised steel.

Important: to be inserted through the longitudinal slots before assembling.

Suitable for series:

TVS 170 - TVS 220

Plastic compound spring for vertical positioning of insert.

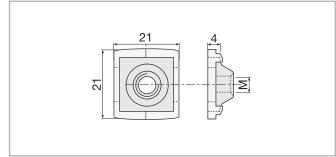
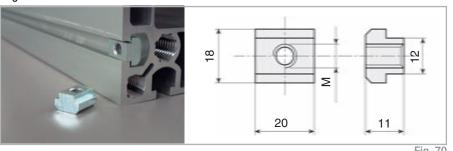


Fig. 68

Thread	АхВ		
	18x18	20x20	
M4	209.0031	209.0023	
M5	209.0032	209.0019	
M6	209.0033	209.1202	
M8	209.0034	209.0467	

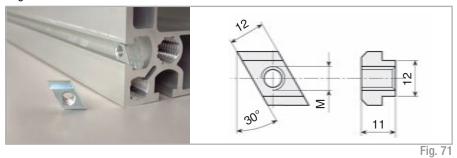

Tab. 141

Spring	Code
Suitable for all insert 18x18	101.0732

Tab. 142

Alignment nuts

Alignment nut for slot 12.5 mm

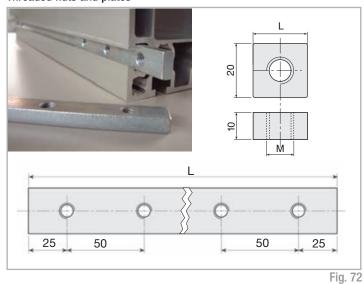

Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Fig. 70

Tab. 143

Alignment nut for slot 12.5 mm front insertable



Material: galvanised steel. Suitable for series: TVS 170 - TVS 220

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Tab. 144

Threaded nuts and plates

 $\,$ M12 (CH19) hexagonal-head screws can be used as stud bolts in profiles with 12.5 mm slots.

Material: galvanised steel. Suitable for series:

TVS 170 - TVS 220

Thread	Threaded holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Hole centre-distance: 50 mm.

Tab. 145

Profile anchor brackets

Material: alluminum alloy (Rs=310 N/mm²).

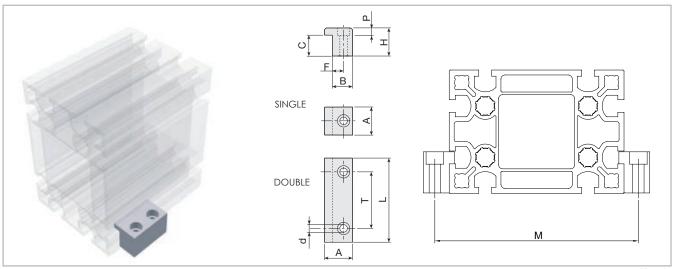
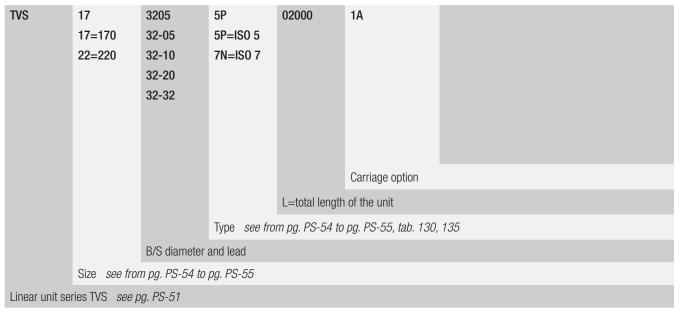
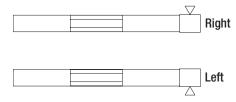



Fig. 73

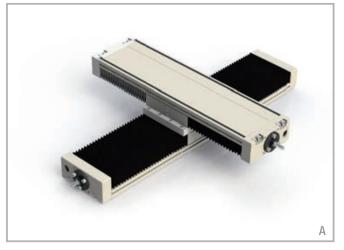
Profile	А	L	Т	d	Н	Р	С	F	В	M	Single code	Double code
TVS 170	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
TVS 220	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762

Ordering key // V

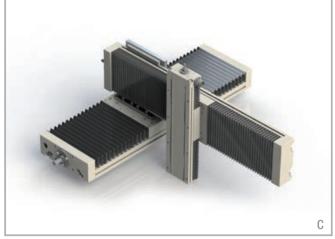

Identification code for the TVS linear units

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

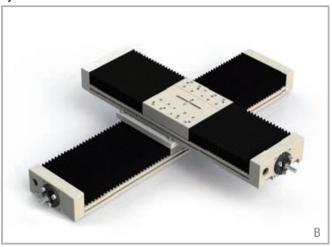
Left / right orientation



Multiaxis systems


Rollon Precision System series linear units have been specifically designed to be modular and therefore to permit fast, trouble-free setup of multi-axis systems. Rollon can provide all the connection elements necessary for combining the various sizes and lengths of Precision System series linear units.

System with 2 horizontal axes

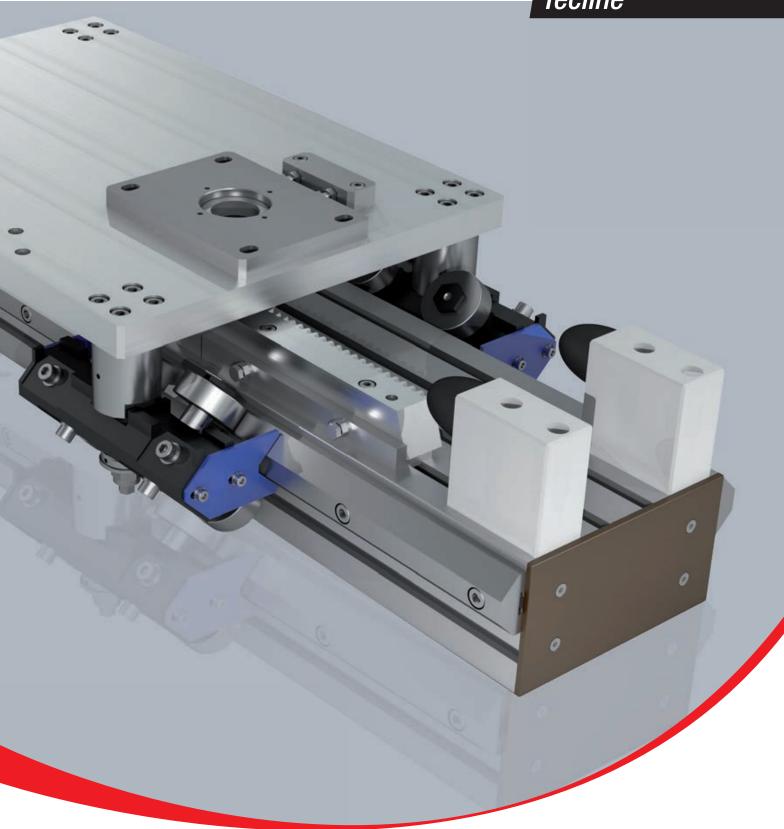

A - Direct fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using screws without intermediate brackets.

Three-axes system

C - Fastening of the Y-axis on the X-axis ("base unit on carriage" assembly) using 90° brackets.
 Fastening of the Z-axis on the Y-axis ("carriage on carriage" assembly) using a "cross" plate.

System with 2 horizontal axes

B - Fastening of the Y-axis on the X-axis ("carriage on carriage" assembly) using a "cross" plate.


Three-axes system

D - Fastening of the Y-axis on the X-axis ("base unit on carriage assembly) using 90° brackets.

Tecline

PAR/PAS series

PAR/PAS series description

Fig. 1

Tecline products are linear actuators made of a self-supporting extruded aluminum with rack and pinion transmission designed for multi-axes solutions for several applications like pick and place, industrial machines feeding and logistics with loads up to 2.000 Kg.

PAR/PAS linear actuators are available with profiles of different sizes: 118 - 140 - 170 - 200 - 220 - 230 - 280 - 360 mm.

Some of the main advantages of PAR/PAS solutions are:

- Easy and quick assembly.
- High quality and competitive performances.
- Reduced and simplified maintenance.
- Wide range of integrated solutions.
- Possibility of customized solutions.
- Up to 10,8 m beams, high level torsional rigidity, precise shape.
 Longer lengths can be obtained with jointed versions.
- Precise machining of all profiles.

PAR

PAR series is defined by Prismatic Rails as linear motion components.

PAS

PAS series is defined by recirculating ball guides with cage as linear motion components.

The components

Extruded bodies

The PAR/PAS series is created using extruded and anodized Rollon profiles, made of hardened and tempered aluminum alloy tolerance according to UNI EN 755-9. Profiles are specifically designed by Rollon to create rigid and light structures, suitable for manufacturing linear transfer machines.

Rack and pinion drive

The PAR/PAS series is driven by a rack and pinion system, with hardened teeth, that allows long stroke up to 10,8 m. Longer lengths can be obtained with jointed versions. Racks with helical teeth, made of induction-hardened steel, are available with three different modules: M2, M3 and M4. PAR/PAS series axes are assembled with ground, KSD induction-

hardened racks with pinions in high-performance tempered and surface-hardened steel (RD). High-performance KRD racks are available upon request (Rs>900 MPa). These are hardened and tempered, induction-hardened, and fully ground. With RD pinions and KRD racks, and with the help of continuous lubrication, speeds up to 5 m/s can be reached.

Carriage

The carriage of the PAR/PAS series linear units is made of anodized aluminum. Different lengths of the carriages are available according to the different sizes.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 m 10-9	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.70	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	$\frac{N}{mm^2}$	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

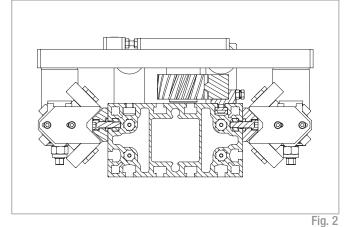
PAR with Prismatic Rails

Prismatic Rails are made of specially treated high-carbon steel and provided with a permanent lubrication system. Thanks to this kind of solution PAR is specifically dedicated for dirty environments and high dynamics in automation.

- The Prismatic Rails with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage is assembled with preload, that enables to withstand loading in the four main directions.
- Hardened and ground steel guide rails.
- Sliders have felts for self-lubrication.

The linear motion system described above offers:

- Suitable for dirty environments
- High speed and acceleration
- Maintenance free
- High load capacity
- Low friction
- Long life
- Low noise


PAS with recirculating ball guides with cage

The recirculating ball guides used for PAS have the cage system. The cage included has two purposes: it reduces the friction between the guide and the slider, increasing their service life, and allows lubrication refills to be performed more rarely. Due to the cage keeping the ball bearings apart, these units are regarded as permanently lubricated; considering the average life of handling devices, no maintenance is needed before 2000 Km.

The linear motion system described above offers:

- High permissible bending moments
- High accuracy of the movement
- High speed and acceleration
- High load capacity
- High rigidity
- Low friction
- Long life
- Low noise

PAR

PAS

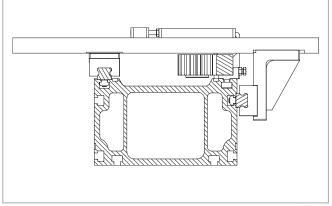
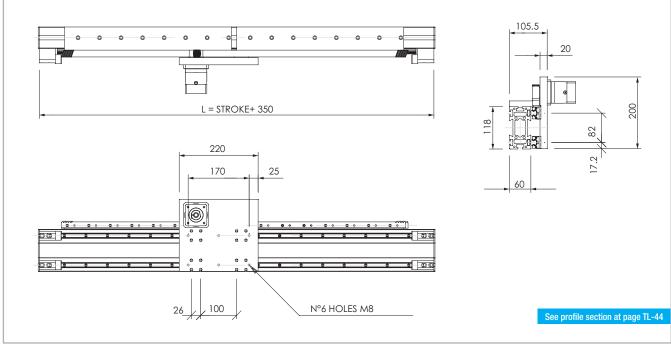



Fig. 3

PAS 118 Dimension

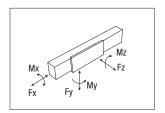
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

Technical data

	Туре
	PAS 118
Max. useful stroke length [mm]*1	9550
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s²]	5
Rack module	m 2
Pinion pitch diameter [mm]	38.2
Carriage displacement per pinion turn [mm]	120
Carriage weight [kg]	3.5
Zero travel weight [kg]	11
Weight for 100 mm useful stroke [kg]	1.9
Rail size [mm]	15

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	 [10 ⁷ mm ⁴]
PAS 118	4,322,574	1,011,437	5,334,011
			Tab. 5

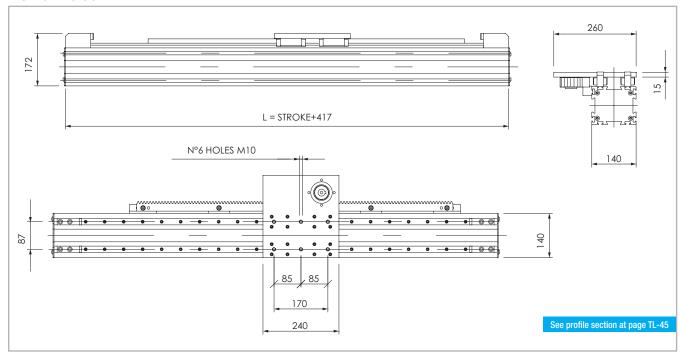
Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 118	Helical teeth hardened ground	m 2	Q6

Tab. 6

PAS 118 - Load capacity

Туре	F _x [N]	F. [N	j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 118	1814	96800	45082	96800	3969	6098	6098


Tab. 4

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

80 Kg High Cycle Bate Low Cycle Bate 160 Kg

PAS 140 Dimension

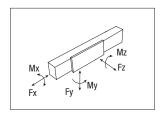
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

Technical data

	Туре
	PAS 140
Max. useful stroke length [mm]*1	7100
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	4
Max. acceleration [m/s²]	5
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	5
Zero travel weight [kg]	15
Weight for 100 mm useful stroke [kg]	2.6
Rail size [mm]	20

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	լ _ր [10 ⁷ mm⁴]
PAS 140	11,482,500	8,919,600	20,402,100
			Tab. 9

Rack specifications

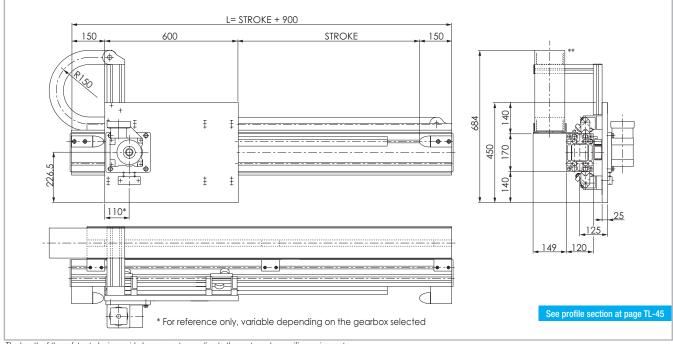
Туре	Type of rack	Rack module	Quality
PAS 140	Helical teeth hardened ground	m 3	Q6

Tab. 10

PAS 140 - Load capacity

Туре	F _x [N]	F [N	, 1	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 140	5714	201200	89212	201200	8752	13581	13581

Tab. 8


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 170

PAR 170 Dimension

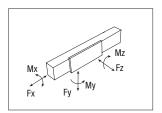
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 6

Technical data

	Туре
	PAR 170
Max. useful stroke length [mm]*1	11100
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3.5
Max. acceleration [m/s ²]	10
Rack module	m 3
Pinion pitch diameter [mm]	63.66 (89.13)
Carriage displacement per pinion turn [mm]	200 (280)
Carriage weight [kg]	29
Zero travel weight [kg]	59
Weight for 100 mm useful stroke [kg]	3.1
Rail size [mm]	35x16
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 12

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm⁴]
PAR 170	19,734,283	9,835,781	29,570,064
			Tab. 13

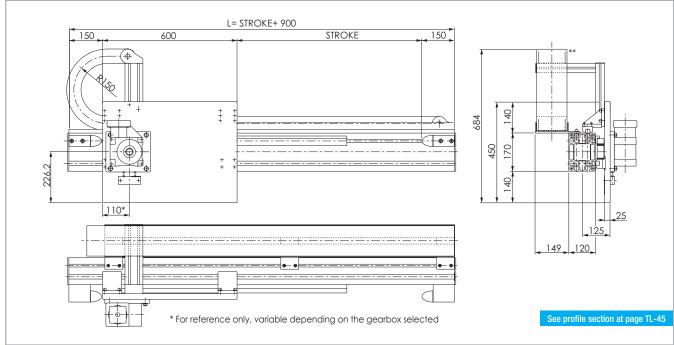
Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 170	Helical teeth hardened ground	m 3	Q6

Tab. 14

PAR 170 - Load capacity

Туре	F _x [N]	F. [N	j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 170	5714	14142	65928	14142	1202	3076	3076


See verification under static load and lifetime on page SL-2 and SL-3

Tab. 15

^{*2)} Positioning repeatability is dependent on the type of transmission used

■ 250 Kg

PAS 170 Dimension

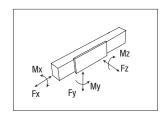
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
PAS 170	19,734,283	9,835,781	29,570,064

Tab. 17

Fig. 7


Technical data

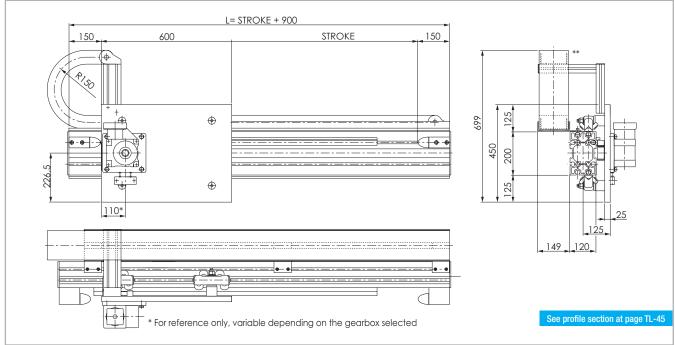
	Туре
	PAS 170
Max. useful stroke length [mm]*1	11100
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3.5
Max. acceleration [m/s²]	10
Rack module	m 3
Pinion pitch diameter [mm]	63.66 (89.13)
Carriage displacement per pinion turn [mm]	200 (280)
Carriage weight [kg]	29
Zero travel weight [kg]	57
Weight for 100 mm useful stroke [kg]	2.9
Rail size [mm]	20
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 16

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 170	Helical teeth hardened ground	m 3	Q6
			Tab. 18

PAS 170 - Load capacity


Туре	F _x [N]	F _.	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	DYN.	Stat.	Stat.	Stat.	Stat.
PAS 170	5714	153600	70798	153600	10368	39552	39552

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 200

PAR 200 Dimension

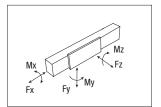
The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 8

Technical data

	Туре
	PAR 200
Max. useful stroke length [mm]*1	11100
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s ²]	7
Rack module	m 3
Pulley pitch diameter [mm]	63.66 (89,13)
Carriage displacement per pulley turn [mm]	200 (280)
Carriage weight [kg]	36
Zero travel weight [kg]	70
Weight for 100 mm useful stroke [kg]	3.5
Rail size [mm]	35x16
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 20

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

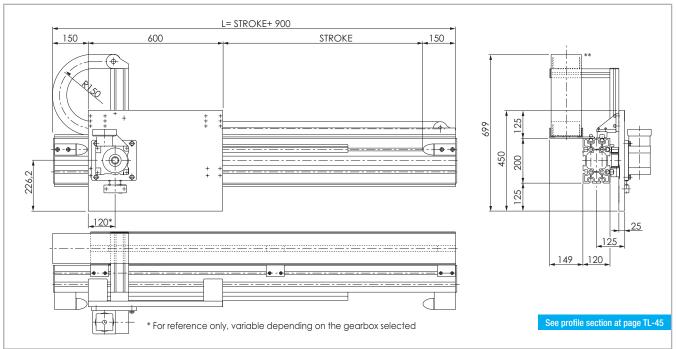
Туре	l _x [mm⁴]	l _y [mm⁴]	լ _ր [10 ⁷ mm⁴]
PAR 200	32,697,979	12,893,004	45,860,983
			Tab. 21

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 200	Helical teeth hardened ground	m 3	Q6

Tab. 22

PAR 200 - Load capacity


Туре	F _x [N]	F [N	j j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 200	5714	14142	65928	14142	1414	3536	3536

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

100 Kg High Cycle Rate Low Cycle Rate ■ 300 Kg

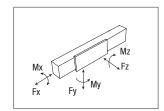
PAS 200 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 9

Technical data

	Туре
	PAS 200
Max. useful stroke length [mm]*1	11100
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	7
Rack module	m 3
Pinion pitch diameter [mm]	63.66 (89,13)
Carriage displacement per pinion turn [mm]	200 (280)
Carriage weight [kg]	36
Zero travel weight [kg]	68
Weight for 100 mm useful stroke [kg]	3.3
Rail size [mm]	20
1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 2


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

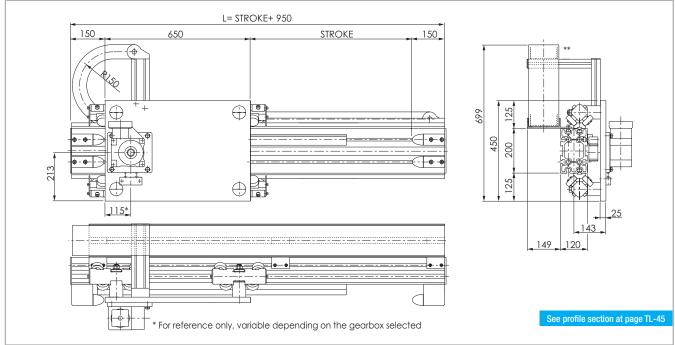
Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
PAS 200	32,697,979	12,893,004	45,860,983
			Tab. 25

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS200	Helical teeth hardened ground	m 3	Q6
			Tab. 26

PAS 200-20 - Load capacity

Туре	F _x [N]	F, [N	ý Í]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 200	5714	153600	70798	153600	11520	39552	39552


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 200P

PAR 200P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 10

Technical data

	Туре
	PAR 200P
Max. useful stroke length [mm]*1	11050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	7
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	48
Zero travel weight [kg]	96
Weight for 100 mm useful stroke [kg]	4.8
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 28

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

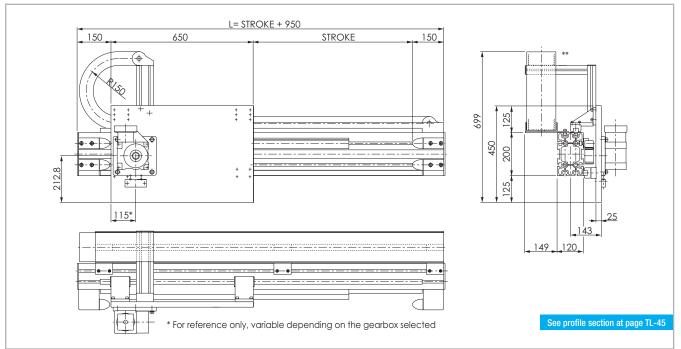
Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm⁴]
PAR 200P	32,697,979	12,893,004	45,860,983
			Tab. 29

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 200P	Helical teeth hardened ground	m 4	Q6
			Tab. 30

PAR 200P - Load capacity

Туре	F _x [N]	F. [N	j j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 200P	10989	24042	112593	24042	2404	6611	6611


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAS 200P

100 Kg High Cycle Rate Low Cycle Rate 400 Kg

PAS 200P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

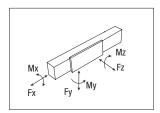
Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm⁴]
PAS 200P	32,697,979	12,893,004	45,860,983
			Tab 22

Tab. 33

Fig. 11

Technical data


	Туре
	PAS 200P
Max. useful stroke length [mm]*1	11050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s ²]	7
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	38
Zero travel weight [kg]	80
Weight for 100 mm useful stroke [kg]	4.0
Rail size [mm]	25

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

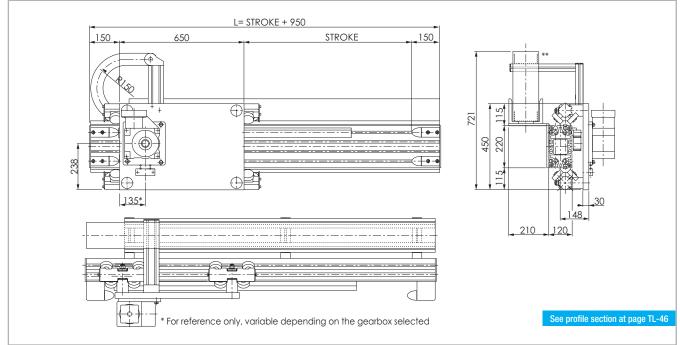
Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 200P	Helical teeth hardened ground	m 4	Q6

Tab. 34

PAS 200P - Load capacity

Туре	F _x [N]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 200P	10989	258800	116833	258800	19410	73111	73111


Tab. 32

See verification under static load and lifetime on page SL-2 and SL-3

 $^{^{\}star}$ 2) Positioning repeatability is dependent on the type of transmission used

PAR 220

PAR 220 Dimension

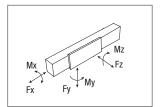
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 12

Technical data

	Туре
	PAR 220
Max. useful stroke length [mm]*1	11050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s ²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	54
Zero travel weight [kg]	106
Weight for 100 mm useful stroke [kg]	5.2
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 36

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

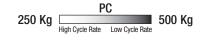

Moments of inertia of the aluminum body

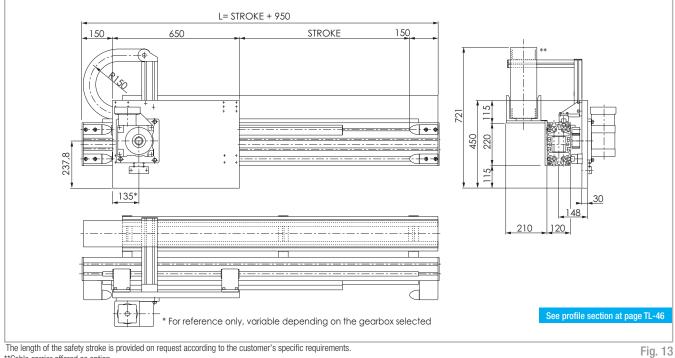
Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
PAR 220	46,248,422	15,591,381	61,839,803
			Tah 37

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 220	Helical teeth hardened ground	m 4	Q6
			T I 00

Tab. 38


PAR 220 - Load capacity


Туре	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 220	10989	29981	149063	29981	3298	8425	8425

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAS 220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

**Cable carrier offered as option

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_ր [10 ⁷ mm⁴]
PAS 220	46,248,422	15,591,381	61,839,803
			Tab. 41

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 220	Helical teeth hardened ground	m 4	Q6
			Tab. 42

Technical data

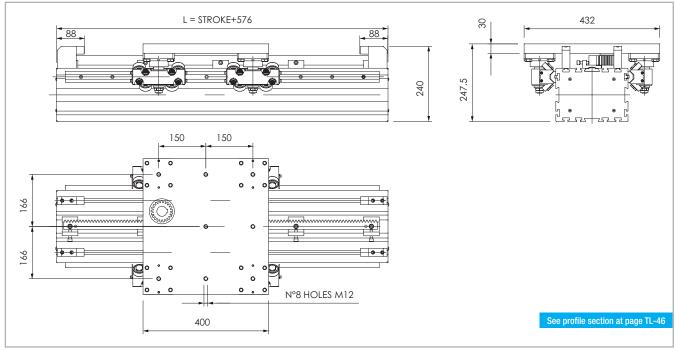
	Туре
	PAS 220
Max. useful stroke length [mm]*1	11050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	6
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	44
Zero travel weight [kg]	99
Weight for 100 mm useful stroke [kg]	4.4
Rail size [mm]	25

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

PAS 220 - Load capacity

Туре	F _x [N]	F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 220	10989	258800	116833	258800	23939	73111	73111

Tab. 40


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 230

PAR 230 Dimension

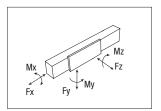
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 14

Technical data

	Туре
	PAR 230
Max. useful stroke length [mm]*1	11400
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	6
Rack module	m 3
Pinion pitch diameter [mm]	(89.13) 63.66
Carriage displacement per pinion turn [mm]	(280) 200
Carriage weight [kg]	25
Zero travel weight [kg]	50
Weight for 100 mm useful stroke [kg]	4
Rail size [mm]	35x16

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

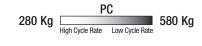
Туре	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
PAR 230	65,009,000	37,783,000	102,792,000
			Tah 45

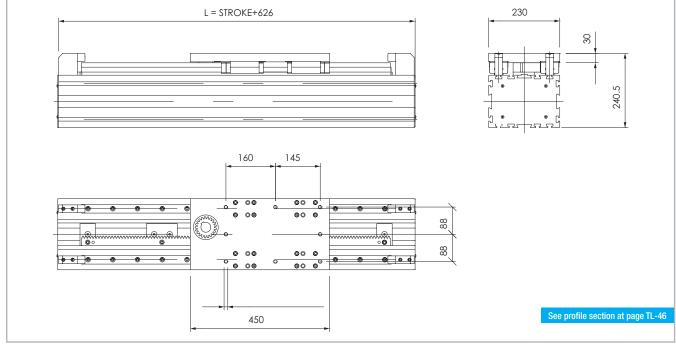
Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 230	Helical teeth hardened ground	m 3	Q6
			T 1 40

Tab. 46

PAR 230 - Load capacity


Туре	F _x [N]	F. [N	j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 230	5714	14142	65928	14142	1626	2121	2121


Tab. 44

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

 $^{^{\}star}2)$ Positioning repeatability is dependent on the type of transmission used

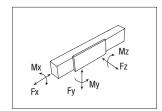
PAS 230 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 15

Technical data

	Туре
	PAS 230
Max. useful stroke length [mm]*1	11350
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s ²]	5
Rack module	m 3
Pinion pitch diameter [mm]	63.66
Carriage displacement per pinion turn [mm]	200
Carriage weight [kg]	12.5
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	4.35
Rail size [mm]	30


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

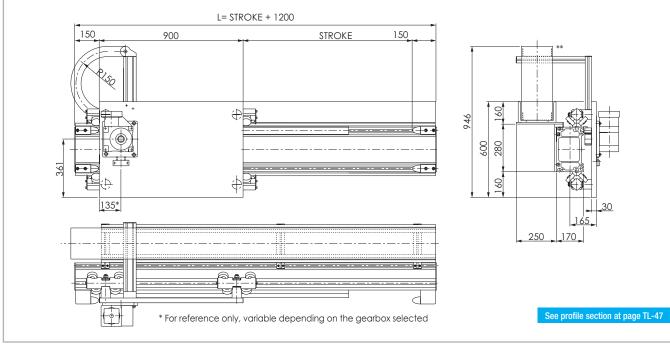
Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
PAS 230	65,009,000	37,783,000	102,792,000
			Tab. 49

Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 230	Helical teeth hardened ground	m 3	Q6
			Tab. 50

PAS 230 - Load capacity

Туре	F _x [N]	F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 230	5714	355200	172074	355200	29304	35520	35520


Tab. 48

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

 $^{^{\}star}$ 2) Positioning repeatability is dependent on the type of transmission used

PAR 280

PAR 280 Dimension

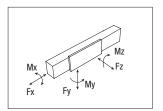
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 16

Technical data

	Туре
	PAR 280
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	4
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	79
Zero travel weight [kg]	164
Weight for 100 mm useful stroke [kg]	6.6
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 52

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	լ _ր [10 ⁷ mm⁴]
PAR 280	126,456,800	48,292,512	174,749,312
			Tab. 53

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 280	Helical teeth hardened ground	m 4	Q6
			T-1- E 4

Tab. 54

PAR 280 - Load capacity

Туре	F _x [N]	F. [N	Ĭ]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280	10989	29981	149063	29981	4197	12307	12307

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

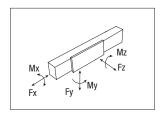
PAS 280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 17

Technical data

	Туре
	PAS 280
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	3
Max. acceleration [m/s²]	5
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	69
Zero travel weight [kg]	149
Weight for 100 mm useful stroke [kg]	6.0
Rail size [mm]	30


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
PAS 280	126,456,800	48,292,512	174,749,312
			Tab. 57

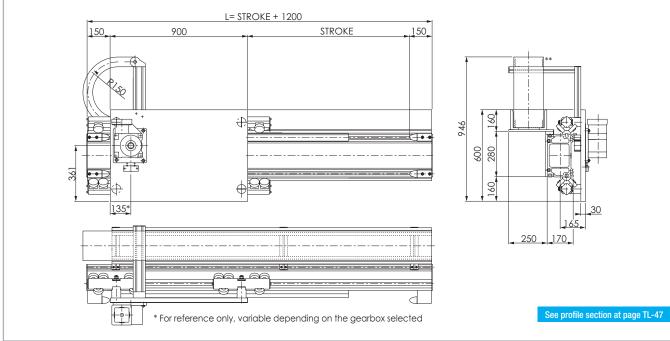
Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 280	Helical teeth hardened ground	m 4	Q6
			Tab. 58

PAS 280 - Load capacity

Type F _x [N]		F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280	10989	266400	142231	266400	34632	106560	106560

Tab. 56


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 280P

PAR 280P Dimension

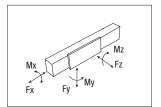
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 18

Technical data

	Туре
	PAR 280P
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	2.5
Max. acceleration [m/s ²]	2
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	88
Zero travel weight [kg]	173
Weight for 100 mm useful stroke [kg]	6.6
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 60

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
PAR 280P	126,456,800	48,292,512	174,749,312
			Tab. 61

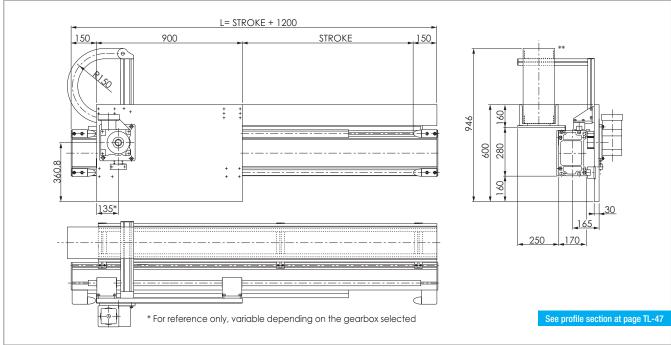
Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 280P	Helical teeth hardened ground	m 4	Q6

Tab. 62

PAR 280P - Load capacity

Туре	Type F _x F _y [N] [N]		Ĭ]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280P	10989	29981	149063	29981	8395	11108	11108


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAS 280P

300 Kg High Cycle Rate Low Cycle Rate ■ 800 Kg

PAS 280P Dimension

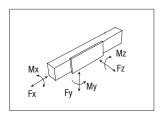
The length of the safety stroke is provided on request according to the customer's specific requirements.

**Cable carrier offered as option

Fig. 19

Technical data

	Туре
	PAS 280P
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	2.5
Max. acceleration [m/s ²]	2
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	76
Zero travel weight [kg]	159
Weight for 100 mm useful stroke [kg]	6.4
Rail size [mm]	35


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
PAS 280P	126,456,800	48,292,512	174,749,312
			Tab. 65

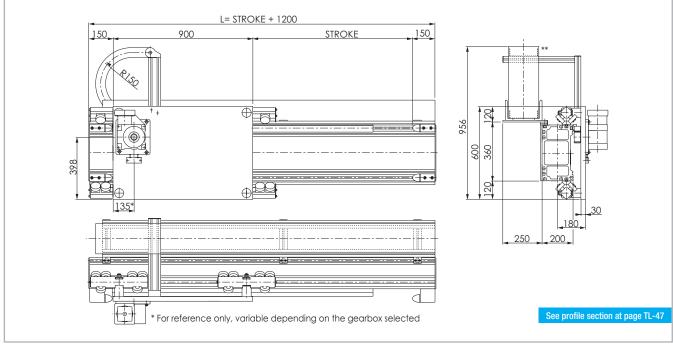
Rack specifications

Туре	Type of rack	Rack module	Quality
PAS 280P	Helical teeth hardened ground	m 4	Q6
			Tab. 66

PAS 280P - Load capacity

Туре	F _x [N]	F [N	j j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280P	10989	386400	197790	386400	50232	150310	150310

Tab. 64


See verification under static load and lifetime on page SL-2 and SL-3 $\,$

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 360

PAR 360 Dimension

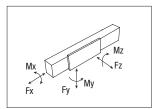
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 20

Technical data

	Туре
	PAR 360
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	2.5
Max. acceleration [m/s²]	2
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	88
Zero travel weight [kg]	196
Weight for 100 mm useful stroke [kg]	8.5
Rail size [mm]	55x25
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 68

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

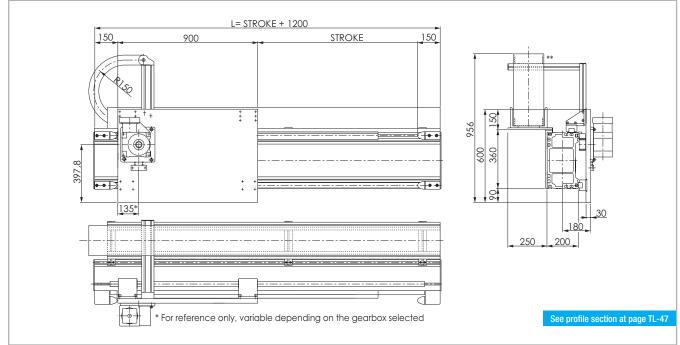
Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm⁴]
PAR 360	317,212,806	103,285,258	420,498,064
			Tab. 69

Rack specifications

Туре	Type of rack	Rack module	Quality
PAR 360	Helical teeth hardened ground	m 4	Q6

Tab. 70

PAR 360 - Load capacity


Туре	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 360	10989	29981	149063	29981	10793	11108	11108

See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAS 360 Dimension

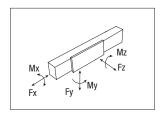
The length of the safety stroke is provided on request according to the customer's specific requirements.
**Cable carrier offered as option

Fig. 21

Technical data

	Туре
	PAS 360
Max. useful stroke length [mm]*1	10800
Max. positioning repeatability [mm]*2	± 0.1
Max. speed [m/s]	2.5
Max. acceleration [m/s²]	3
Rack module	m 4
Pinion pitch diameter [mm]	76.39 (106.1)
Carriage displacement per pinion turn [mm]	240 (333.33)
Carriage weight [kg]	76
Zero travel weight [kg]	182
Weight for 100 mm useful stroke [kg]	8.3
Rail size [mm]	35

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
PAS 360	317,212,806	103,285,258	420,498,064
			Tab. 73

Rack specifications

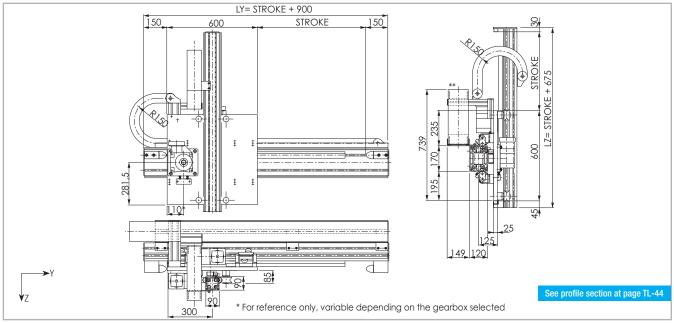
Туре	Type of rack	Rack module	Quality
PAS 360	Helical teeth hardened ground	m 4	Q6

Tab. 74

PAS 360 - Load capacity

Туре	F _x [N]	F [N	; V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 360	10989	386400	197790	386400	65688	150310	150310

Tab. 72


See verification under static load and lifetime on page SL-2 and SL-3 $\,$

^{*2)} Positioning repeatability is dependent on the type of transmission used

PAR 170/90

PAR 170/90 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

**Cable carrier offered as option

Fig. 22

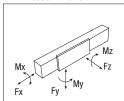
Technical data

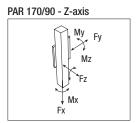
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	11100*1	2000	
Max. positioning repeatability [mm]	± 0.05	± 0.20*2	
Max. speed [m/s]	3.5	3.5	
Max. acceleration [m/s²]	10	7	
Rack module	m 3	m 2	
Pinion pitch diameter [mm]	63.66 (89.13)	44.56 (63.66)	
Carriage displacement per pinion turn [mm]	200 (280)	140 (200)	
Carriage weight [kg]	44		
Zero travel weight [kg]	8	8	
Weight for 100 mm useful stroke [kg]	3.1	1.5	
Rail size [mm]	35x16	28x11	

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
Y-axis	19,734,283	9,835,781	29,570,064
Z-axis	1,969,731	1,950,080	3,919,811


Tab. 77


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 3	Q6
Z-axis	hardened ground	m 2	Ųΰ

Tab. 78

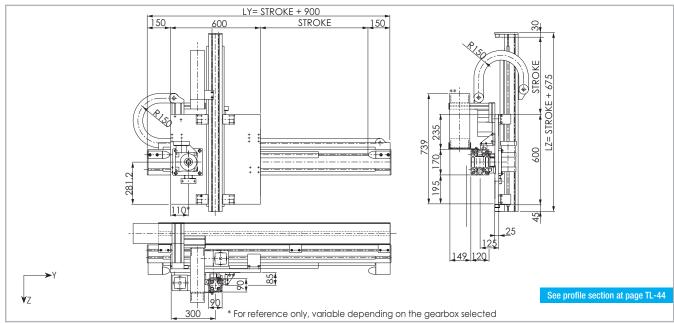
PAR 170/90 - Y-axis

PAR 170/90 - Load capacity

Axis	F _x [N]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	5714	14142	65928	14142	1202	3076	3076
Z-axis	2902	2800	24216	2400	108	624	728

Tab. 76

See verification under static load and lifetime on page SL-2 and SL-3


Tab. 79

 $^{^{\}star}2)$ Reference value considering a stroke of 1000 mm on Z-axis.

PAS 170/90

PAS 170/90 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

**Cable carrier offered as option

Fig. 23

Technical data

	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	11100*1	2000	
Max. positioning repeatability [mm]	± 0.05	± 0.1*2	
Max. speed [m/s]	3.5	3.5	
Max. acceleration [m/s²]	10	7	
Rack module	m 3	m 2	
Pinion pitch diameter [mm]	63.66 (89.13)	44.56 (63.66)	
Carriage displacement per pinion turn [mm]	200 (280)	140 (200)	
Carriage weight [kg]	43		
Zero travel weight [kg]	8	9	
Weight for 100 mm useful stroke [kg]	2.9	1.4	
Rail size [mm]	20	15	

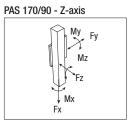
^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
Y-axis	19,734,283	9,835,781	29,570,064
Z-axis	1,969,731	1,950,080	3,919,811

Tab. 81

Rack specifications


Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 3	Q6
Z-axis	hardened ground	m 2	QU

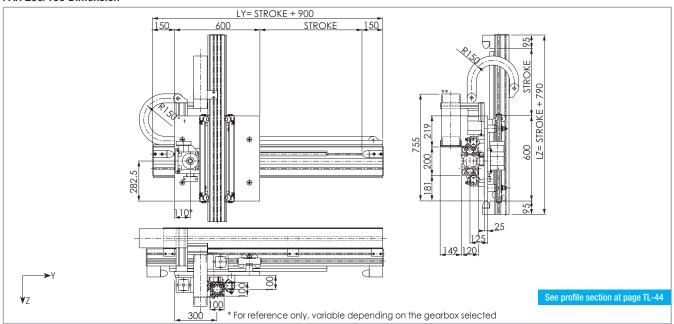
Tab. 82

PAS 170/90 - Y-axis

Tab. 80

PAS 170/90 - Load capacity

Axis	F _{.x} [N]	F [N	: ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	5714	153600	70798	153600	10368	39552	39552
Z-axis	2902	96800	45082	96800	4356	25652	25652


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAR 200/100

PC 25 Kg Link Carlo Pate Law Carlo Pate 100 Kg

PAR 200/100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 24

Technical data

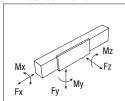
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	11100*1	2200	
Max. positioning repeatability [mm]	± 0.05	± 0.25*2	
Max. speed [m/s]	3	3	
Max. acceleration [m/s²]	7	7	
Rack module	m 3	m 3	
Pinion pitch diameter [mm]	63.66 (89.13)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	200 (280)	200 (280)	
Carriage weight [kg]	54		
Zero travel weight [kg]	111		
Weight for 100 mm useful stroke [kg]	3.5	2.4	
Rail size [mm]	35x16	35x16	

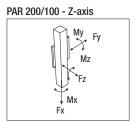
 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
Y-axis	32,697,979	12,893,004	45,860,983
Z-axis	3,637,190	3,457,193	7,094,383
			T- L OF

Tab. 85


Rack specifications


Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 3	06
Z-axis	hardened ground	m 3	Ųΰ

Tab. 86

PAR 200/100 - Y-axis

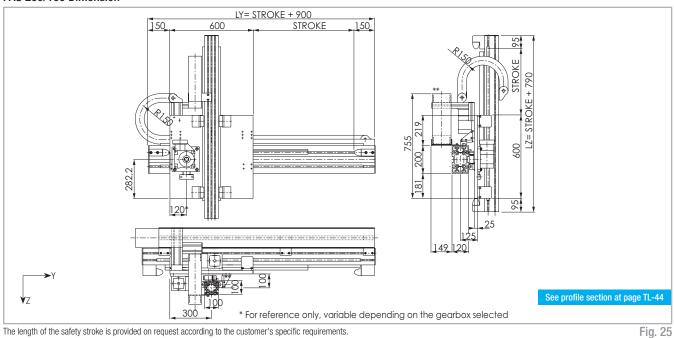
Tab. 84

PAR 200/100 - Load capacity

Axis	F _x [N]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	5714	14142	65298	14142	1414	3536	3536
Z-axis	5714	7071	32964	7071	354	1867	1867

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 87


^{**}Cable carrier offered as option

 $^{^{\}star}2)$ Reference value considering a stroke of 1000 mm on Z-axis.

PAS 200/100

100 Kg

PAS 200/100 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

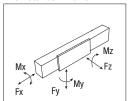
Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
Y-axis	32,697,979	12,893,004	45,860,983
Z-axis	3,637,190	3,457,193	7,094,383

Tab. 89

Tab. 90

Technical data


	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	11100*1	2200	
Max. positioning repeatability [mm]	± 0.05	± 0.1*2	
Max. speed [m/s]	3	3	
Max. acceleration [m/s²]	7	7	
Rack module	m 3	m 3	
Pinion pitch diameter [mm]	63.66 (89.13)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	200 (280)	200 (280)	
Carriage weight [kg]	45		
Zero travel weight [kg]	100		
Weight for 100 mm useful stroke [kg]	3.3	2.1	
Rail size [mm]	20	20	

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints

Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 3	06
Z-axis	hardened ground	m 3	QU

PAS 200/100 - Y-axis

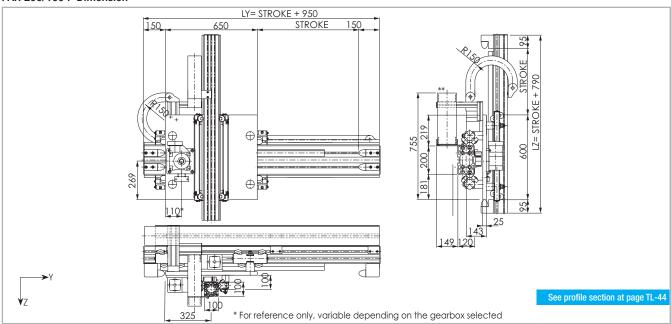
PAS 200/100 - Z-axis

PAS 200/100 - Load capacity

Axis	F _x [N]	F [N	· Ňj	F _z [N]	M _x [Nm]	M _y [Nm]	M _ջ [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	5714	153600	70798	153600	11520	39552	39552
Z-axis	5714	153600	70798	153600	7680	40704	40704

Tab. 88

See verification under static load and lifetime on page SL-2 and SL-3


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAR 200/100P

25 Kg PC 100 Kg

PAR 200/100 P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 26

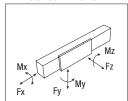
Technical data

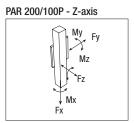
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	11050*1	2200	
Max. positioning repeatability [mm]	± 0.05	± 0.25*2	
Max. speed [m/s]	3	3	
Max. acceleration [m/s²]	7	7	
Rack module	m 4	m 3	
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)	
Carriage weight [kg]	69		
Zero travel weight [kg]	140		
Weight for 100 mm useful stroke [kg]	4.8	2.4	
Rail size [mm]	55x25	35x16	

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	Լ _ր [10 ⁷ mm⁴]
Y-axis	32,697,979	12,893,004	45,860,983
Z-axis	3,637,190	3,457,193	7,094,383


Tab. 93


Rack specifications

Axis	Type of rack	Rack module	Quality	
Y-axis	Helical teeth	m 4	Q6	
Z-axis	hardened ground	m 3		

Tab. 94

PAR 200/100P - Y-axis

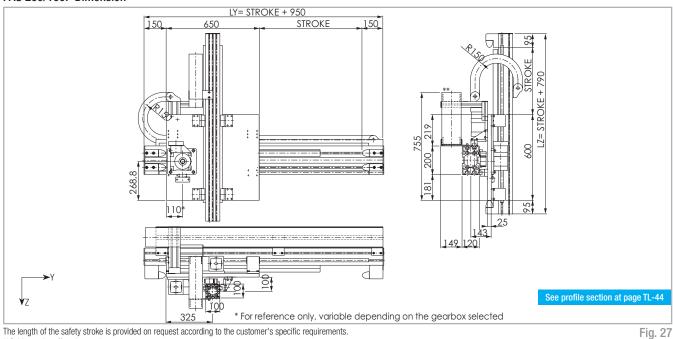
PAR 200/100P - Load capacity

Axis	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	24042	112593	24042	2404	6611	6611
Z-axis	5714	7071	32964	7071	354	1867	1867

Tab. 92

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 95


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 200/100P

■ 100 Kg

PAS 200/100P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

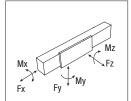
Technical data

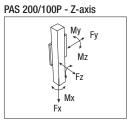
	A	dis .		
	Y-axis	Z-axis		
Max. useful stroke length [mm]	11050*1	2200		
Max. positioning repeatability [mm]	± 0.05	± 0.1*2		
Max. speed [m/s]	3	3		
Max. acceleration [m/s²]	7	7		
Rack module	m 4	m 3		
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13		
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)		
Carriage weight [kg]	e weight [kg] 59			
Zero travel weight [kg]	121			
Weight for 100 mm useful stroke [kg]	4.0	2.1		
Rail size [mm]	25	20		

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _ր [10 ⁷ mm⁴]	
Y-axis	32,697,979	12,893,004	45,860,983	
Z-axis	3,637,190	3,457,193	7,094,383	


Tab. 97


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 3	QU

Tab. 98

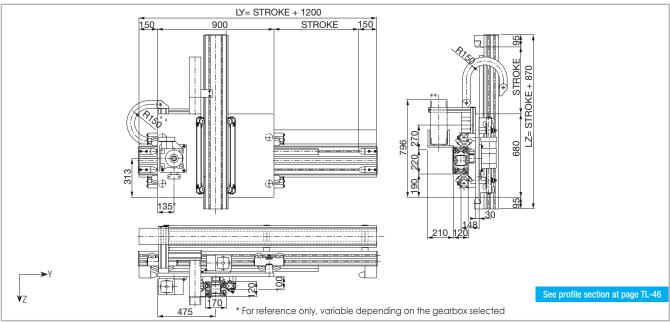
PAS 200/100P - Y-axis

PAS 200/100P - Load capacity

Axis	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	258800	116833	258800	19410	73111	73111
Z-axis	5714	153600	70798	153600	7680	40474	40474

Tab. 96

See verification under static load and lifetime on page SL-2 and SL-3


Tab. 99

^{**}Cable carrier offered as option

PAR 220/170

■ 200 Kg

PAR 220/170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 28

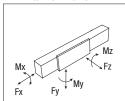
Technical data

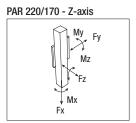
	Axis			
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	2400		
Max. positioning repeatability [mm]	± 0.05	± 0.25*2		
Max. speed [m/s]	3	3		
Max. acceleration [m/s ²]	6	4		
Rack module	m 4	m 3		
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)		
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)		
Carriage weight [kg]) 98			
Zero travel weight [kg]	vel weight [kg] 195			
Weight for 100 mm useful stroke [kg]	5.2	3.1		
Rail size [mm]	55x25	35x16		

 $^{^{\}star}1)$ It is possible to obtain longer stroke by means of special Rollon joints $^{\star}2)$ Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]	
Y-axis	46,248,422	15,591,381	61,839,803	
Z-axis	19,734,283	9,835,781	29,570,064	


Tab. 101


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 3	QU

Tab. 102

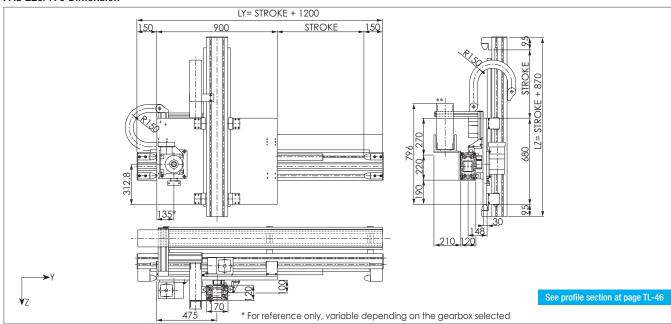
PAR 220/170 - Y-axis

PAR 220/170 - Load capacity

Axis	F _x [N]	F [I	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	3298	12307	12307
Z-axis	5714	7071	32964	7071	601	1867	1867

Tab. 100

See verification under static load and lifetime on page SL-2 and SL-3


Tab. 103

^{**}Cable carrier offered as option

PAS 220/170

200 Kg

PAS 220/170 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 29

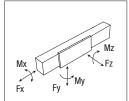
Technical data

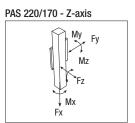
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2400	
Max. positioning repeatability [mm]	± 0.05	± 0.1*2	
Max. speed [m/s]	3	3	
Max. acceleration [m/s ²]	6	4	
Rack module	m 4	m 3	
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)	
Carriage weight [kg]	95		
Zero travel weight [kg]	176		
Weight for 100 mm useful stroke [kg]	4.4	2.9	
Rail size [mm]	25	25	

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]	
Y-axis	46,248,422	15,591,381	61,839,803	
Z-axis	19,734,283	9,835,781	29,570,064	


Tab. 105


Rack specifications

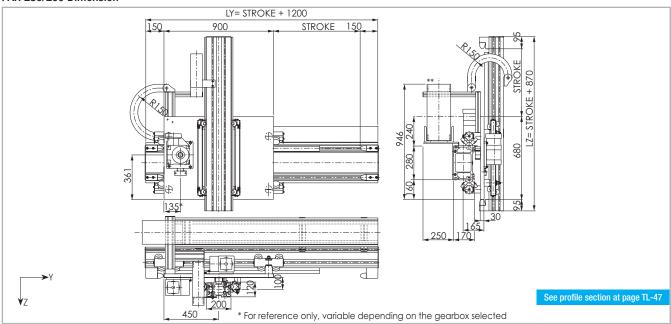
Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 3	Ųΰ

Tab. 106

PAS 220/170 - Y-axis

PAS 220/170 - Load capacity

Axis	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	258800	116833	258800	23939	105461	105461
Z-axis	5714	258800	116833	258800	21998	76993	76993


Tab. 104

Tab. 107

PAR 280/200

■ 200 Kg

PAR 280/200 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 30

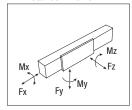
Technical data

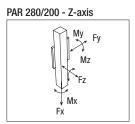
	Axis			
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	2600		
Max. positioning repeatability [mm]	± 0.05	± 0.25*2		
Max. speed [m/s]	3	3		
Max. acceleration [m/s²]	4	4		
Rack module	m 4	m 3		
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)		
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)		
Carriage weight [kg]	99			
Zero travel weight [kg]	22	220		
Weight for 100 mm useful stroke [kg]	6.6	3.5		
Rail size [mm]	55x25	35x16		
*1) It is possible to obtain longer stroke by means of special Rollon joints		Tab. 108		

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
Y-axis	126,456,800	48,292,512	174,749,312
Z-axis	32,697,979	12,893,004	45,860,983


Tab. 109


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 3	QU

Tab. 110

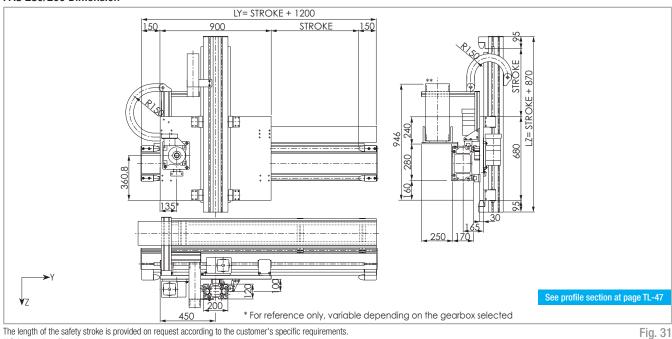
PAR 280/200 - Y-axis

PAR 280/200 - Load capacity

Axis	F _x [N]	F [1	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	4197	12307	12307
Z-axis	5714	7071	32964	7071	707	1867	1867

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 111


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 280/200

■ 200 Kg

PAS 280/200 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

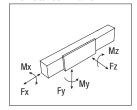
Moments of inertia of the aluminum body

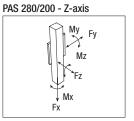
Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
Y-axis	126,456,800	48,292,512	174,749,312
Z-axis	32,697,979	12,893,004	45,860,983

Tab. 113

Technical data

	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2600	
Max. positioning repeatability [mm]	± 0.05	± 0.1*2	
Max. speed [m/s]	3	3	
Max. acceleration [m/s²]	4	4	
Rack module	m 4	m 3	
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)	
Carriage weight [kg]	86		
Zero travel weight [kg]	202		
Weight for 100 mm useful stroke [kg]	6.0	3.4	
Rail size [mm]	30	25	


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 3	Ųΰ

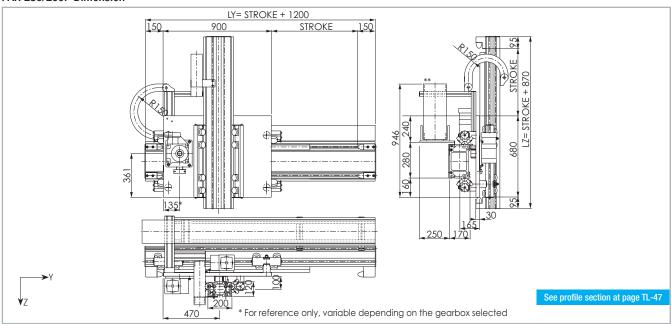
Tab. 114

PAS 280/200 - Y-axis

PAS 280/200 - Load capacity

Axis	F _x [N]	F [N	: v 1]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	266400	142231	266400	34632	105228	105228
Z-axis	5714	258800	116833	258800	25880	76993	76993

Tab. 112


Tab. 115

^{**}Cable carrier offered as option

PAR 280/200P

100 Kg PC High Cycle Rate Low Cycle Rate 400 Kg

PAR 280/200P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 32

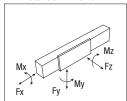
Technical data

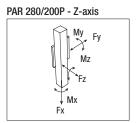
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2600	
Max. positioning repeatability [mm]	± 0.05	± 0.25*2	
Max. speed [m/s]	3	2	
Max. acceleration [m/s ²]	4	3	
Rack module	m 4	m 4	
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)	
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)	
Carriage weight [kg]	112		
Zero travel weight [kg]	24	14	
Weight for 100 mm useful stroke [kg]	6.6	4.8	
Rail size [mm]	55x25	55x25	

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _ր [10 ⁷ mm⁴]	
Y-axis	126,456,800	48,292,512	174,749,312	
Z-axis	32,697,979	12,893,004	45,860,983	


Tab. 117


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 4	QU

Tab. 118

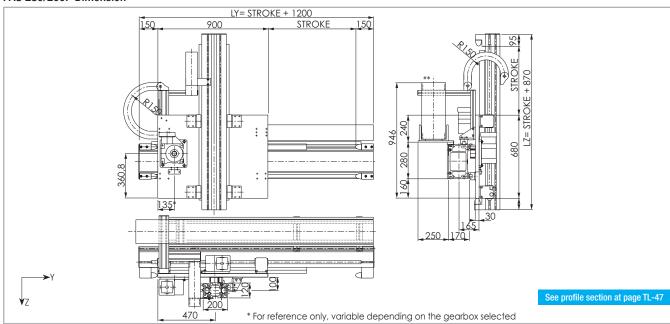
PAR 280/200P - Y-axis

PAR 280/200P - Load capacity

Axis	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	4197	12307	12307
Z-axis	10989	24042	112593	24042	2404	4568	4568

Tab. 116

Tab. 119


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 280/200P

400 Kg

PAS 280/200P Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 33

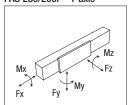
Technical data

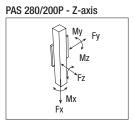
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2600	
Max. positioning repeatability [mm]	± 0.05	± 0.1*2	
Max. speed [m/s]	3	2	
Max. acceleration [m/s²]	4	3	
Rack module	m 4	m 4	
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)	
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)	
Carriage weight [kg]	105		
Zero travel weight [kg]	217		
Weight for 100 mm useful stroke [kg]	6.0	3.9	
Rail size [mm]	30	25	

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis I _x [mm ⁴]		l _x [mm⁴]	l _y [mm⁴]			
	Y-axis	126,456,800	48,292,512	174,749,312		
	Z-axis	32,697,979	12,893,004	45,860,983		


Tab. 121


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 4	Ųΰ

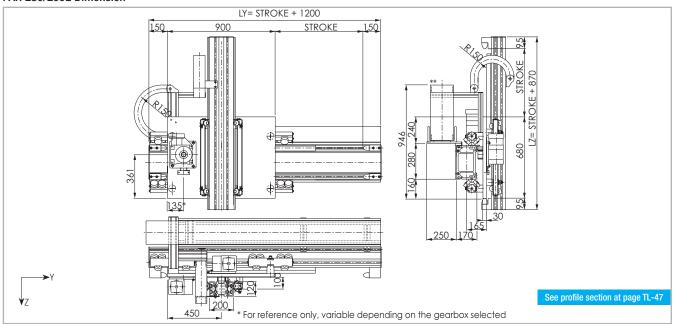
Tab. 122

PAS 280/200P - Y-axis

PAS 280/200P - Load capacity

Axis	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	266400	142231	266400	34632	105228	105228
Z-axis	10989	258800	116833	258800	25880	76993	76993

Tab. 120


Tab. 123

^{**}Cable carrier offered as option

PAR 280/200E

100 Kg PC High Cycle Rate Low Cycle Rate 300 Kg

PAR 280/200E Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 34

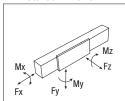
Technical data

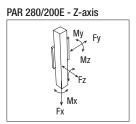
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2600	
Max. positioning repeatability [mm]	± 0.1	± 0.25*2	
Max. speed [m/s]	2.5	2	
Max. acceleration [m/s ²]	2.5	3	
Rack module	m 4	m 3	
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)	
Carriage weight [kg]	111		
Zero travel weight [kg]	23	32	
Weight for 100 mm useful stroke [kg]	6.6	3.5	
Rail size [mm]	55x25	35x16	

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]	
Y-axis	126,456,800	48,292,512	174,749,312	
Z-axis	32,697,979	12,893,004	45,860,983	


Tab. 125


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 3	Ųΰ

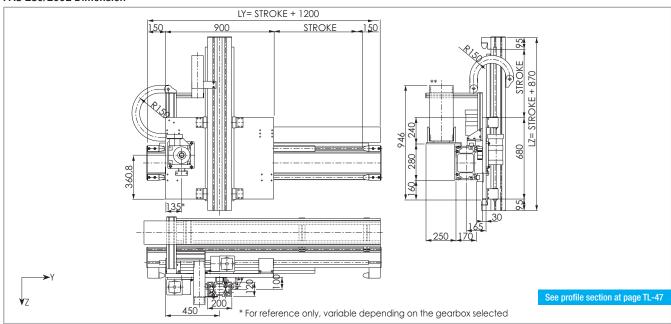
Tab. 126

PAR 280/200E - Y-axis

PAR 280/200E - Load capacity

Axis	F _x [N]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	8395	11108	11108
Z-axis	5714	7071	32964	7071	707	1867	1867

Tab. 124


Tab. 127

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 280/200E

300 Kg

PAS 280/200E Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 35

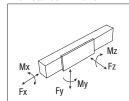
Technical data

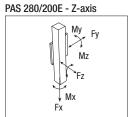
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2600	
Max. positioning repeatability [mm]	± 0.1	± 0.1*2	
Max. speed [m/s]	2.5	2	
Max. acceleration [m/s²]	2.5	3	
Rack module	m 4	m 3	
Pinion pitch diameter [mm]	76.39 (106.1)	63.66 (89.13)	
Carriage displacement per pinion turn [mm]	240 (333.33)	200 (280)	
Carriage weight [kg]	102		
Zero travel weight [kg]	220		
Weight for 100 mm useful stroke [kg]	6.4	3.4	
Rail size [mm]	35	25	

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis I _x [mm ⁴]		l _x [mm⁴]	l _y [mm⁴]			
	Y-axis	126,456,800	48,292,512	174,749,312		
	Z-axis	32,697,979	12,893,004	45,860,983		


Tab. 129


Rack specifications

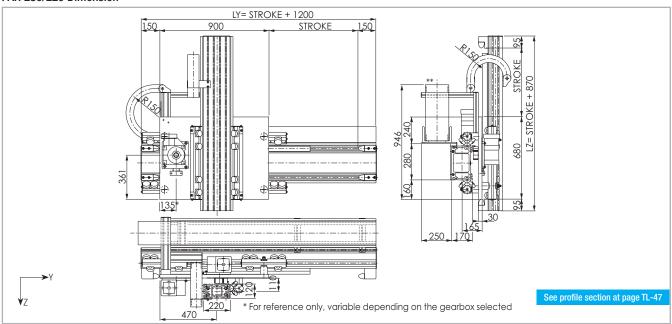
Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 3	Ųΰ

Tab. 130

PAS 280/200E - Y-axis

PAS 280/200E - Load capacity

Axis	F [N]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	386400	197790	386400	50232	150310	150310
Z-axis	5714	258800	116833	258800	25880	76993	76993


Tab. 128

Tab. 131

PAR 280/220

PC 250 Kg 600 Kg

PAR 280/220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 36

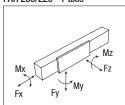
Technical data

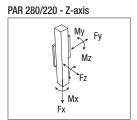
	A	(is	
	Y-axis	Z-axis	
Max. useful stroke length [mm]	10800*1	2800	
Max. positioning repeatability [mm]	± 0.1	± 0.25*2	
Max. speed [m/s]	2	2	
Max. acceleration [m/s ²]	2	2	
Rack module	m 4	m 4	
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)	
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)	
Carriage weight [kg]	122		
Zero travel weight [kg]	20	60	
Weight for 100 mm useful stroke [kg]	6.6	5.2	
Rail size [mm]	55x25	55x25	

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _ր [10 ⁷ mm⁴]
Y-axis	126,456,800	48,292,512	174,749,312
Z-axis	46,248,422	15,591,381	61,839,803


Tab. 133


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 4	QU

Tab. 134

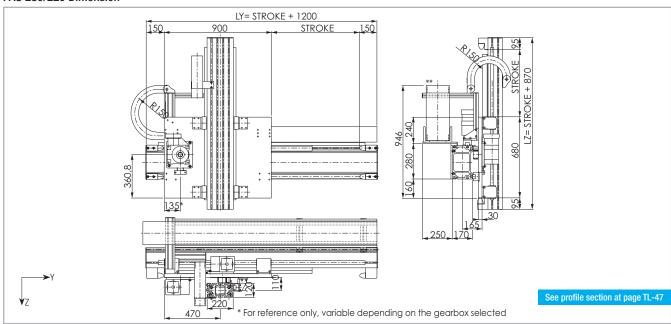
PAR 280/220 - Y-axis

PAR 280/220 - Load capacity

Axis	F _x [N]	F [1	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	8395	12307	12307
Z-axis	10989	24042	112593	24042	3298	4568	4568

Tab. 132

Tab. 135


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 280/220

600 Kg

PAS 280/220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 37

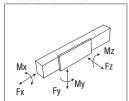
Technical data

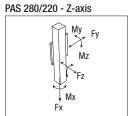
	A	(is		
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	2800		
Max. positioning repeatability [mm]	± 0.1	± 0.15*2		
Max. speed [m/s]	2	2		
Max. acceleration [m/s²]	2	2		
Rack module	m 4	m 4		
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)		
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)		
Carriage weight [kg]	rriage weight [kg] 102			
Zero travel weight [kg]	ight [kg] 234			
Weight for 100 mm useful stroke [kg]	6.4	4.6		
Rail size [mm]	35	30		

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _ր [10 ⁷ mm⁴]	
Y-axis	126,456,800	48,292,512	174,749,312	
Z-axis	46,248,422	15,591,381	61,839,803	


Tab. 137


Rack specifications

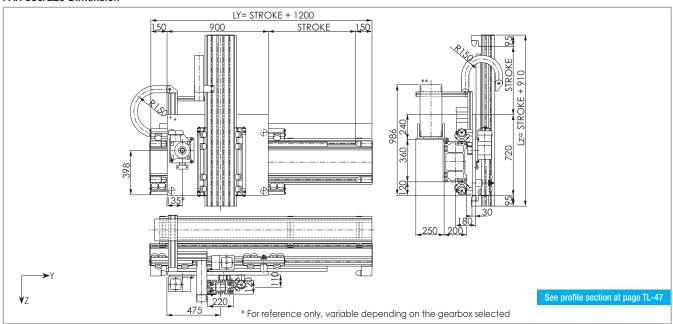
Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 4	QU

Tab. 138

PAS 280/220 - Y-axis

PAS 280/220 - Load capacity

Axis	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	386400	197790	386400	50232	150310	150310
Z-axis	10989	266400	142231	266400	29304	77256	77256


Tab. 136

Tab. 139

PAR 360/220

300 Kg PC 600 Kg

PAR 360/220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 38

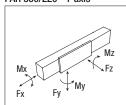
Technical data

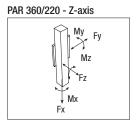
	A	Axis		
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	2800		
Max. positioning repeatability [mm]	± 0.1	± 0.25*2		
Max. speed [m/s]	2.5	2		
Max. acceleration [m/s ²]	2	2		
Rack module	m 4	m 4		
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)		
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)		
Carriage weight [kg]	122			
Zero travel weight [kg]	283			
Weight for 100 mm useful stroke [kg]	8.5	5.2		
Rail size [mm]	55x25	55x25		

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]	
Y-axis	317,212,806	103,285,258	420,498,064	
Z-axis	46,248,422	15,591,381	61,839,803	


Tab. 141


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 4	Ųΰ

Tab. 142

PAR 360/220 - Y-axis

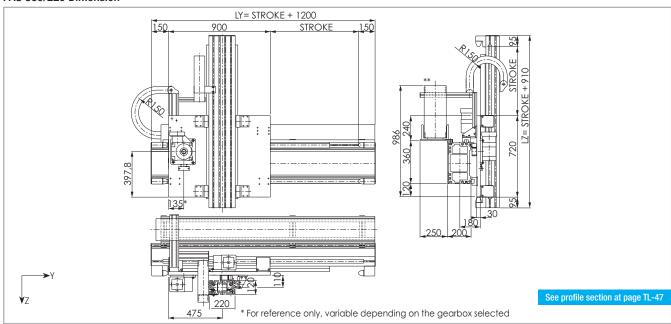
PAR 360/220- Load capacity

Axis	F _x [N]	F [I	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	10793	11108	11108
Z-axis	10989	24042	112593	24042	3298	4568	4568

Tab. 140

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 143


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 360/220

300 Kg ■ 600 Kg

PAS 360/220 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements. **Cable carrier offered as option

Fig. 39

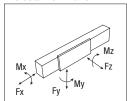
Technical data

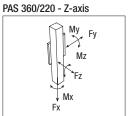
	A	Axis			
	Y-axis	Z-axis			
Max. useful stroke length [mm]	10800*1	2800			
Max. positioning repeatability [mm]	± 0.1	± 0.15*2			
Max. speed [m/s]	2.5	2			
Max. acceleration [m/s²]	2	2			
Rack module	m 4	m 4			
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)			
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)			
Carriage weight [kg]	102				
Zero travel weight [kg]	260				
Weight for 100 mm useful stroke [kg]	8.3	4.6			
Rail size [mm]	35	30			

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	I _p [10 ⁷ mm⁴]
Y-axis	317,212,806	103,285,258	420,498,064
Z-axis	46,248,422	15,591,381	61,839,803


Tab. 145


Rack specifications

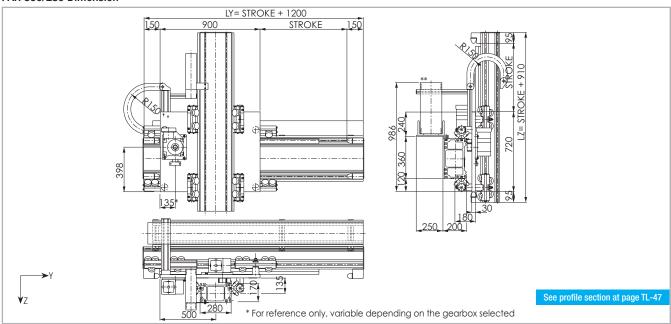
Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	Q6
Z-axis	hardened ground	m 4	Ųΰ

Tab. 146

PAS 360/220 - Y-axis

PAS 360/220 - Load capacity

Axis	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	386400	197790	386400	65688	150310	150310
Z-axis	10989	266400	142231	266400	29304	82584	82584


Tab. 144

Tab. 147

PAR 360/280

PC 400 Kg Light Cycle Date. Law Cycle Pate. 800 Kg

PAR 360/280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 40

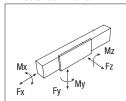
Technical data

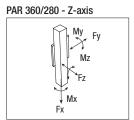
	A	Axis		
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	3000		
Max. positioning repeatability [mm]	± 0.1	± 0.25*2		
Max. speed [m/s]	2	2		
Max. acceleration [m/s²]	2	2		
Rack module	m 4	m 4		
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)		
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)		
Carriage weight [kg]	122			
Zero travel weight [kg]	300			
Weight for 100 mm useful stroke [kg]	8.5	6.6		
Rail size [mm]	55x25	55x25		

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints

Moments of inertia of the aluminum body

Axis	l _x [mm⁴]	l _y [mm⁴]	_ր [10 ⁷ mm⁴]
Y-axis	317,212,806	103,285,258	420,498,064
Z-axis	126,456,800	48,292,512	174,749,312
			T-L-440


Tab. 149


Rack specifications

Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 4	QU

Tab. 150

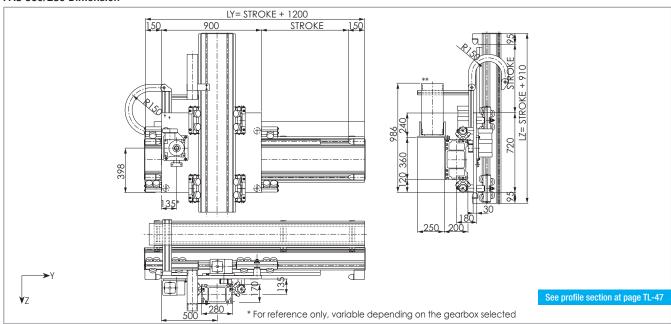
PAR 360/280 - Y-axis

PAR 360/280 - Load capacity

Axis	F _x [N]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	29981	149063	29981	10793	11108	11108
Z-axis	10989	29981	149063	29981	4197	9189	9189

Tab. 148

Tab. 151


^{**}Cable carrier offered as option

^{*2)} Reference value considering a stroke of 1000 mm on Z-axis.

PAS 360/280

800 Kg

PAS 360/280 Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Moments of inertia of the aluminum body

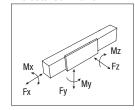
Axis	l _x [mm⁴]	l _y [mm⁴]	l _p [10 ⁷ mm⁴]
Y-axis	317,212,806	103,285,258	420,498,064
Z-axis	126,456,800	48,292,512	174,749,312

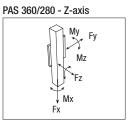
Tab. 153

Fig. 41

Technical data

	A	(is		
	Y-axis	Z-axis		
Max. useful stroke length [mm]	10800*1	3000		
Max. positioning repeatability [mm]	± 0.1	± 0.15*2		
Max. speed [m/s]	2	2		
Max. acceleration [m/s²]	2	2		
Rack module	m 4	m 4		
Pinion pitch diameter [mm]	76.39 (106.1)	76.39 (106.1)		
Carriage displacement per pinion turn [mm]	240 (333.33)	240 (333.33)		
Carriage weight [kg]	Carriage weight [kg] 102			
Zero travel weight [kg]	75			
Weight for 100 mm useful stroke [kg]	8.3	6.4		
Rail size [mm]	35	35		


^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Reference value considering a stroke of 1000 mm on Z-axis.


Rack specifications

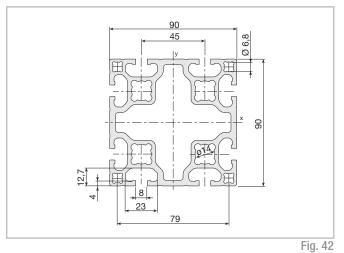
Axis	Type of rack	Rack module	Quality
Y-axis	Helical teeth	m 4	06
Z-axis	hardened ground	m 4	Ųΰ

Tab. 154

PAS 360/280 - Y-axis

PAS 360/280 - Load capacity

Axis	F _x [N]	F [N	: y v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-axis	10989	386400	197790	386400	65688	150310	150310
Z-axis	10989	386400	197790	386400	54096	115534	115534


Tab. 152

Tab. 155

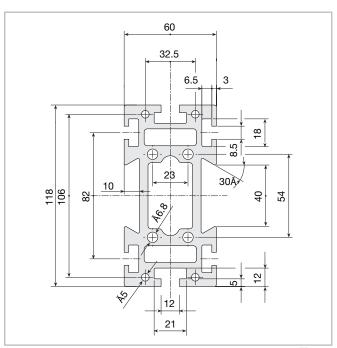
^{**}Cable carrier offered as option

Profile specifications

Medium profiles

Profile 90X90		
Weight	6	Kg/m
Max. length	6	m
Moment of inertia lx	19,734,283	mm ⁴
Moment of inertia ly	9,835,781	mm ⁴
Polar moment of inertia lp	29,570,064	mm ⁴
Bending section modulus Wx	45,040	mm ³
Bending section modulus Wy	45,040	mm³

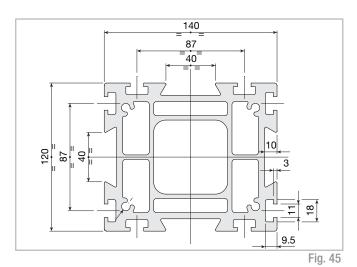
Tab. 156


100
<u>50</u> ∞
5U
47
25
4
2 4 8
22

Weight	9,5	Kg/m
Max. length	6	m
Moment of inertia lx	32,697,979	mm ⁴
Moment of inertia ly	12,893,004	mm ⁴
Polar moment of inertia lp	45,860,983	mm ⁴
Bending section modulus Wx	76,000	mm³
Bending section modulus Wy	73,000	mm³

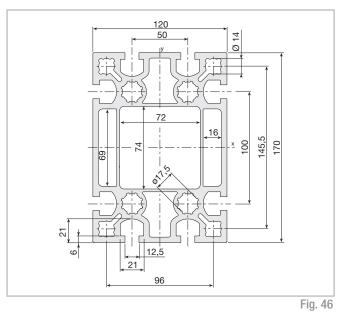
Tab. 157

-	п	n	71.3
	ı	u	TU
		v	


Profile 100x100

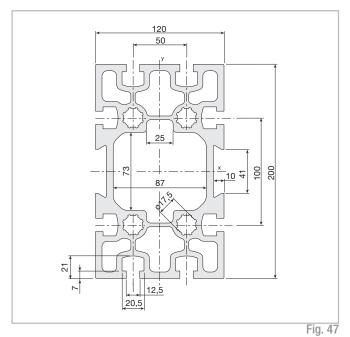
Profile 118x60		
Weight	7,89	Kg/m
Max. length	10	m
Moment of inertia lx	4,322,574	mm ⁴
Moment of inertia ly	1,011,437	mm ⁴
Polar moment of inertia lp	5,334,011	mm ⁴
Bending section modulus Wx	73,263	mm ³
Bending section modulus Wy	33,714	mm³

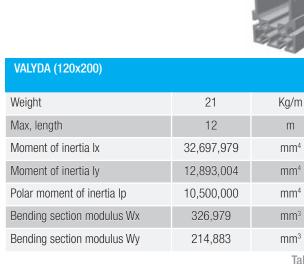
Fig. 44


Tab. 158

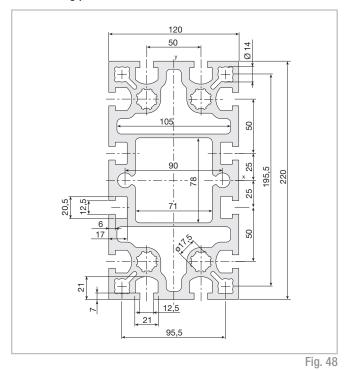
Profile 140x120		
Weight	14,6	Kg/m
Max. length	10	m
Moment of inertia lx	11,482,355	mm ⁴
Moment of inertia ly	8,919,490	mm ⁴
Polar moment of inertia lp	20,402,100	mm ⁴
Bending section modulus Wx	191,372	mm ³
Bending section modulus Wy	127,421	mm ³

Tab. 159


Load bearing profiles

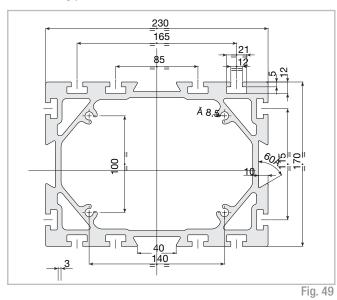


STATYCA (120x170)		
Weight	17	Kg/m
Max, length	12	m
Moment of inertia lx	19,734,283	mm ⁴
Moment of inertia ly	9,835,781	mm ⁴
Polar moment of inertia lp	8,460,000	mm ⁴
Bending section modulus Wx	232,168	mm ³
Bending section modulus Wy	163,929	mm³


Tab. 160

Tab. 161

Load bearing profiles

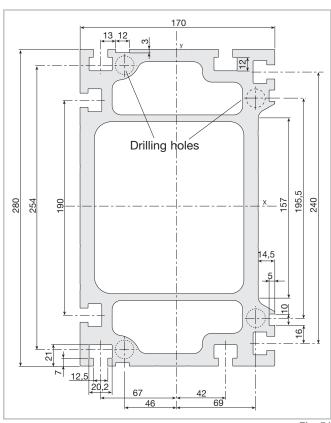


LOGYCA (120x220)		
Weight	25	Kg/m
Max. length	12	m
Moment of inertia lx	46,248,422	mm ⁴
Moment of inertia ly	15,591,381	mm ⁴
Polar moment of inertia lp	61,839,803	mm ⁴
Bending section modulus Wx	423,182	mm³
Bending section modulus Wy	260,833	mm³

Tab. 162

Load bearing profiles

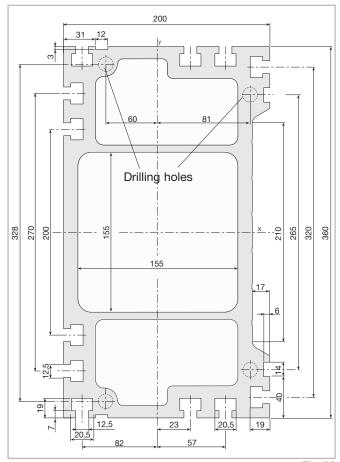
Profile 230x170		
Weight	25,5	Kg/m
Max. length*	12	m
Moment of inertia lx	65,007,642	mm ⁴
Moment of inertia ly	37,783,535	mm ⁴
Polar moment of inertia lp	102,792,000	mm ⁴
Bending section modulus Wx	564,284	mm ³
Bending section modulus Wy	444,500	mm³
* Not anodized		Tab. 163


50, 51,5 64,5

7400568 energy chain support profile			
Weight	1,3	Kg/m	
Available length	6	m	

Fig. 50

Tab. 164



PRATYCA (170x280)		
Weight	40	Kg/m
Max. length*	12	m
Moment of inertia lx	126,456,800	mm ⁴
Moment of inertia ly	48,292,512	mm ⁴
Polar moment of inertia lp	174,749,312	mm ⁴
Bending section modulus Wx	957,790	mm³
Bending section modulus Wy	591,620	mm³
* Not anodized		Tab. 165

Fig. 51

Load bearing profiles

SOLYDA (200X360)		
Weight	60	Kg/m
Max. length*	12	m
Moment of inertia lx	317,212,806	mm ⁴
Moment of inertia ly	103,285,258	mm ⁴
Polar moment of inertia lp	420,498,064	mm ⁴
Bending section modulus Wx	1,770,500	mm ³
Bending section modulus Wy	1,035,300	mm ³

Fig. 52

* Not anodized Tab. 166

Accessory

Programmable automatic rack lubrication

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a). The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per driven carriage.

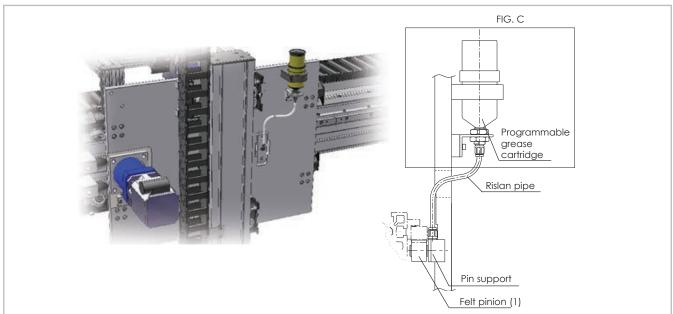


Fig. 53

1 - Spares

Specification	Code
Programmable grease cartridge (125 ml) [b]	101.0744
m2 - helical toolth felt pinion [1]	101.1079
m3 - helical toolth felt pinion [1]	701.0059
m4 - helical toolth felt pinion [1]	116.0051

Tab. 167

2 - Lubrication assembly kit

Specification (see figure C)	Code
Lubrication assembly kit (no felt pinion, nonriscan pipe)	736.0332

Tab. 168

■ Table for selecting maximum operating torque

Pinion / Racks - Helical tooth

i illioni / ridono						
Module	Z [n°]	Z [n°] Øp [mm] KSD [Nm]				
0	21	44,56	150	200		
2	30	63.66	205	265		
3	20	63.66	400	500		
	28	89.13	500	650		
4	18	76,39	880	1000		
4	25	106.1	1150	1500		

Tab. 169

With lubrication guaranteed under ideal load conditions, dynamics, (1 m/s) with rigid pinion support [Nm].

Example of simplified calculation

To obtain the working torque value, divide the maximum operating torque (Tab. 1) by the safety factor (Tab. 2). Intermediate values can be adjusted according to the application.

Motion (A) = High shock 1.75

Speed (B) = Low 1

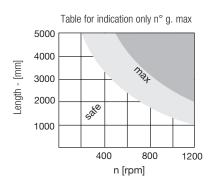
Lubrication (C) = Constant 0.9

Rack = module 3 KSD

Pinion = Øp 63.66 (400 Nm)
Safety factor = $A \times B \times C = 1.575$

Maximum transmissible torque = Maximum torque 400 / Safety factor 1,575 \leq 254 N

For heavy-duty applications, please ask our technical dept. to carry out the appropriate checks.


Motion (A)	Speed (B)	Lubrication (C)	Safety fac. (AxBxC)			
Low shock 1.25	Low 1	Constant 0.9	1.13			
Medium shock 1.5	Medium 1.25	Daily 1.2	2.25			
High shock 1.75	High 1.5	Monthly 2.5	6.56			

Tab. 170

Connections shafts

The Tecline range includes a series of hollow shafts for connecting the pinions on the systems. We can supply standard connections, according to your application requirements. The complete kit includes all the components needed to make the connection, with shrink-discs and crop down sizes of pins for insertion into the pinions.

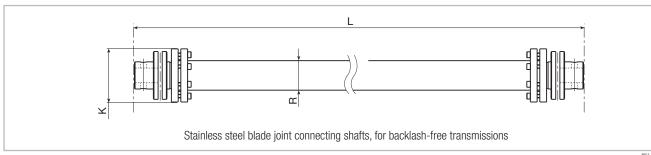


Fig. 54

R(*)	K	L _{max}	MTwork [Nm]	Mom. of inertia [kgm²]	Code L
50	81	6.300	35	0.0092 + 0.66 x L. x10 ⁻⁶	436.0291
50	93	6.300	70	0.0161 + 1.34 x L. x10 ⁻⁶	436.0245
70	104	6.400	100	0.0293 + 2.93 x L. x10 ⁻⁶	436.0282
80	126	6.400	190	0.0793 + 4.5 x L. x10 ⁻⁶	436.0292
90	143	6.500	300	0.1456 + 6.53 x L. x10 ⁻⁶	436.0986

(*) R: Shaft material and diameter are selected in accordance with required speed, centre-distance L, torque and accuracy.

Anti-drop safety device with pneumatic brake system

Anti-drop safety devices, available in a range of sizes, are supplied according to the type of application. For instance, they can act as a mechanical stop to block the free-falling load at any stroke point, or as a lock in static conditions at any position.

Two-way blocking occurs following an unexpected pressure drop.

A mechanical safety release system is available on request (patented).

The kit includes: braking device and rod with relative supports, microswitch. Solenoid valve available upon request.

Operating pressure 3-6 Bar.

With no pressure = locked.

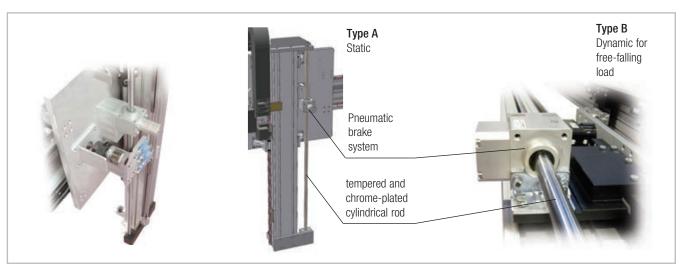


Fig. 55

1- Static rod blocking device

Туре	Code	Rod blocking force [N]	Stroke [mm]
Α	236.0018	/ 1.200	/
Α	236.0018	/ 1.900	/
Α	236.0018	/ 3.000	/
Α	236.0018	/ 5.400	/
Α	236.0018	/ 7.500	/
Α	236.0018	/ 12.000	/

Tab. 172

1- Dynamic rod blocking device

Туре	Code	Rod blocking force [N]	Stroke [mm]
В	236.0019	/ 3.200	/
В	236.0019	/ 5.400	/
В	236.0019	/ 7.500	/
В	236.0019	/ 12.000	/

Tab. 173

Emergency brake for free-falling load

Safety lock-pin (stopper cylinder)

Lock-pins are available in two sizes to block the vertical axes in the safety position to allow horizontal movements during maintenance. The safety lock-pins comprise the use of the through rod. Select the size according to the load. The kit includes: drilled plate for rod, stopper cylinder, microswitch and 2 magnetic gearboxes. Max. operating pressure: 10 bar.

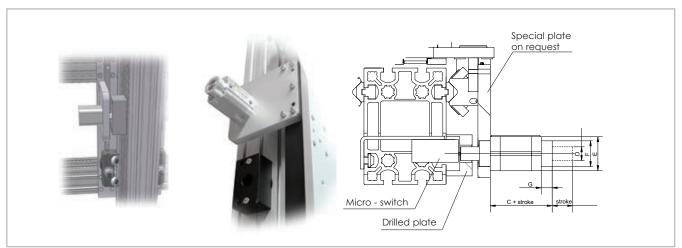


Fig. 56

1- Safety lock-pin

ØD Rod	Stroke	C	Е	F	G	Kit Code
20	20	60.5	50	38	16	236.0021
32	30	-	-	-	-	236.0022

2- Accessory: drilled plate for rod

ØD Rod	Base	Width	Thickness			
20	60	100	39			
32	60	100	39			

Tab. 174 Tab. 175

Profile anchor brackets

Material: alluminum alloy (Rs=310 N/mm²).

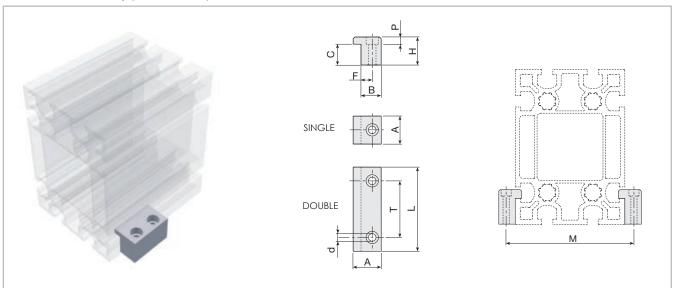


Fig. 57

Profile	Α	L	Т	d	Н	Р	С	F	В	M	Single code	Double code
Profile 90x90	30	50	25	9	25	9.5	18	12	22	69/114	415.0772	415.0773
Profile 100x100	25	50	25	6.7	27	6.8	20.6	10	18	120	415.0769	415.0764
STATYCA	30	90	50	11	40	11	28.3	14	25	198	415.0767	415.0762
VALYDA horizontal	30	90	50	11	40	11	28.3	14	25	228	415.0767	415.0762
VALYDA vertical	30	90	50	11	50	11	43.1	14	25	148	215.0042	215.0041
LOGYCA	30	90	50	11	40	11	28.3	14	25	248	415.0767	415.0762
PRATYCA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	416.0763
PRATYCA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174
SOLYDA horizontal	30	90	50	11	20	11	11.3	14	25	308	415.0768	415.0763
SOLYDA vertical	30	90	50	11	25	11	13.5	14	25	198	-	915.1174

Tab. 176

L-shaped brackets

Threaded hole bracket

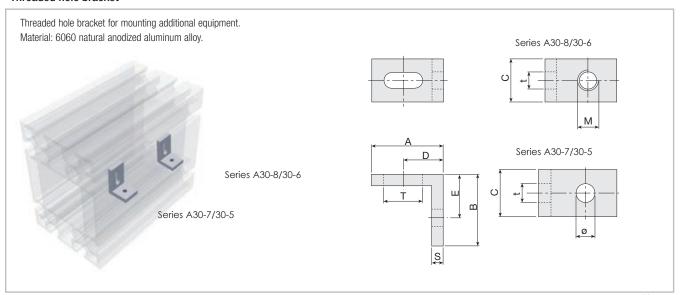


Fig. 58

Α	В	C	D	E	S	Txt	M	Code	Ø	Code
45	45	20	25	25	5	16 x 6.5	M6	A30-86	6	A30-76
35	25	20	19	15	5	20 x 6.5	M4	A30-64	4	A30-54
35	25	20	19	15	5	20 x 6.5	M5	A30-65	5	A30-55
35	25	20	19	15	5	20 x 6.5	M6	A30-66	6	A30-56
25	25	15	14	15	4	13.5 x 5.5	M3	B30-63	3	B30-53
25	25	15	14	15	4	13.5 x 5.5	M4	B30-64	4	B30-54
25	25	15	14	15	4	13.5 x 5.5	M5	B30-65	5	B30-55
25	25	15	14	15	4	13.5 x 5.5	M6	B30-66	6	B30-56

Tab. 177

Bracket for mounting additional equipment

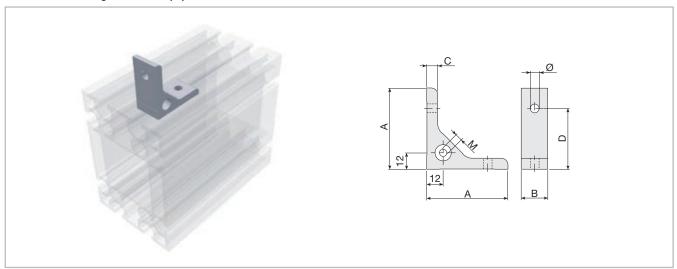


Fig. 59

L-shaped bracket for mounting additional equipment and improving the rigidity of frames made with profiles.

Material: 6060 natural anodized aluminum alloy.

A	В	С	D	Е	Ø	M	Code
60	20	8	45	-	6.5	-	B30-10
60	20	8	45	-	6.5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6.5	-	C30-00

Tab. 178

Bracket for mounting additional profiles

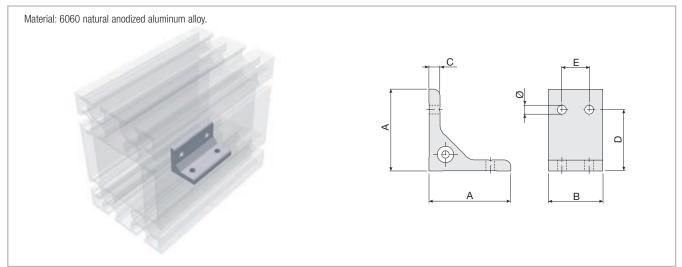


Fig. 60

А	В	С	D	E	Ø	M	Code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6.5	-	C30-02

Tab. 179

Bracket for mounting additional profiles

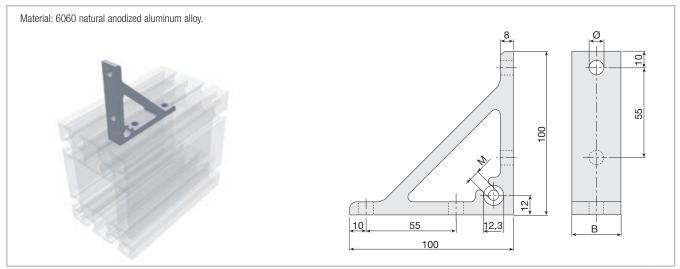


Fig. 61

	В	Ø	М	Code
Without bushing	30	9	-	A30-30
Without bushing	20	6.5	-	B30-30
With bushing	30	9	M6	A30-40
With bushing	20	6.5	M6	B30-40

Tab. 180

End caps for profile

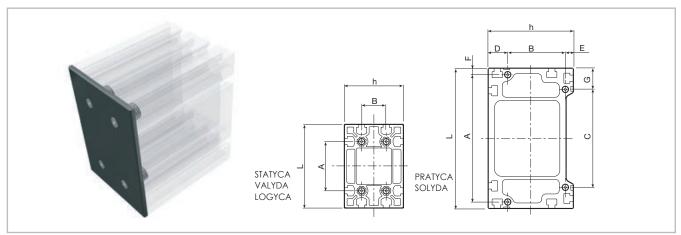


Fig. 62

The end caps for STATYCA, VALYDA, and LOGYCA (supplied with 4 bushings 207.1892 thr. M20/6) are fixed to the profiles using the 4 holes provided in the centre that must be M20 threaded. PRATYCA and SOLYDA profiles must instead be M6 drilled and threaded as in the areas

indicted in the drawing (in this case the end caps are supplied without any bushings). Please specify whether profiles will require end caps. Material: black polyethylene, 6 mm thick. End caps in 6 mm-thick aluminum alloy are available upon request.

Bearing profile	L	h	Α	В	С	D	Code
202.1753 -STATYCA	170	120	100	50	-	-	212.1774
202.1146 - VALYDA	200	120	100	50	-	-	212.1704
202.2184 - LOGYCA	220	120	150	50	-	-	212.2279
202.1147 - PRATYCA	280	170	254	115	195.5	39	212.1705
202.0342 - SOLYDA	360	200	328	141	265	40	212.1706

Tab. 181

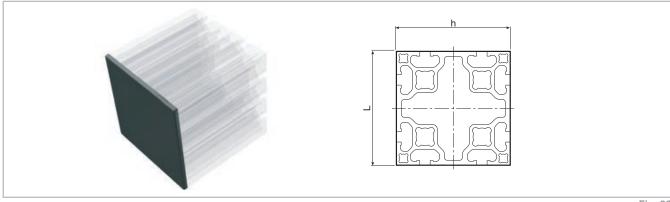


Fig. 63

The end caps for small and medium profiles have no screws or bushes and are fitted simply by exerting moderate pressure on the end of the profile.

Material: black polyethylene, approx. 5 mm thick.

Profile	L	h	Code
Profile 90x90	90	90	E40-40
Profile 100x100	100	100	A40-50

Threaded inserts for small and medium profiles

Inserts for base profiles 30/45/50/60

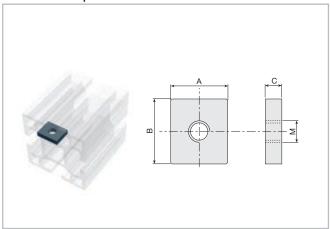


Fig. 64

Material: galvanised steel.

Important: inserts must be inserted into the longitudinal slots before assembling.

Thread	A-B-C Code	Thread	A-B-C Code
M3	B32-30	M4	A32-40
M4	B32-40	M5	A32-50
M5	B32-50	M6	A32-60
M6	B32-60	M8	A32-80
Spring	211.1077	Spring	211.1061

Tab. 183

Also suitable for profiles STATYCA, VALYDA, LOGYCA, PRATYCA and SOLYDA.

Material: galvanised steel.

Square nuts

Important: inserts must be inserted into the longitudinal slots before assembling.

Fig. 45

Plastic compound spring for vertical positioning of insert.

Thread	Code 18x18	Code 20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467
		Tab. 184

Spring	Code
Suitable for all inserts 18x18	101.0732

Tab. 185

Threaded inserts for load-bearing profiles

Frontally insertable alignment plates

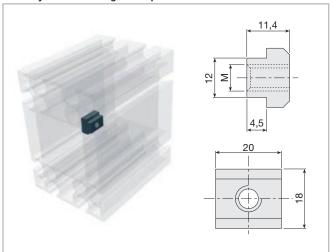


Fig. 66

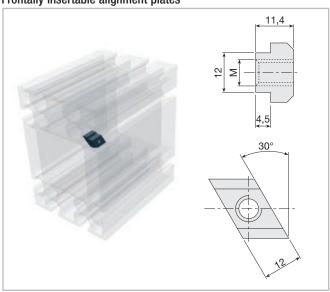
Material: galvanised steel.

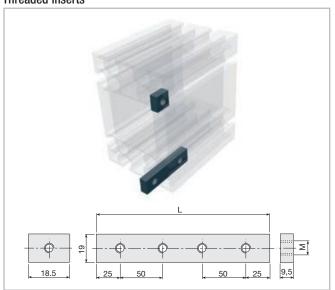
Important: inserts must be inserted into the longitudinal slots before assembling.

Thread	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Tab. 186

Frontally insertable alignment plates




Fig. 67

Material: galvanised steel.

Thread	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Tab. 187

Threaded inserts

Also suitable for base-50 profiles, except A32-91 insert. Material: galvanised steel.

Thread	N. holes	L	Code
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2	80	209.1776
M10	3	150	209.1777
M10	4	200	209.1778
M10	5	250	209.1779
M10	6	300	209.1780
M10	7	350	209.1781

Fig. 68

Tab. 188

Dovetail inserts for VALYDA profile

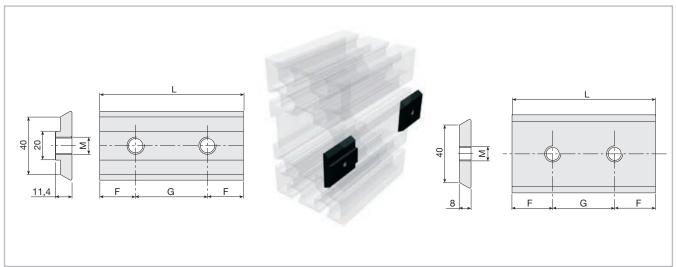


Fig. 69

Material: burnished C40.

Important: inserts must be inserted into the longitudinal slots before assembling.

Special sizes are available upon request.

F	G	L	N. holes	M8	M10
25	-	50	1	214.0388	214.0394
25	50	100	2	214.0389	214.0395
25	50	200	4	214.0391	214.0398
25	50	300	6	214.0393	214.0400

F	G		N. holes	M10
25	-	50	1	214.0430
25	50	100	2	214.0431
25	50	200	4	214.0433
25	50	300	6	214.0435

Tab. 189 Tab. 190

Reader system with magnetic scale and sensor

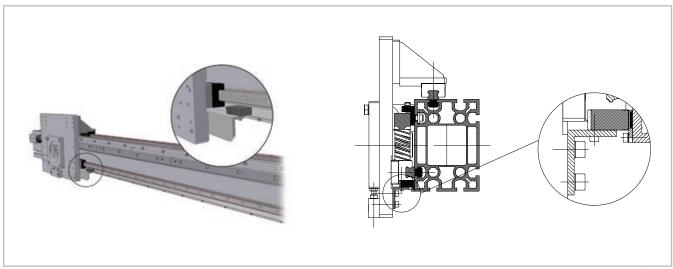
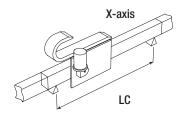


Fig. 70

The magnetic scale is applied to the body of the module using a supporting and protective profile.

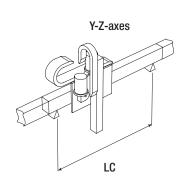
Precision from \pm 0.015 to \pm 0,05 mm

Max. speed $= 4 \div 10$ m/s (according to type)

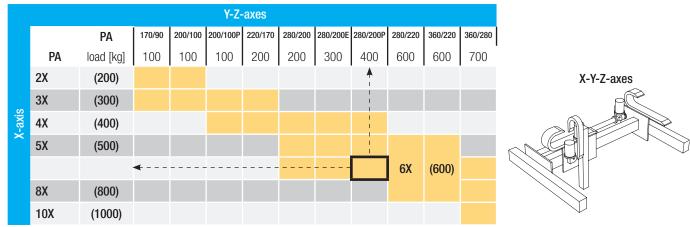

Preliminary selection table (1-2-3 axes)

These tables are useful for making a preliminary selection with load applied in a central position with respect to the plate or profile axis. Z-axis length is < 1,600 mm.

Deflection is computed assuming continuous beams having the same span and concentrated static loads.


In the following table, select the appropriate X axes according to the load.

	PA	170	200	200P	220	280	280P	360	LC				
	Deflection												
	50	1.4				A			5000				
[]	100	1.8				 			5000				
Max load capacity [kg.]	200	2.7	1.8			 			5000				
abac	300		2.3	2.7		 			5000				
ad c	400			3.3	2.8				5000				
ax lo	500				2.8	1¦8			5000				
Σ	600					2	2		6000				
	800						2.5	1.8	6000				
	1000							2.1	7000				



In the following table, select the appropriate Y-Z axes according to the load.

	PA	170/90	200/100	200/100P	220/170	280/200	280/200E	280/200P	280/220	360/220	360/280	LC
	Deflection											
	50	1.9					A	A				5000
[kg.]	100	2.4	1.7	2	1.6							5000
capacity	200				2.2	0.8	0¦8	1				5000
cab	300	-				1 . 6	1.6	1.6				5000
load	400							1.9	2	0.9		5000
Мах	500								2.2	1		5000
	600								2.5	1.2	1.2	6000
	800										2.2	6000

In the following table, select the appropriate X and Y-Z axes according to the load.

NB: The choice of X axis is based upon the actual load, the supporting points, max. deflection and the total weight of the Y-Z axes.

Example: Selection of a 3 axis gantry with roller guides

DATA: Total working load 300 kg, X axis stroke: 5,000 mm, Y-axis stroke: 4,000 mm, Z-axis stroke: 2,000 mm, support points: 2

By analysing the table of Y-Z axes based on the working load (Pc), profile length (Ly) and deflection, the selection falls on one PA 280/200E (load 300 kg.) system.

Check: $P_{\text{eff}} = P_{\text{max}}$ (Lz - 1600)/1000 \bullet q_z = 300-(2870-1600)/1000 \bullet 35 = 255,55 kg. < di 300 kg (not sufficient).

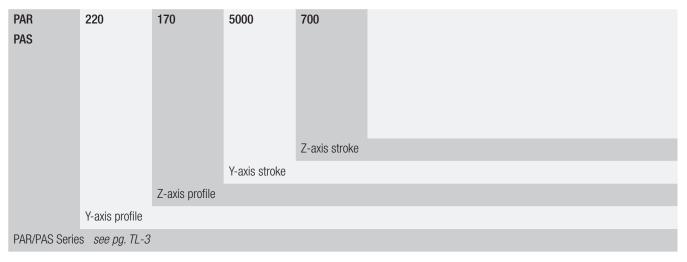
Therefore select the larger size PA 280/200P (max. load capacity 400 kg.)

 $\begin{aligned} &M_{\text{toty+z}} \text{ PA 280/200P} = M_{\text{base}} + (q_y \bullet \text{ strokeQ}_y + q_z \bullet \text{ strokeQ}_z) / 1000 + \text{Pc} = 244 + (66 \bullet 4,000 + 48 \bullet 2,000) / \\ &1,000 + 300 = 904 \text{ kg}. \end{aligned}$

 $P_{toty} = M_{tot} PA 280/200P (Y+Z) \bullet 0.66 = 596.6 kg.$

Lx = strokex + 1,200 = 5,000+1,200 = 6,200 mm

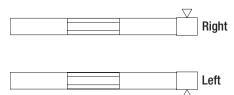
By analyzing the table of X axes based on the load (P_{totx}) profile length (Lx) and deflection, it is possible to select 2 linear axes PA 280


Chosen composition: n°1 PA 280/200P + n° 2 PA 280

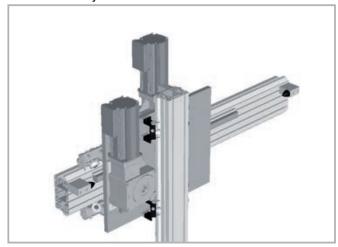
Perform a final analysis by computing the deflection based on the actual size of the spans.

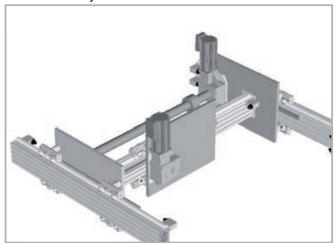
Our technical dept. is at your complete disposal to help you examine the most suitable applications for your requirements and help you with motor and drive sizing for the whole project.

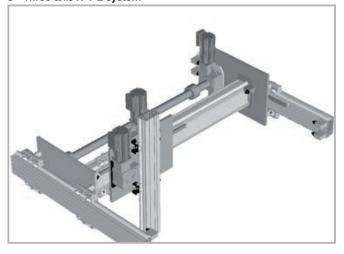
Ordering key / ~


Identification codes for the PAR/PAS linear unit

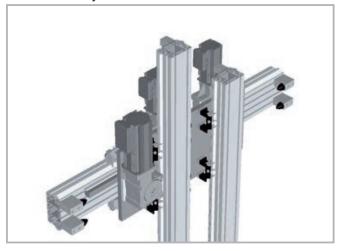
In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com


Left / right orientation


Multiaxis systems


1 - Two axis Y-Z system

2 - Two axis Y-X system


3 - Three axis X-Y-Z system

4 - Three Axis X-Y-Z system

5 - Two axis Y-Z system

6 - Two axis Y-Z system

Speedy Rail A 0 @ D 0 00 0 6 66 @ @ 66 66 @ @ @ @

SAB series V

SAB series description

Fig. 1

SAB products are self-supporting extruded aluminum actuators driven by a polyurethane belt system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, SAB series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

SAB series is defined by the use of guides with cylindrical and V-shaped rollers as linear motion components. These linear motion systems are lightweight, self-supporting, easy to assemble, cost effective, modular, clean and quiet. Thanks to this kind of solution they are specifically dedicated for dirty environments and high dynamics in automation. SAB series is available with profiles of different sizes: 60 - 120 -180 - 250 mm.

Some of the main advantages of SAB series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system

The components

Extruded bodies

SAB beam is a heat-treated Aluminum alloy profile with hollow cross-sections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Driving belt

The SAB series driving system consists in a polyurethane toothed belt, reinforced with high resistance steel cords. For some applications, the belt driven solution is ideal due to its high load transmission characteristics, compact size and low noise. Some of the advantages of using a belt driven system are: high speed, high acceleration, low noise and no need for lubrication.

Carriage

The carriage of the SAB series linear units is made of anodised aluminum. Different lengths of the carriages are available according to the different sizes.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22.111.10	O
2.7	69	23	200	880-900	33	600-655

Tab. 2

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	<u>N</u>	%	_
mm ²	mm²		
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SAB with cylindrical and V-shaped rollers:

The SAB range includes a large selection of rollers both cylindrical and V-shaped, and sliders assembled with two or more rollers. SAB rollers are covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail.

Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

SAB section

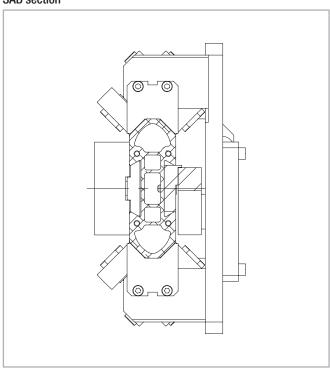
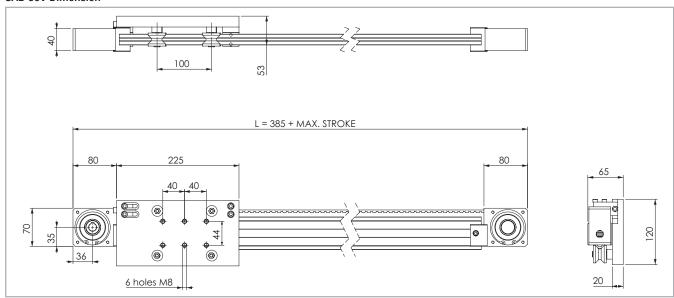



Fig. 2

SAB 60V

SAB 60V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

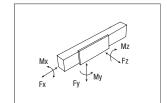
Fig. 3

Technical data

	Туре
	SAB 60V
Max. useful stroke length [mm]	6700
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s²]	8
Type of belt	10 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.479
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	1.7
Zero travel weight [kg]	3.8
Weight for 100 mm useful stroke [kg]	0.13
Rail size [mm]	60x20

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SAB 60V	138,600	18,000	29,000
			Tab. 5

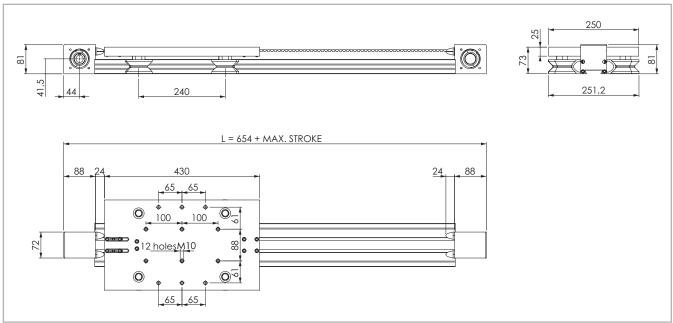
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	kg/m
SAB 60V	10 AT 10	10	0.064

Tab. 6

SAB 60V - Load capacity


Туре	F _x	F _,	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 60V	706	540	400	9	20	27

Tab. 4

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 120VX

SAB 120VX Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

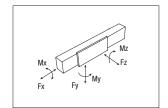
Fig. 4

Technical data

	Туре
	SAB 120VX
Max. useful stroke length [mm]	7020
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s ²]	8
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage weight [kg]	7.6
Zero travel weight [kg]	16.4
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120VX	2,138,988	259,785	430,000
			Tab. 9

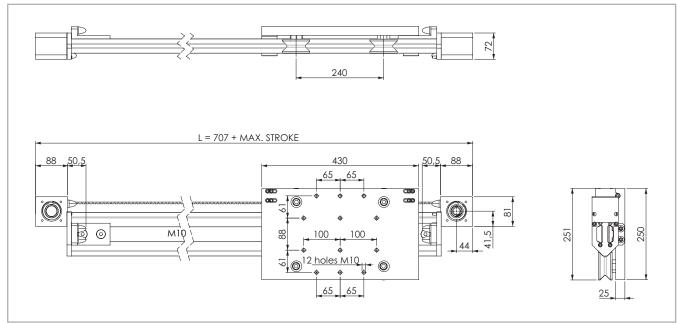
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
SAB 120VX	25 AT 10HPF	25	0.16
			T 1 40

Tab. 10

SAB 120VX - Load capacity


Туре	F _{.x}	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VX	1349	1400	800	39.32	96	168

Tab. 8

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 120VZ

SAB 120VZ Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

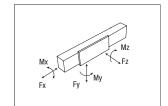
Fig. 5

Technical data

	Туре
	SAB 120VZ
Max. useful stroke length [mm]*1	6990
Max. positioning repeatability [mm]*2	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s²]	8
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	7.8
Zero travel weight [kg]	16.60
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) It is possible to obtain longer strokes by means of special Rollon joints	Tab. 12

^{*1)} It is possible to obtain longer strokes by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

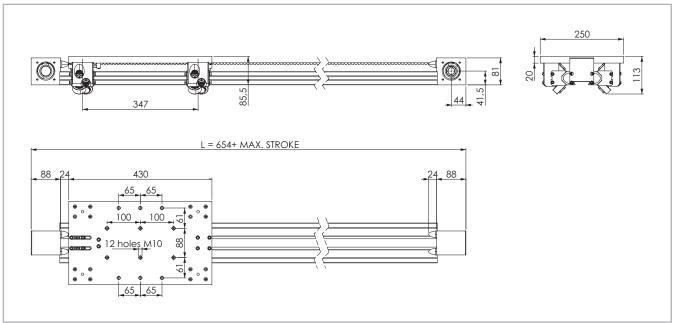

Туре	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
SAB 120VZ	2,138,988	259,785	430,000
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
SAB 120VZ	25 AT 10HPF	25	0.16

Tab. 14


SAB 120VZ - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VZ	1349	1400	800	39.32	96	168

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 120CX

SAB 120CX Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

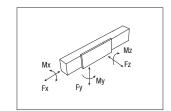
Fig. 6

Technical data

	Туре
	SAB 120CX
Max. useful stroke length [mm]	7022
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	15
Max. acceleration [m/s²]	10
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	8.5
Zero travel weight [kg]	17.3
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 16

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

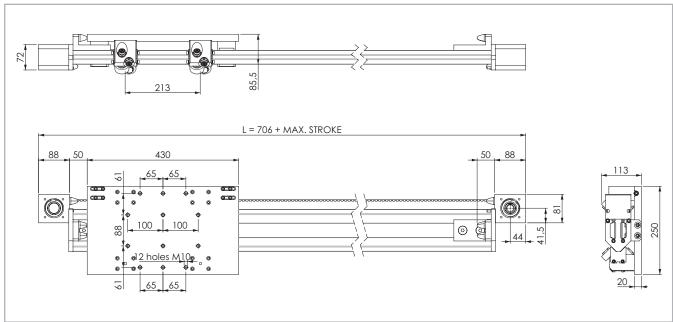

Туре	l _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120CX	2,138,988	259,785	430,000
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	kg/m
SAB 120CX	25 AT 10HPF	25	0.16

Tab. 18


SAB 120CX - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CX	1349	2489	2489	98	432	432

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 120CZ

SAB 120CZ Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

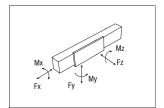
Fig. 7

Technical data

	Туре
	SAB 120CZ
Max. useful stroke length [mm]*1	7020
Max. positioning repeatability [mm]*2	± 0.2
Max. speed [m/s]	15
Max. acceleration [m/s²]	10
Type of belt	25 AT 10HPF
Type of pulley	Z 15
Pulley pitch diameter [mm]	47.746
Carriage displacement per pulley turn [mm]	150
Carriage weight [kg]	8.7
Zero travel weight [kg]	17.5
Weight for 100 mm useful stroke [kg]	0.472
Rail size [mm]	120x40
*1) It is possible to obtain longer strokes by means of special Rollon joints	Tab. 20

^{*1)} It is possible to obtain longer strokes by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

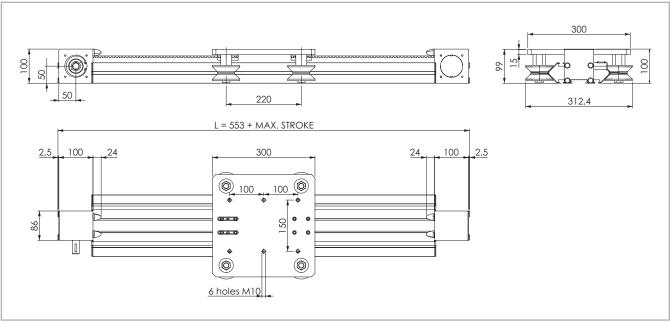

Туре	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 120CZ	2,138,988	259,785	430,000
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
SAB 120CZ	25 AT 10HPF	25	0.16

Tab. 22


SAB 120CZ - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CZ	1349	2489	2489	98	265	265

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 180V

SAB 180V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

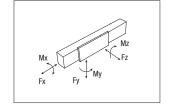
Fig. 8

Technical data

	Туре
	SAB 180V
Max. useful stroke length [mm]	7150
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s²]	8
Type of belt	32 AT 10HPF
Type of pulley	Z 18
Pulley pitch diameter [mm]	57.3
Carriage displacement per pulley turn [mm]	180
Carriage weight [kg]	7
Zero travel weight [kg]	26.3
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 24

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

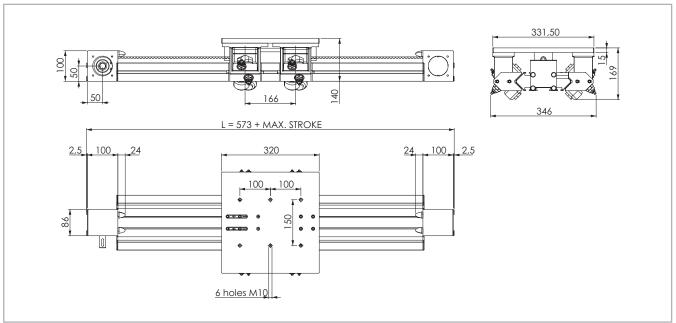

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
SAB 180V	10,291,100	1,278,700	2,600,000
			Tab. 25

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	kg/m
SAB 180V	32 AT 10HPF	32	0.205

Tab. 26


SAB 180V - Load capacity

Туре	F	F _y	F _z	M _×	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 180V	2125	1400	800	58	88	154

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 180C

SAB 180C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

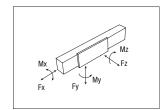
Fig. 9

Technical data

	Туре
	SAB 180C
Max. useful stroke length [mm]	7130
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	15
Max. acceleration [m/s ²]	10
Type of belt	32 AT 10HPF
Type of pulley	Z 18
Pulley pitch diameter [mm]	57.3
Carriage displacement per pulley turn [mm]	180
Carriage weight [kg]	11.46
Zero travel weight [kg]	26.3
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 28

 $^{^{\}star} 1)$ Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

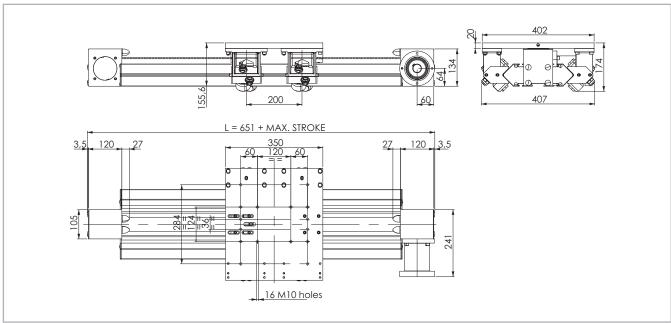

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
SAB 180C	10,291,100	1,278,700	2,600,000
			Tab. 29

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	kg/m
SAB 180C	32 AT 10HPF	32	0.205

Tab. 30


SAB 180C - Load capacity

Туре	F	F _y	F _z	M _×	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 180C	2125	3620	3620	246	300	300

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAB 250C

SAB 250C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

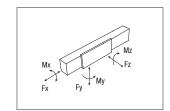
Fig. 10

Technical data

	Туре
	SAB 250C
Max. useful stroke length [mm]	7090
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	15
Max. acceleration [m/s²]	10
Type of belt	50 AT 10HP
Type of pulley	Z 24
Pulley pitch diameter [mm]	76.39
Carriage displacement per pulley turn [mm]	240
Carriage weight [kg]	15
Zero travel weight [kg]	30.4
Weight for 100 mm useful stroke [kg]	1.55
Rail size [mm]	250x180
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 32

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

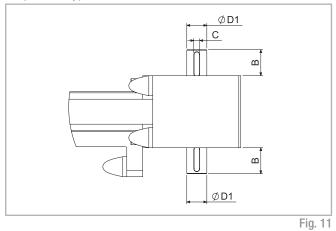

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 250C	27,345,460	4,120,150	8,400,000
			Tab. 33

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight kg/m
SAB 250C	50 AT 10HP	50	0.34

Tab. 34


SAB 250C - Load capacity

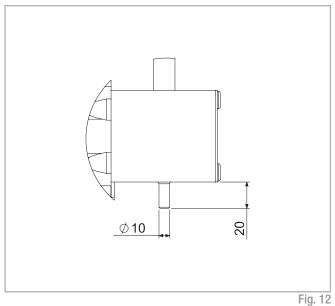
Туре	F_	F	F _z	M _×	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAB 250C	4565	3620	3620	372	362	362

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
SAB 60	AS 14	32	14h7
SAB 120	AS 20	26	20h7
SAB 180	AS 20	39.65	20h7
SAB 250	AS 30	61.5	30h7

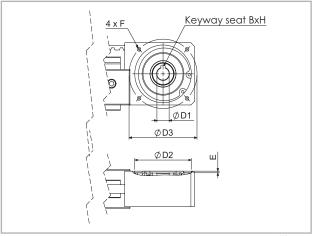

Tab. 36

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	Head code AS left	Head code AS right	Head code double AS
SAB 60	AS 14	1E	1C	1A
SAB 120	AS 20	1E	1C	1A
SAB 180	AS 20	1E	1C	1A
SAB 250	AS 30	1E	1C	1A

Tab. 37

Simple shaft type AE 10 for encoder assembly + AS


Unit	Head code AS right + AE	Head code AS left + AE	ØD
SAB 60	1G	11	49
SAB 120	1G	11	49
SAB 180	1G	11	49
SAB 250	1G	11	76

Tab. 38

Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

Hollow shafts

AC hollow shaft type

Appliable to unit	Shaft type	Head code
SAB 60	AC 14	2A
SAB 120	AC 20	2A

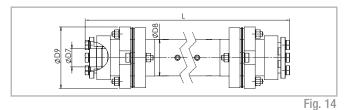
Tab. 39

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices

Fig. 13

Dimensions (mm)

Appliable to unit	Shaft type	D1	D2	D3	E	F	Keyway B x H
SAB 60	AC 14	14H7	65	78	3.5	M5	5 x 5
SAB 120	AC 20	20H7	55	72	3.5	M6	6 x 6


Tab. 40

Linear units in parallel

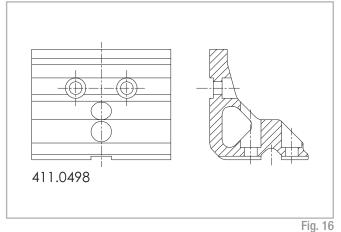
Synchronization kit for use of SAB linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina

type precision joints complete with tapered splines and hollow aluminum drive shafts.

× x

Fig. 15


Dimensions (mm)

Appliable to unit	Shaft type	D7	D8	D9	Code
SAB 60	AP 12	12	25	45	GK12P1A
SAB 120	AP 15	15	40	69.5	GK15P1A
SAB 180	AP 20	20	40	69.5	GK20P1A
SAB 250	AP 25	25	70	99	GK25P1A

Tab. 41

Accessories

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

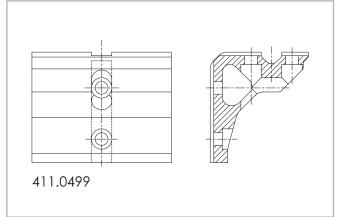
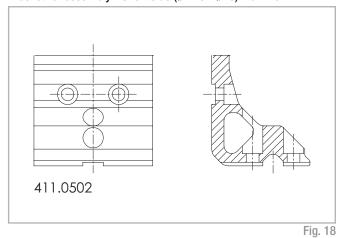
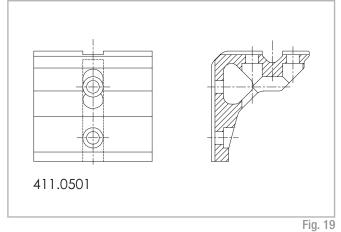
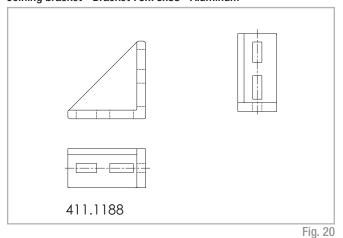




Fig. 17


Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

Joining bracket - Bracket 75x75x38 - Aluminum

Joining bracket - Bracket 75x75x38 - Aluminum

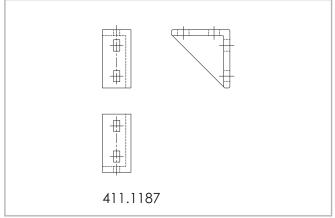


Fig. 21

Insert for SAB 180V - SAB 180C - SAB250C

Fig. 22

Quick insert for: SAB 180V - SAB 180C - SAB 250C

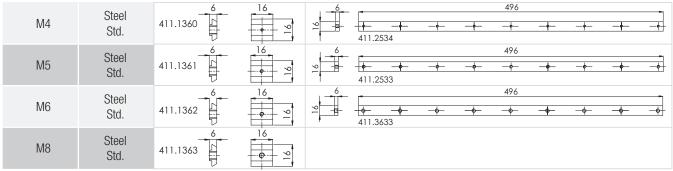


Fig. 23

Dovetails for: SAB 120C - SAB 120V - SAB 180V - SAB 180C - SAB 250C

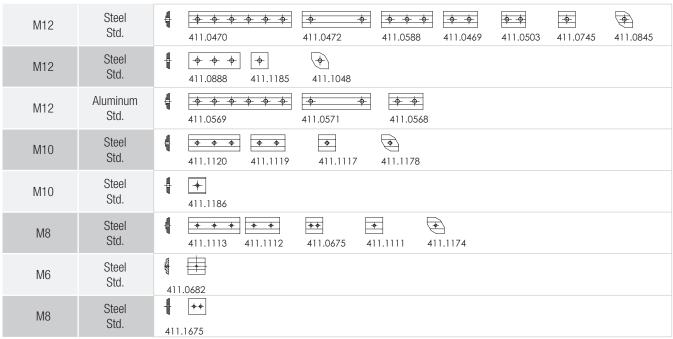
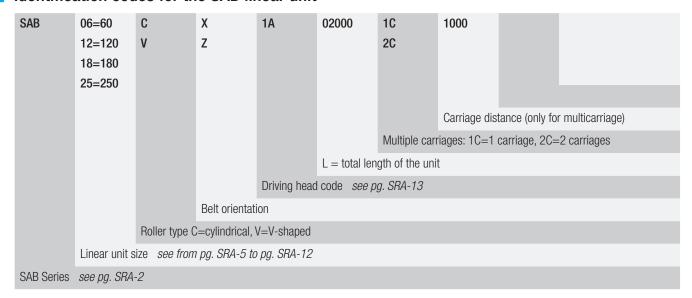


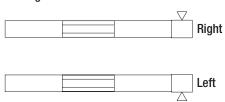
Fig. 24


Dovetails for: SAB 60V

Borotano ioni o		
M8	Steel Std.	4 昼 411.3532
M6	Steel Std.	4 ************************************
M5	Aluminum Std.	411.2732 411.2733
M4	Steel Std.	◆ □ 411.1732

Fig. 25

Ordering key / ~


Identification codes for the SAB linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left/right orientation

ZSY series /

ZSY series description

ZSY products are self-supporting extruded aluminum actuators driven by a polyurethane belt system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, ZSY series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

The ZSY series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the Aluminum profile must be moving and the carriage must be fixed. It is ideal for a "Z" axis in a 3-axis system. Available in the 180mm size.

Some of the main advantages of ZSY series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system

Fig. 26

The components

Extruded bodies

ZSY beam is a heat-treated Aluminum alloy profile with hollow cross-sections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Driving belt

The ZSY series driving system consists in a polyurethane toothed belt with AT pitch, reinforced with high resistance steel cords. For some applications, the belt driven solution is ideal due to its high load transmission characteristics, compact size and low noise. Some of the advantages of using a belt driven system are: high speed, high acceleration, low noise and no need for lubrication.

Carriage

The carriage of the ZSY series linear units is made of anodised aluminum.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 42

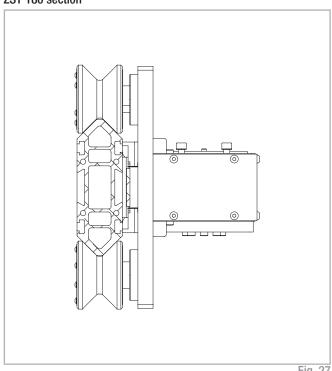
Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J 	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K	22.111.10	O
2.7	69	23	200	880-900	33	600-655

Tab. 43

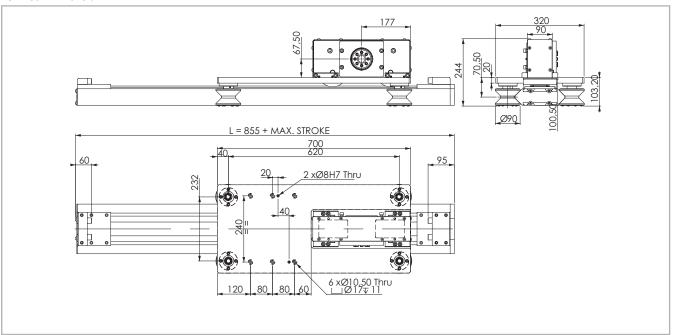
Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80


The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

ZSY with V-shaped rollers:


These rollers are V-shaped and covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail. Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

ZSY 180 section

ZSY 180V

ZSY 180V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

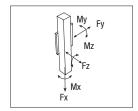
Fig. 28

Technical data

	Туре
	ZSY 180V
Max. useful stroke length [mm]	2500
Max. positioning repeatability [mm]*1	± 0.2
Max. speed [m/s]	8
Max. acceleration [m/s²]	8
Type of belt	50 AT 10HP
Type of pulley	Z 30
Pulley pitch diameter [mm]	95.49
Carriage displacement per pulley turn [mm]	300
Carriage weight [kg]	25.7
Zero travel weight [kg]	36
Weight for 100 mm useful stroke [kg]	1.06
Rail size [mm]	180x60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 45

^{*1)} Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
ZSY 180V	10,291,100	1,278,700	2,600,000
			Tab. 46

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type	Belt width	Weight
	of belt	[mm]	kg/m
ZSY 180V	50 AT 10HP	50	0.34

Tab. 47

ZSY 180V - Load capacity

Туре	F _x	F	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
ZSY 180V	4980	2300	2600	188	806	713

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

Driving head

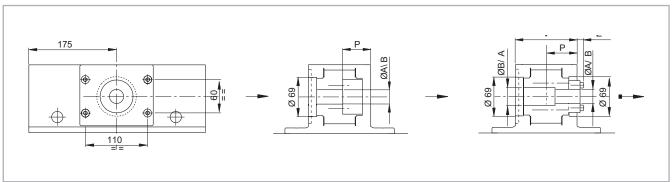
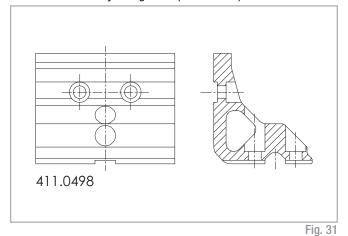


Fig. 29

Туре	A Ø [mm]	B Ø [mm]	V [mm]	P [mm]	Z [mm]	Head code
ZSY 180V	25H7		108	48.5	11.5	1CA
231 100V		32H7	108	52.5	6	1CB

Tab. 49

Adapter flanges



Туре	Gearbox code		Size	
ZSY 180V	MP105/TR105	70	25	85
	LP090/PE4/LC090	68	22	80
	EP90 TT	50	19	65
				Tab. 50

Fig. 30

Accessories

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

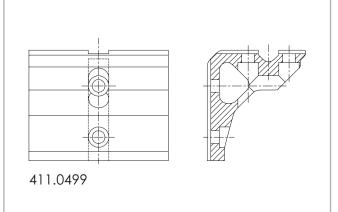
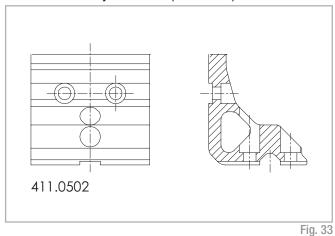
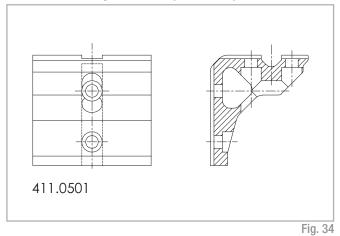
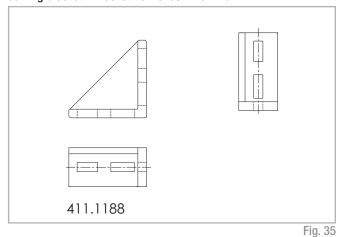




Fig. 32


Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

Joining bracket - Bracket 75x75x38 - Aluminum

Joining bracket - Bracket 75x75x38 - Aluminum

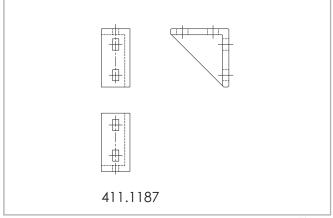


Fig. 36

Insert for: ZSY 180V

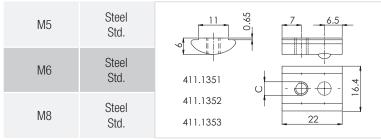


Fig. 37

Quick front insert for: ZSY 180V

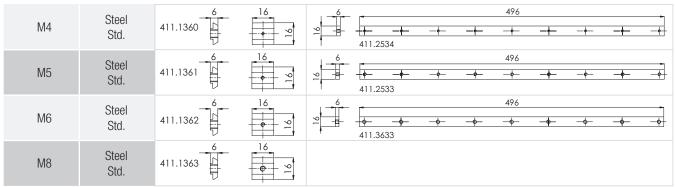


Fig. 38

Dovetails for: ZSY 180V

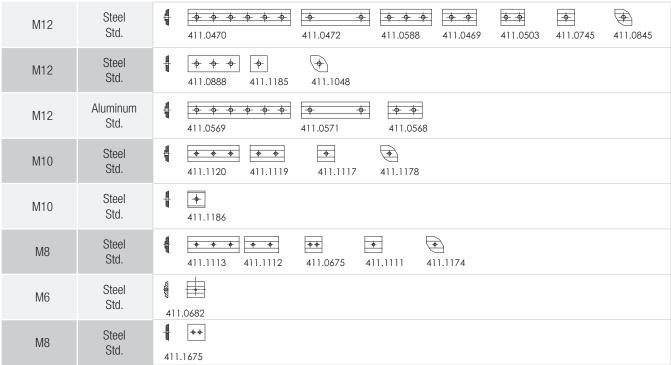
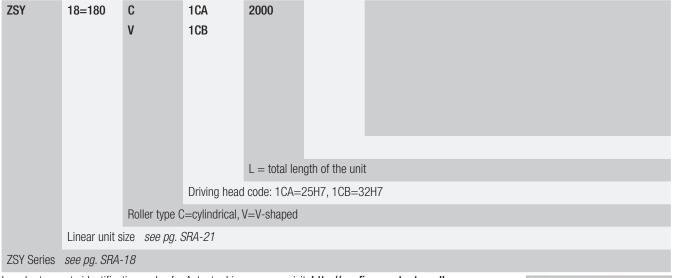
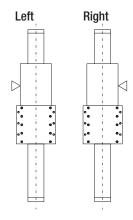



Fig. 39

Ordering key / ~


Identification codes for the ZSY linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left/right orientation

SAR series / ~

SAR series description

Fig. 40

SAR products are self-supporting extruded aluminum actuators driven by a rack and pinion system. Due to their deep hard anodized surface treatment and their plastic compound coated rollers, SAR series can achieve exceptionally high performances and load capacity with no maintenance or lubrication required. They also provide total reliability even in dirty environments, with uniquely quiet operation.

SAR series is defined by the use of guides with cylindrical and V-shaped rollers as linear motion components. These linear motion systems are lightweight, self-supporting, easy to assemble, cost effective, modular, clean and quiet. Thanks to this kind of solution they are specifically dedicated for dirty environments and high dynamics in automation. SAR series is available with profiles of different sizes: 120 -180 - 250 mm.

Some of the main advantages of SAR series are:

- High reliability
- Self-supporting for greatest design freedom
- High technical performance
- High load
- Optimal reliability in dirty environments
- Absence of lubrication
- Uniquely quiet
- Self-aligning system
- Potentially infinite strokes

The components

Extruded bodies

SAR beam is a heat-treated Aluminum alloy profile with hollow crosssections which makes it very strong under torsion and deflection stresses. Beams are then subject to a special patented treatment which provides a smooth, hard surface, comparable to tempered steel, and an optimal resistance to wear, even in dirty environments.

Rack and pinion drive

The SAR series is driven by a rack and pinion system. This option is suitable to achieve long strokes and enables the possibility to mount and to manage multiple carriages. Hardened racks and pinions allow the system to work better in dirty environments, while straight teeth permit high load capacity, low noise and a smooth linear movement. SAR products can be provided with a lubrication kit, to eliminate periodic greasing operations.

Carriage

The carriage of the SAR series linear units is made of anodised aluminum. Different lengths of the carriages are available according to the different sizes

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 51

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10-0	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2.7	69	23	200	880-900	33	600-655

Tab. 52

Mechanical characteristics

Rm	Rp (02)	А	НВ
N —— mm²	N —— mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

SAR with cylindrical and V-shaped rollers:

The SAR range includes a large selection of rollers both cylindrical and V-shaped, and sliders assembled with two or more rollers. SAR rollers are covered by a sintered plastic compound, resistant to pollutants and virtually maintenance-free. Ball and/or needle bearings with high performance are mounted into the rollers and can be maintained either with standard greasing procedure or lifetime lubricated. All roller boxes are equipped with concentric and eccentric pins for a quick adjustment of the contact between rollers and rail.

Supports are mounted on the frame when the rail is movable and on the trolleys when it is fixed.

SAR section

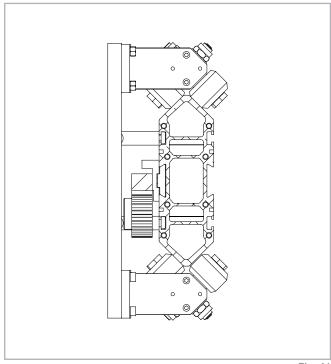
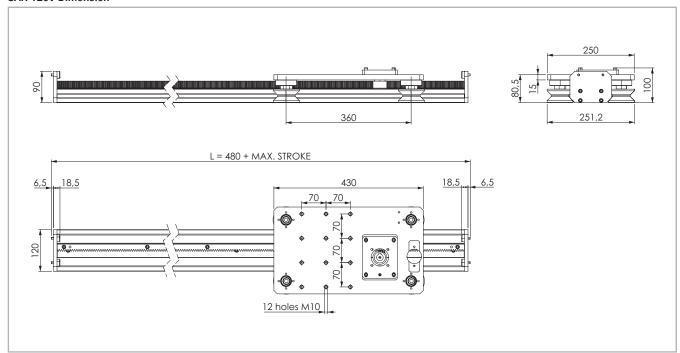



Fig. 41

SAR 120V

SAR 120V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

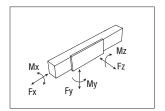
Fig. 42

Tab. 55

Technical data

	Туре
	SAR 120V
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s²]	8
Rack module	m 2
Pinion pitch diameter [mm]	40
Carriage displacement per pinion turn [mm]	125.66
Carriage weight [kg]	7.5
Zero travel weight [kg]	12
Weight for 100 mm useful stroke [kg]	0.85
Rail size [mm]	120x40
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 54

^{*1)} It is possible to obtain longer stroke by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

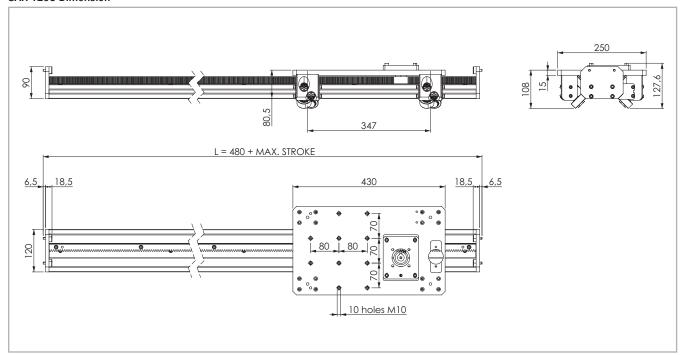

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
SAR 120V	2,138,988	259,785	430,000

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 120V	Straight teeth Hardened rack	m 2	Q10

Tab. 56


SAR 120V - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120V	1633	1400	800	39.32	144	252

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

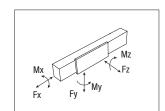
SAR 120C

SAR 120C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 43

Technical data


	Туре
	SAR 120C
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.5
Max. speed [m/s]	3
Max. acceleration [m/s ²]	10
Rack module	m 2
Pinion pitch diameter [mm]	40
Carriage displacement per pinion turn [mm]	125.66
Carriage weight [kg]	8.4
Zero travel weight [kg]	13
Weight for 100 mm useful stroke [kg]	0.85
Rail size [mm]	120x40
*1) It is possible to obtain longer stroke by means of special Rollon joints	Tab. 58

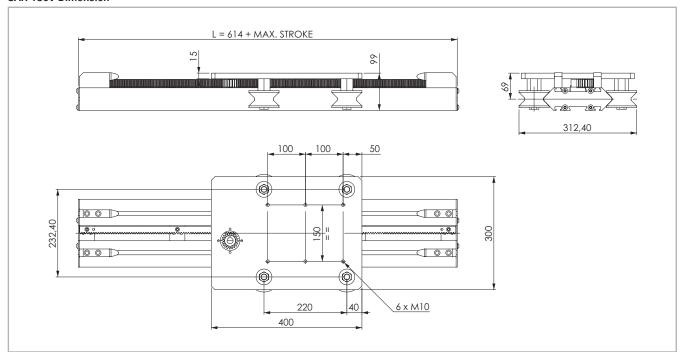
Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 120C	2,138,988	259,785	430,000
			Tab. 59

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 120C	Straight teeth Hardened rack	m 2	Q10
			Tab. 60

SAR 120C - Load capacity


Туре	F _{.x}	F,	F _z	M _x	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAR 120C	1633	1400	800	98	432	432

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

 $^{^\}star 1)$ It is possible to obtain longer stroke by means of special Rollon joints $^\star 2)$ Positioning repeatability is dependent on the type of transmission used

SAR 180V

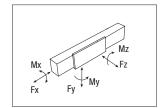
SAR 180V Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 44

Technical data

	Туре
	SAR 180V
Max. useful stroke length [mm]*1	NO LIMITS
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s ²]	8
Rack module	m 2
Pinion pitch diameter [mm]	40
Carriage displacement per pinion turn [mm]	125.66
Carriage weight [kg]	7
Zero travel weight [kg]	16.5
Weight for 100 mm useful stroke [kg]	1.3
Rail size [mm]	180x40


 $^{^{\}star}$ 1) It is possible to obtain longer stroke by means of special Rollon joints * 2) Positioning repeatability is dependent on the type of transmission used

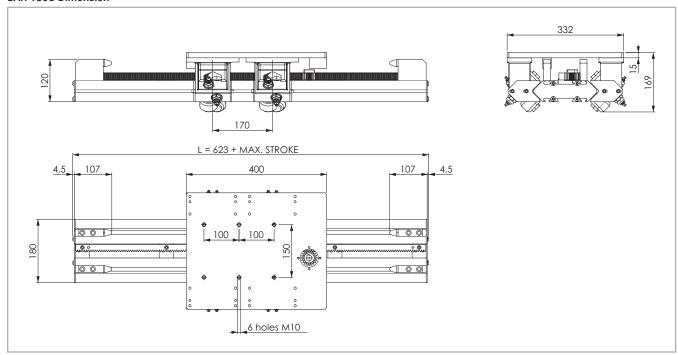
Moments of inertia of the aluminum body

Туре	l _× [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
SAR 180V	10,291,100	1,278,700	2,600,000
			Tab. 63

Туре	Type of rack	Rack module	Quality
SAR 180V	Straight teeth Hardened rack	m2	Q10

Tab. 64

SAR 180V - Load capacity


Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180V	1633	1400	800	58	88	154

Tab. 62

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

SAR 180C

SAR 180C Dimension

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 45

Technical data

Туре
SAR 180C
6900
± 0.15
3
10
m2
40
125.66
11.46
16
1.3
180x40

Moments of inertia of the aluminum body

Туре	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
SAR 180C	10,291,100	1,278,700	2,600,000

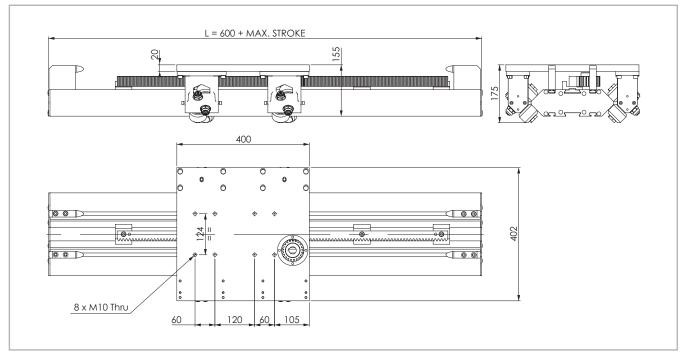
Tab. 67

Rack specifications

Туре	Type of rack	Rack module	Quality
SAR 180C	Straight teeth Hardened rack	m2	Q10
			Tab. 68

SAR 180C - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180C	1633	3620	3620	246	308	308


Tab. 66

Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

 $^{^{\}star}$ 1) It is possible to obtain longer stroke by means of special Rollon joints * 2) Positioning repeatability is dependent on the type of transmission used

SAR 250C

SAR 250C Dimension

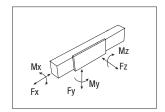
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 46

Technical data

	Туре
	SAR 250C
Max. useful stroke length [mm]*1	6900
Max. positioning repeatability [mm]*2	± 0.15
Max. speed [m/s]	3
Max. acceleration [m/s²]	10
Rack module	m3
Pinion pitch diameter [mm]	63
Carriage displacement per pinion turn [mm]	197.92
Carriage weight [kg]	15
Zero travel weight [kg]	29
Weight for 100 mm useful stroke [kg]	2.17
Rail size [mm]	250x80

 $^{^{\}star} 1)$ It is possible to obtain longer stroke by means of special Rollon joints


Moments of inertia of the aluminum body

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 250C	27,345,460	4,120,150	8,400,000
			Tab. 71

Rack specifications

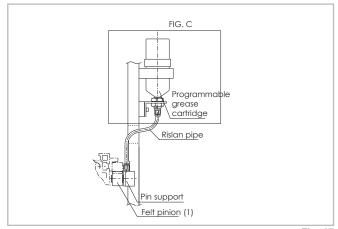
Туре	Type of rack	Rack module	Quality
SAR 250C	Straight teeth Hardened rack	m3	Q10

Tab. 72

SAR 250C - Load capacity

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 250C	3598	3620	3620	372	453	453

Tab. 70


Non-cumulative moments referred to the median trolley axis and to a theoretical lifetime of the Speedy Rail guide and of the rollers of up to 80.000 km.

 $[\]ensuremath{^{\star}}\xspace2)$ Positioning repeatability is dependent on the type of transmission used

Lubrication

Programmable automatic rack lubrication

Grease is delivered by means of a programmable cartridge (average life: ca. 1 year) (a). The grease is spread evenly on the racks through a felt pinion (1). You will need one kit per rack.

Fig. 47

Accessories

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

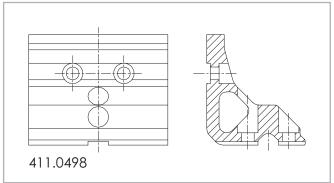


Fig. 48

Bracket for assembly - Large side (Ø12.5 - Ø20) Aluminum

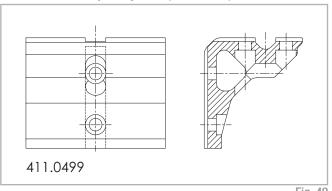


Fig. 49

Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

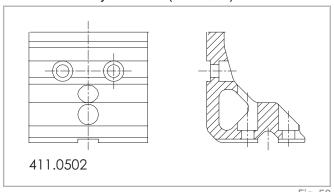


Fig. 50

Bracket for assembly - Short side (Ø12.5 - Ø20) Aluminum

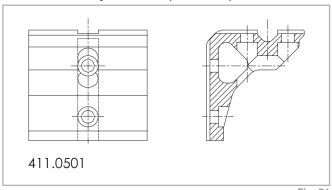
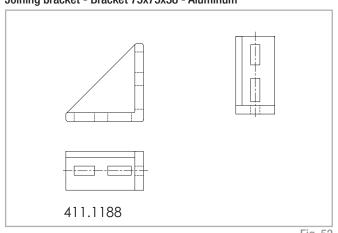



Fig. 51

Joining bracket - Bracket 75x75x38 - Aluminum

Joining bracket - Bracket 75x75x38 - Aluminum

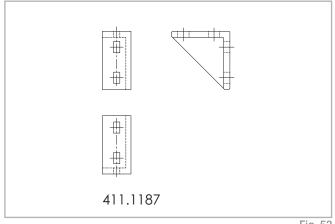


Fig. 52

Fig. 53

Insert for: SAR 180C - SAR 180V - SAR 250C

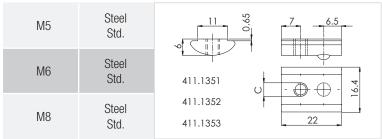


Fig. 54

Quick front insert for: SAR 180C - SAR 180V - SAR 250C

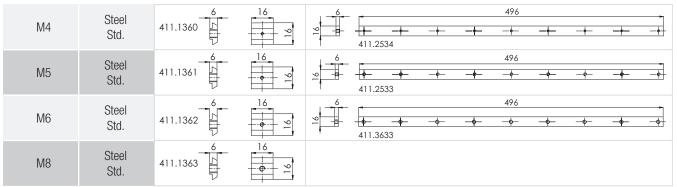


Fig. 55

Dovetails for: SAR 120C - SAR 120V - SAR 180C - SAR 180V - SAR 250C

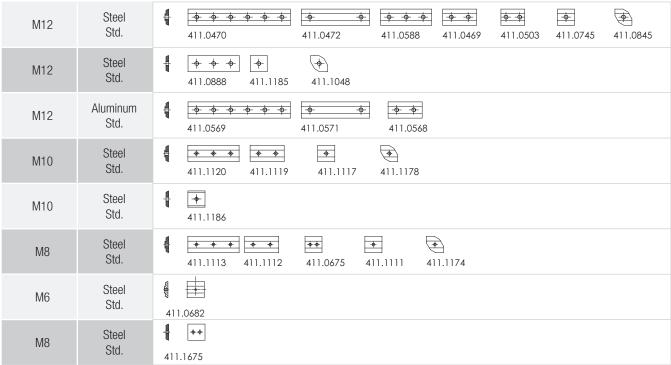
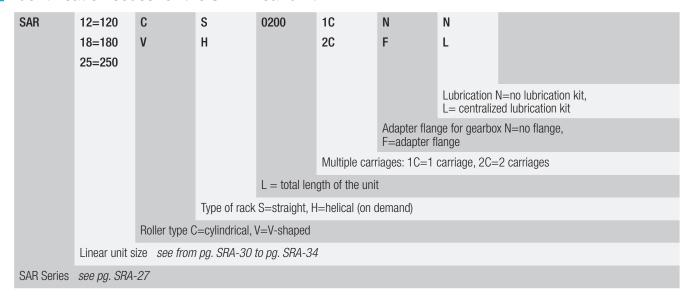
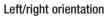
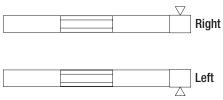



Fig. 56


Ordering key / ~


Identification codes for the SAR linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Static load and service life

Static load

In the static load test, the radial load rating F_{v} , the axial load rating F_{z} , and the moments M_v , M_v und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor $S_{\scriptscriptstyle 0}$ is used, which accounts for the special conditions of the application defined in more detail in the table below:

All load capacity values refer to the actuator well fixed to a rigid structure. For cantilever applications the deflection of the actuator profile must be taken in account.

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7

Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_0 .

$$\frac{P_{fy}}{F_v} \le \frac{1}{S_0} \qquad \frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 2

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= acting load (y direction) (N)

= static load rating (y direction) (N)

= acting load (z direction) (N) = static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_{v} , M_{v} , M_{v} = maximum allowed moments in the different load directions (Nm)

The safety factor S_o can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and Speed / Orietation Safety vibrations acceleration **Factor** horizontal 1.4 No impacts Low and/or vibrations 1.8 vertical 1.7 Light impacts horizontal Medium and/or vibrations 2.2 vertical 2.2 Strong impacts horizontal High and/or vibrations vertical

Tab. 1

Fig. 3

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

The effective equivalent load $P_{\rm eq}$ is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f

f_i	
no shocks or vibrations, smooth and low-frequency changes in direction; ($\alpha < 5 \text{m/s}^2$) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s² < α < 10 m/s²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s²) high contamination, very short stroke	> 3

Tab. 2

Fig. 4

Speedy Rail A Lifetime

The rated lifetime for SRA actuators is 80,000 Km.

Static load and service life Uniline

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5

Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_n .

$$\frac{P_{fy}}{F_{y}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \ \le \ \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 8

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

 P_{fy} = acting load (y direction) (N)

= static load rating (y direction) (N)

 P_{fz} = acting load (z direction) (N)

 F_z = static load rating (z direction) (N)

 M_1 , M_2 , M_3 = external moments (Nm)

 M_x , M_y , M_z = maximum allowed moments

in the different load directions (Nm)

The safety factor $\mathbf{S}_{_{0}}$ can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications,

higher safeties are required. For further information, please contact our Application Engineering Department.

Fig. 9

Calculation formulae

Moments $\mathbf{M}_{_{\mathbf{V}}}$ and $\mathbf{M}_{_{\mathbf{Z}}}$ for linear units with long slider plate

The allowed loads for the moments M_y and M_z depend on the length of the slider plate. The allowed moments M_{zn} and M_{yn} for each slider plate length are calculated by the following formulae:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

 M_{zn} = allowed moment (Nm)

 $M_{z min} = minimum values (Nm)$

 M_{vn} = allowed moment (Nm)

 $M_{y min} = minimum values (Nm)$

 S_n = length of the slider plate (mm)

 S_{min} = minimum length of the slider plate (mm)

 ΔS = factor of the change in slider length

K = constant

Fig. 10

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Moments M_v and M_z for linear units with two slider plates

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{_{\boldsymbol{y}}}=(\frac{L_{_{\boldsymbol{n}}}}{L_{_{\boldsymbol{min}}}})\cdot M_{_{\boldsymbol{y}\,\boldsymbol{min}}}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

 $M_v = allowed moment (Nm)$

M₂ = allowed moment (Nm)

 $M_{v min} = minimum values (Nm)$

 $M_{z min} = minimum values (Nm)$

 L_n = distance between the centers of the sliders (mm)

 L_{min} = minimum value for the distance between the centers of the sliders (mm)

 ΔL = factor of the change in slider length

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 4

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

C = dynamic load rating (N)
P = acting equivalent load (N) f_i = service factor (see tab. 5) f_c = contact factor (see tab. 6) f_b = stroke factor (see fig. 13)

L_{km} = theoretical service life (km)

Fig. 12

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

$$P = P_{fy} + (\frac{P_{fz}}{F_Z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f_{i}	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5

Tab. 5

Contact factor f

f _c	
Standard slider	1
Long slider	0.8
Double slider	0.8

Tab. 6

Stroke factor f,

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

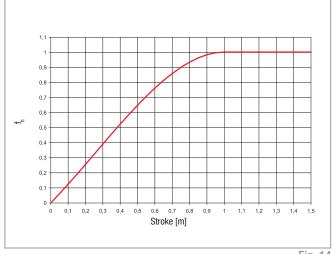


Fig. 14

Determination of the motor torque

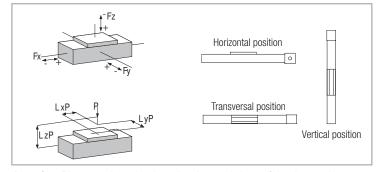
The torque \mathbf{C}_{m} required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

 C_m = torque of the motor (Nm)

C_v = starting torque (Nm)

F = force acting on the toothed belt (N)


D_n = pitch diameter of pulley (m)

Data sheet / v

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
F-Mail·	

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated	,	Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/	/ertical/Transversal					
Max. speed		V	[m/s]			
Max. acceleration		a	[m/s ²]			
Positioning repeatability		Δs	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON - SOUTH AMERICA (Rep. Office)

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645

www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

Distributor

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR

Phone: +44 (0) 1234964024

ROLLON - JAPAN

www.rollon.uk.com - info@rollon.uk.com

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

All addresses of our global sales partners can also be found at www.rollon.com