

"Instantaneous positioning" quick response direct drive actuator ABSODEX

Direct drive actuator quick response type ABSODEX AX1000T, AX2000T, and AX4000T Series

DIRECT DRIVE ACTUATOR, QUICK RESPONSE TYPE, AX1000T, AX2000T, AX4000T SERIES

CKD Corporation cc-995A9 Setup easier than ever before! "Instantaneous positioning! Quick response direct drive actuator ABSODEX"

0001 **P**

Quick setup!

Quick positioning!

High precision, high-functions

High precision absolute DD actuator that can be indexed anywhere in its 360°range. Combination of intermittent and continuous rotation is possible.

Environmental design

Production facilities can be built on eco-friendly features such as energy saving, space saving, oil free, and reusability.

Highly compatible (AX1000T, AX2000T, and AX4000T)

Drivers, actuators, and cables are compatible. Service and maintenance are easy.

1. Shorter tact time for equipment

- Improved response reduces time loss Instantaneous positioning reduces stabilization time to 1/4 (based on CKD measurement result)
- Reduced start time by linking with peripheral components By adding A/B phase output signal, peripheral components are easier to synchronize.

2. Improved usability

- Optimal tuning in no time Semi-automatic tuning function added.
- Increased I/O signals Ready output, servo ON, etc. added.

3. Safety Standards

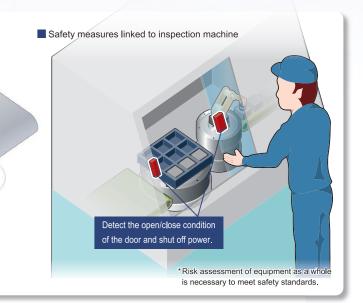
Safety standard certifications (Safe Torque Off function)

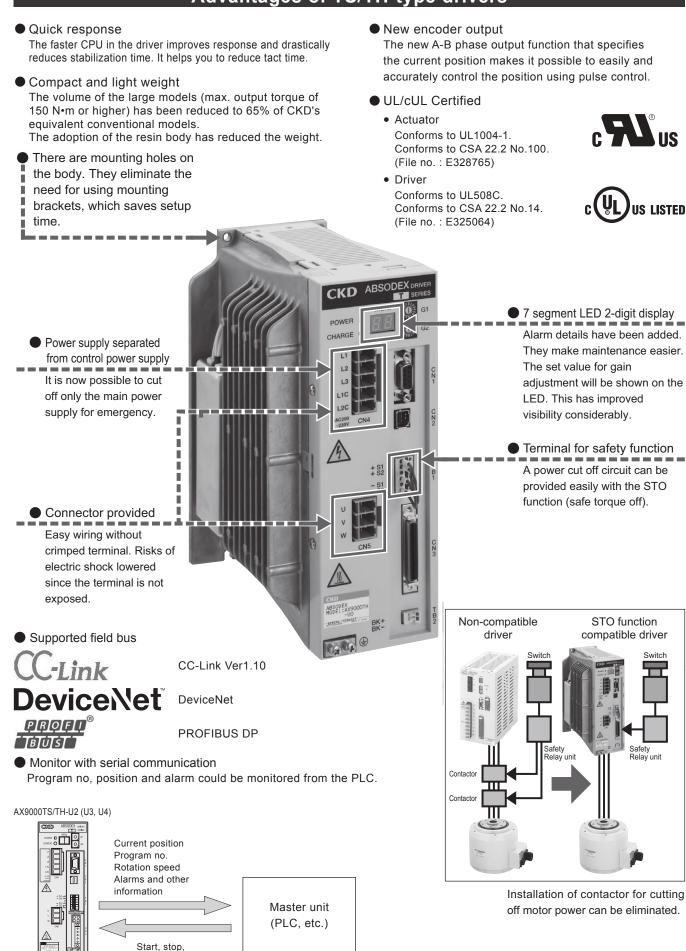
4. Overseas Standards

• UL/cUL, CE compliant

Reduced tact time with quick respo

5. Downsized GH/WGH type drivers


Volume reduced to 65%, 50 mm shorter depth


Easier setup Adjustment software (AX tools) as standard.

Control is on even when the motor is off Power supply separated from control power supply.

Advantages of TS/TH-type drivers

select program, etc.

Useful features

- Additional functions on the quick response type
 I/O function
 - Ready output
 - Servo state output
 - Encoder output
 - Servo ON input
 - Position deviation counter clear input

Parameters

- Positioning completion signal output time setting Setting in the range of 0 to 100 ms is possible.
- Mode selection of in-position output Select either ON at all times within the position deviation range or ON only when stopped.

Additional program selection method

- Select programs with 6-bit input (0 to 63)
- Start operation with start input + selection input Program number selection input can be omitted, which reduces the time from program selection to operation. This reduces tact time.
- Free-run prevention during alarms When an alarm indicating that the servo is in an uncontrollable state occurs during operation, this function decelerates and stops the servo to prevent accidents.
- Return to origin not required

The Absodex has a built-in absolute resolver that detects the current position when power is turned on, eliminating bothersome origin searches. You can also restart from the current position after an emergency stop.

Smooth cam curve drive

Five types of cam curves are provided as a standard. Shock during movement and stopping is minimized.

 Model selection software (free) Select the best model with ease.

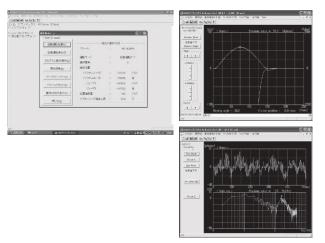
 Starting adjustment support tool "AX Tools" provided for free This tools enables you to make adjustments in less time.

Teaching note

- Create programs and set parameters
- Origin offset
- Test operation
- Semi-automatic tuning (TS type only)

After auto tuning, you can increase the machine performance by adjusting a single parameter.

Speed wave


Evaluate tuning by measuring the actual speed change and convergence waveforms.

FFT

Set a notch filter and low-pass filter to suppress mechanical resonance.

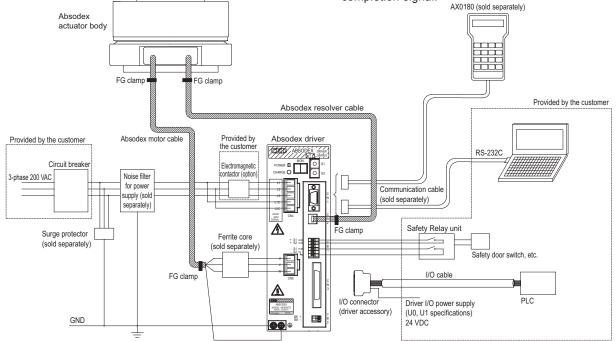
I/O check

Evaluate the status of I/O communication with the host device.

Eco-friendly features

Energy saving

Power is consumed only during indexing. Almost no power is consumed while the output shaft is stopped.


- No need to replace or dispose lubricant Bothersome lubricant replacement and waste oil disposal are no longer required. This also eliminates pollution that may be caused by oil leakage.
- Compact, space saving No need for origin detection sensors, reducers, etc.
- Easy specifications change and reusability Specifications can be changed by using an interactive terminal, PC, etc. Reuse, which is difficult with mechanical indexed actuator, is also possible.

System Configuration

- Basic setting items
- 1. Input the program from a personal computer or interactive terminal.
- 2. Specify required parameters in the same way.
- 3. Set the gain adequately.

- Basic drive methods
- 1. A program to be executed is selected at the PLC.
- 2. Start signal is input at the PLC.
- 3. After driving is started, the driver outputs a positioning completion signal. Interactive terminal

To comply with CE marking requirements, the following parts as well as overcurrent protection, short-circuit protection, and other components are required. In addition, the driver must be installed inside the switchboard. For details on how to select these devices and how to install and wire these devices, refer to the instruction manual or the technical information (ABSODEX AX Series TS Type/TH Type Technical Information).

Parts name	Application	Model no.	Manufacturer
Noise filter	3-AC, 1-AC 200 VAC to 230 VAC	3SUP-EF10-ER-6	Okaya Electric
Noise inter	1-AC, 100 VAC to 115 VAC	NF2015A-OD	Soshin Electric
Ferrite core	Common	RC5060	Soshin Electric
Surge protector	Common	R/A/V-781BXZ-4	Okaya Electric
FG clamp*	Common	FGC-5, FGC-8	Kitagawa Industries

* FG clamp is used to ground the shield of motor and resolver cables.

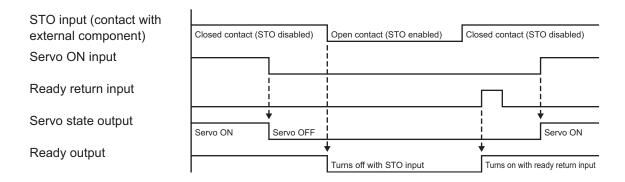
Configuration (set model no. selection)

	Name	Quantity				
rd ition	Actuator body	1				
anda ìgura	Actuator body Driver (with controller)	1				
St	ស៊ី ទី Motor cable and resolver cable					

Accessories: I/O connector, power supply connector, motor cable connector

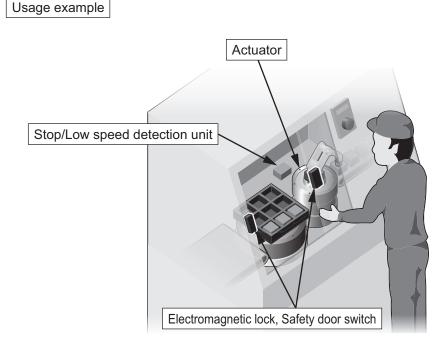
Programming tool

- Interactive terminal "AX0180" is available.
- Starting adjustment support tool "AX Tools" is available. (Windows version, free)

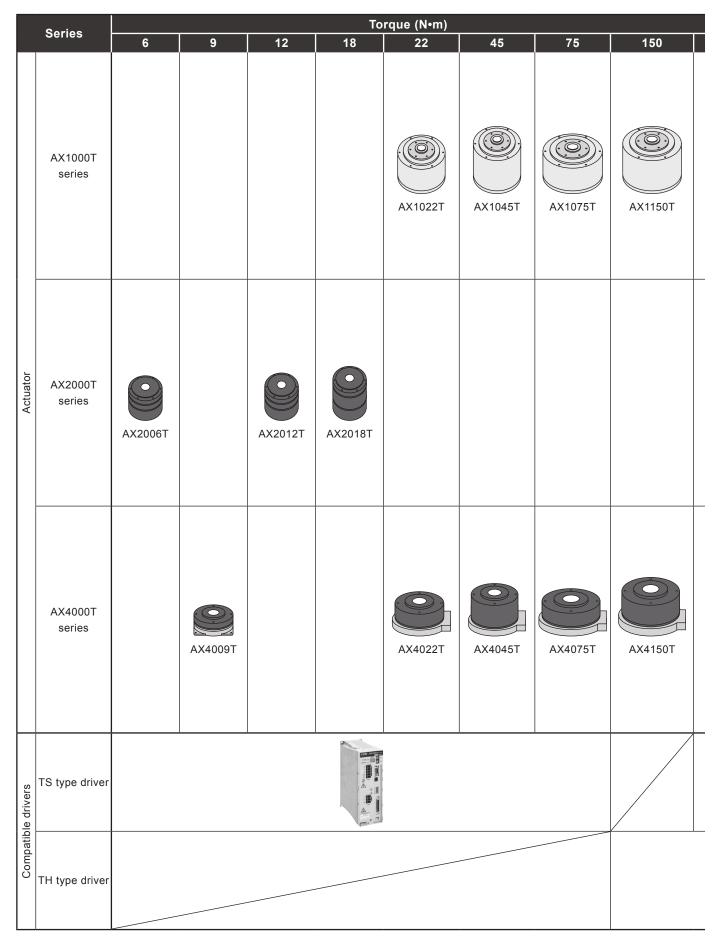

Absodex programs are created, parameters set, and operation commands, etc., issued from the personal computer. Created programs can be saved.

A PC communication cable (model: AX-RS232C-9P) is required.

- Note) The PC communication cable is designed specifically for Absodex. You cannot use a cable available on the market as it is. If you do, the driver or PC may be damaged.
- Note) Connect the interactive terminal only when adjusting. Remove the cable from CN1 during normal operation.
- Note) Do not allow the PC to enter the standby mode when a USB-serial adapter cable is connected. If it does, communication errors may result when the PC returns from the standby mode.
- Note) Download the latest version of the Starting adjustment support tool "AX Tools" from our website.


Example of a safety circuit timing chart

The Safe Torque Off function, a safety feature provided on this product, allows you to turn off the motor by the opening/closing of a contact of an external safety component. An example of a timing chart using the safety terminal (TB1) is shown below.



In normal cases, use the safety feature with the servo OFF.

Be sure to conduct a risk assessment of the device when using the safety feature.

ABSODEX compatible types Series Variation

Intro 7 CKD

					≙ Sa How	cases fety precautions to order related part ction guide	Page Page sPage Page	Intro 9 41	
210	Tor 300	que (N•m) 500	1000	Index precision (sec.)	Repeatability (sec.)	Features	Applica- tions	Page	AX1000T
				±15	±5	 High precision model with indexing accuracy and run out of output shaft High-speed rotation (AX1022TS: 240 rpm, AX1045TS: 240 rpm, AX1075TS: 140 rpm, 	 Precision measurement Turntable Inspection machine Assembly 	1 to 6	AX2000T AX1
AX1210T						AX1150TH: 120 rpm, AX1210TH: 120 rpm)	machine		AX4000T
				±30	±5	 High speed rotation (300 rpm) Small diameter and 	●P&P ●Turntable	7 to	AX9000TS
						compact • Large hollow shaft (ø30)	Assembly machine	10	АХ9000ТН
						 High speed rotation (AX4009TS: 240 rpm, AX4022TS: 240 rpm, 			Cable
	AX4300T	AX4500T	AX410WT	±30	±5	AX4045TS: 240 rpm, AX4075TS: 140 rpm) • Capable of handing loads with large moment of inertia • Large hollow shaft, a variety of size options	 Turntable Inspection machine Assembly machine P&P 	11 to 28	AX0180
				are co The co rotatio be set M cod	mpatibl ontroller n angle as des e outpu	n operate actuators of a e. function enables the a movement time and ti ired with an NC program t, encoder output, etc. an external PLC, motio	ictuator's imer, etc., to m. can be used	29 to 37	

Safety Precautions

Always read this section before use.

When designing and manufacturing devices using Absodex, the manufacturer has an obligation to manufacture a safe device, and to check that the safety of the device's mechanical mechanism and the system operated by the electrical control that controls the device is secured.

It is important to select, use, handle, and maintain the product appropriately to ensure that the CKD product is used safely. Observe warnings and precautions to ensure device safety.

Check that device safety is ensured, and manufacture a safe device.

🛕 Warning

This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience in handling. 2 Use within the product's specification range. This product must be used within its stated specifications. Do not attempt to modify or additionally machine the product. This product is intended for use as a general-purpose industrial device or part. It is not intended for use outdoors or for use under the following conditions or environment. (Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.) • Use for special applications including nuclear energy, railway, aircraft, marine vessel, vehicle, medical equipment, equipment or applications coming into contact with beverage or food, amusement equipment, emergency shutoff circuits, press machine, brake circuits, or for safeguard. Use for applications where life or assets could be adversely affected, and special safety measures are required. 3 Observe corporate standards and regulations, etc., related to the safety of device design. Do not remove devices until safety is confirmed. • Inspect and service the machine and devices after securing the safety of the system, such as by turning off the peripheral devices and other devices connected to this product. Exercise caution when inspecting, maintaining, and handling the product, as high temperature and charged parts can be present even when operation is stopped. Before starting device inspection or maintenance, turn off device power and other power to related devices, release compressed air, and check leakage current. **5** Observe warnings and cautions in the instruction manual of each product. • Do not rotate the actuator outputs shaft by 30 rpm or more while power is off. The driver could fail or electrical shock could result from actuator power generation. If the servomotor is turned off (including emergency stop or alarm) or brakes are turned off while a rotational force, such as gravity, is applied, the output shaft may rotate by rotational force. Conduct these operations in a balanced condition where rotational force is not applied, or confirm safety before starting. Unexpected movement may occur during gain adjustment or test operation, so keep hands, etc., away from the outputs shaft. When conducting operations with the actuator not visible, confirm before starting that it is safe even if the outputs shaft turns. The brake built-in actuator series do not completely clamp the output axis in all cases. If safety must be ensured, such as in maintenance with an application that rotates the output shaft in unbalanced mode, or when stopping the machine for a long time, it may not be sufficient to stop the shaft with brakes alone. Make sure equipment is maintained balanced or provide a mechanical locking means. It may take several seconds to stop in an emergency, depending on rotation speed and load. 6 To prevent electric shock, observe warnings and cautions. • High voltage is supplied to the terminal block at the driver's front panel and the motor cable connection terminal. For a terminal block, be sure to install the supplied terminal cover before operation. Do not touch the terminal block while power is on.

Even after the power is turned off, a high voltage is applied until the charge accumulated in the internal capacitor is discharged. Wait at least five minutes after turning the power off before touching these sections.

- In work with side cover off, such as for maintenance and inspection or changing driver switches, turn power off and wait at least five minutes before starting work because a risk of electrical shock from high voltage exists.
- O Do not connect or disconnect connectors while power is on. Misoperation, faults, or electrical shock may occur.
- Before restarting a machine or system, check that measures are taken so that parts do not come off.

KD

8 Install an over-current protective device.

In accordance with "JIS B 9960-1:2008 Safety of machinery - Electrical equipment of machines - Part 1: General requirements," install over-current protective devices (circuit breakers, etc.) for the main power and control power and I/O power.

(Translation of an excerpt from JIS B 9960-1 7.2.1 General Requirements) Overcurrent protection shall be provided where the current in a machine circuit can exceed either the rating of any component or the allowable current capacity of the conductors, whichever is the lesser value. The ratings or settings to be used are detailed in 7.2.10.

9 Observe the cautions on the following pages to prevent accidents.

The safety cautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

A DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, or when there is a high degree of emergency to a warning.

WARNING; When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries.

CAUTION: When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Items listed under "caution" can also possibly lead to serious results depending on the situation. Important details are listed for each; please make sure to follow them.

WARRANTY

Terms of warranty

Conditions related to the warranty term and scope are as follows:

1. Warranty period

"Warranty Period" of this product is one (1) year from the first delivery to the customer. (One year after delivery, where one day's operation shall be within eight hours. If durability is reached within one year, the warranty term shall be terminated at that point.)

2. Scope of warranty

If any faults found to be the responsibility of the CKD occur during the above warranty term, the part shall be repaired immediately by CKD free of charge.

- Note that the following faults are excluded from the warranty term:
- ① Operation under the conditions or in the environment derailing from those specified in the product specifications.
- ② Failure caused by lack of attention or erroneous control.
- ③ Failure caused by other than the delivered product.
- ④ Failure caused by operation derailing from the purposes for which the product is designed.
- (5) Failure caused by modification in the structure, performance, specification or other features made by other than us after delivery, or failure caused by repairs done by other than our designated contractor.
- (6) Loss in our product assembled to your machine or equipment, which would be avoided if your machine or equipment were provided with general functions, structures or other features common in the industry.
- Teaults caused by reason that is unforeseeable with technology put into practical use at the time of delivery
- ⑧ Failure caused by fire, earthquake, flood, lightning, or other acts of God, earth shock, pollution, salt hazard, gas intoxication, excessive voltage, or other external causes.

The warranty mentioned here covers the discrete delivered product. Only the scope of warranty shall not cover losses induced by the failure of the delivered product.

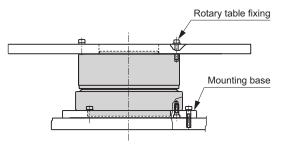
3. Warranty for exported products

- (1) Products returned to the CKD factory or to a company or factory designated by CKD shall be repaired. Work and cost necessary for transportation shall not be compensated for.
- (2) The repaired product shall be returned to a designated place in Japan with domestic packaging specifications.

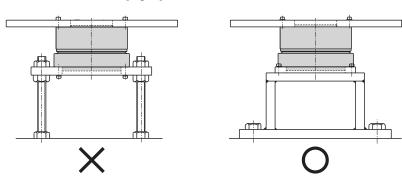
This warranty specifies basic conditions. If warranty details in individual specification drawings or specifications differ from these warranty conditions, specification drawings or specifications shall take priority.

4. Compatibility confirmation

In no event shall CKD be liable for merchantability or fitness for a particular purpose, notwithstanding any disclosure to CKD of the use to which the product is to be put.



Design & Selection



- 1 Actuators and the drivers are not water-proof type. Provide waterproofing when using this where water or oil enters.
- 2 Current leakage and faults could occur if chips or dust get onto the actuator or driver. Check that these do not come in contact with devices.
- **3** Frequent repetition of power-on and -off can cause damage to the elements inside the driver.
- 4 If power is turned off and servomotor turnoff is executed while the servomotor is on (holding), the output shaft may move from the held position even without external force.
- Optional electromagnetic brakes enhance holding rigidity when the output shaft is stopped.
 Do not use these brakes to brake or stop a rotating output shaft.
- 6 Actuators and drivers do not guarantee rustproofing. Give careful consideration to storage, installation, and environment.
- Equipment in which Absodexes are installed should have sufficient rigidity to realize full Absodex performance. If the load equipment or frame's mechanical unique vibration is relatively low (200 to 300 Hz or less), resonance could occur in the Absodex and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]

[Fig. 1] Actuator Installation

Gain must be adjusted based on load table size, etc. Even when the Absodex is not directly installed, it should be installed on a highly rigid frame. [Fig. 2]

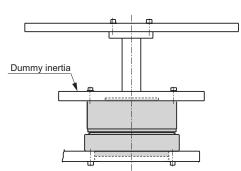
[Fig. 2] Actuator attachment

3 When extending the output shaft, refer to the references given in Table 1 for the extended shaft's diameter and length. In addition, add dummy inertia by using Fig. 3 as a reference.

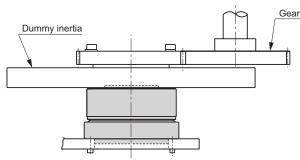
[Table 1] Extended out shaft's diameter guideline

Max. torque	Shaft extension (mm)				
[N•m]	50	100	200	300	500
6	ø35	ø40	ø46	ø50	ø60
9,12	ø40	ø46	ø55	ø60	ø70
18,22	ø45	ø55	ø65	ø70	ø80
45	ø55	ø65	ø75	ø85	ø95
75	ø62	ø75	ø90	ø95	ø110
150	ø75	ø90	ø110	ø115	ø130
210	ø80	ø95	ø115	ø125	ø140
300	ø90	ø105	ø125	ø140	ø155
500	ø100	ø120	ø145	ø160	ø180
1000	ø120	ø140	ø170	ø185	ø210

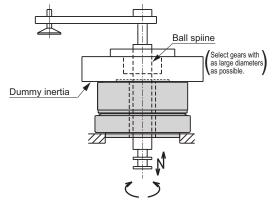
Note) The figures in the above table are extended output shaft's diameter references for steel materials (solid shafts).


Contact CKD for references for other materials and hollow shafts.

Design & Selection


Caution

- If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible.
 Examples of adding dummy inertia are shown below.
 - As a reference, dummy inertia is [load inertia] × (0.2 to 1). [Fig. 3]


[Fig. 3] Dummy inertia installation example 1

- When coupling with a belt, gears, or spline, or when joining with a key, dummy inertia should be [load inertia] × (0.5 to 2).
- If speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator.
 [Fig. 4] [Fig. 5]
 - (Note) Install dummy inertia as large as possible within the actuator's capacity. (Use steel that has a large specific gravity.)
 - [Fig. 4] Dummy inertia installation example 2

[Fig. 5] Dummy inertia installation example 3

10 The Absodex has a built-in absolute resolver (magnetic position detector).

Do not place strong magnetic fields such as rare earth magnets near the actuator.

Do not pass high-current wiring through the hollow hole. If you do, the full performance may not be achieved, and malfunction or fault may result.

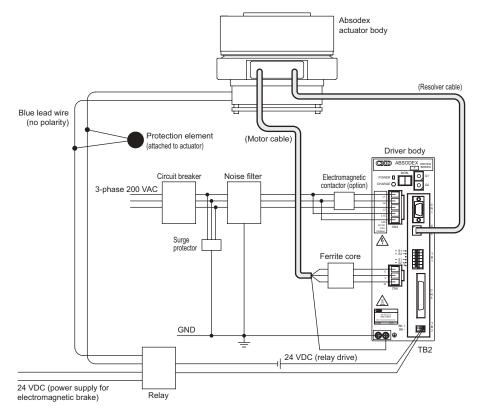
11 We recommend that you install a surge protector if there is a possibility that the device may fail due to indirect lightning stroke surges.

For other precautions, be sure to read the precautions given in the following materials.

1. From the Internet

AX_T Data Download

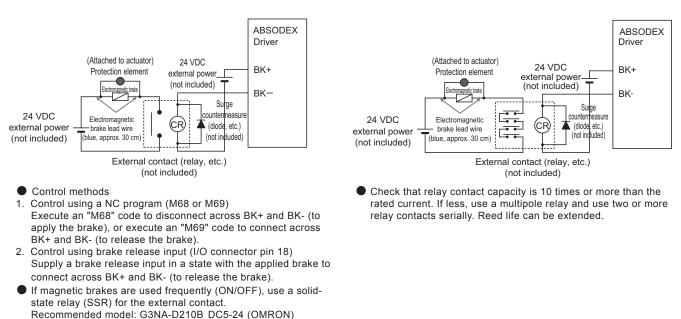
Direct drive actuator quick response type ABSODEX AX1000T/AX2000T/AX4000T


http://www.ckd.co.jp/kiki/caddata/ax_t.htm

- Instruction manual, supplementary description
- 2. Ask us for the following material. ABSODEX AX Series TS Type/TH Type Technical Information

Design & Selection

12 Connecting magnetic brakes



(1) Do not use magnetic brakes to brake or stop a rotating output shaft.

Refer to the SSR instruction manual before using.

- (2) The driver will be damaged if the driver's BK+ and BK- and magnetic brakes are directly connected.
- (3) When connecting the following inductive load, such as a relay, to the external contact, set the coil rated voltage to 24 VDC and the rated current to 100 mA or less, and provide measures against surge current.

<Recommended circuit for magnetic brakes> <Serial relay contact connection>

- When passing a shaft through the hollow hole in the type with magnetic brakes, use a non-magnetic material (SUS303, etc.). If magnetic material (S45C, etc.) is used, the shaft will be magnetized. This could cause iron powder to stick on the device or the peripheral devices to be affected by the magnetic properties.
- 14 Note that the magnetic force of the electromagnetic brake may cause stuck iron powder or effects on measuring instruments, sensors or other devices.

5 For other precautions, refer to the technical information (ABSODEX AX Series TS Type/TH Type Technical Information).

Intro 13 CKD

Safety precautions Labor saving mechanisms: Warnings, cautions

Always read this section before use.

A Caution

Installation and adjustment

- Connect the enclosed cable between the actuator and driver. Check that excessive force is not applied and that the cable is not damaged. Do not modify the enclosed cable (change the length or material) because this could cause malfunction or faults.
- 2 Connect the correct power supply. Connecting a nondesignated power supply could cause faults. Wait at least 10 seconds after turning power off (check that the motor output shaft is stopped) before turning it on again.
- Securely fix the Absodex to the machine, and securely install loads such as the table before adjusting gain.
 Confirm that no interference occurs and that the state is safe even when flexible sections are rotated.
- 4 Do not tap the output shaft with a hammer, nor assemble it forcibly. Failure to observe this would prevent the expected accuracy or functions, and could cause faults.
- **5** Do not place strong magnetic fields such as rare earth magnets near the actuator. It may not be able to maintain expected accuracy.
- 6 The actuator may become hot depending on operating conditions. Provide a cover, etc., so that it will not be touched by accident.
- The driver surface may become hot depending on operating conditions. Put it inside the switchboard, etc. so that it cannot be touched.
- B Do not drill holes into the actuator. Contact CKD when machining is required.
- 9 Do not get on the actuator or flexible parts such the rotary table on the actuator during maintenance, etc.

- 10 Compatible models
 - If the actuator and driver are combined mistakenly after program input (parameter setting), alarm 3 will be generated. Check the actuator and driver combination. (Note) Alarm 3 occurs to prevent malfunction if the
 - actuator and driver combination differ from when the program was input. Alarm 3 is reset when the program and parameters are input again.
 - If operation is started with an incorrect actuator and driver combination after the program is input (after parameter setting), malfunctions could occur or equipment be damaged.
 - When changing the cable length, order the cable separately.
 - If other than the compatible driver is connected, the actuator may be burned.
- **11** When using a circuit breaker, select one that has higher frequency measures for inverter use.
- The position of the output shaft in the actuator dimension drawing does not indicate the actuator's origin. When using it at the output shaft shown in dimension drawings, the origin must be adjusted to the origin offset.
- The cables for the AX4009T and AX2000T Series are not movable cables. Be sure to fix the cables at the connectors so that they do not move. Do not lift up the body by the cable or apply excessive force to the cable as the cable may break.
- For other precautions, conditions for compliance with overseas standards, etc., refer to the technical information (ABSODEX AX Series TS Type/TH Type Technical Information).

A Caution

During use and maintenance

- Do not disassemble the actuator, because this may compromise expected functions and accuracy. Especially, the one with the resolver may lead to fatal damage.
- 2 When testing withstand voltage of the machine or equipment containing the Absodex, disconnect the main power cable to the Absodex driver and check that the voltage is not applied to the driver. Doing so could prevent a failure.
- If alarm "4" (actuator overload: electronic thermal) is generated, wait for the actuator temperature to drop before restarting.

Alarm "4" could occur in the cases below. Remove the cause before resuming use.

- Resonance or vibration: Ensure sufficient installation rigidity.
- Tact or speed: Increase movement time or stopping time.
- Structure that locks the output shaft: Add M68, M69 commands.
- 4 Actuator coordinates are recognized after power is turned on so check that the output shaft does not move for several seconds after power is turned on.

 For other precautions and troubleshooting of alarm displays, refer to the technical information (ABSODEX AX Series TS Type/TH Type Technical Information).

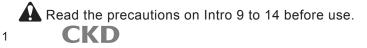
For other precautions, be sure to read the precautions given in the following materials.

- 1. From the Internet AX_T Data Download Direct drive actuator quick response type ABSODEX
 - AX1000T/AX2000T/AX4000T http://www.ckd.co.jp/kiki/caddata/ax_t.htm
 - Instruction manual, supplementary description
- 2. Ask us for the following material. ABSODEX AX Series TS Type/TH Type Technical Information

Direct drive actuator ABSODEX

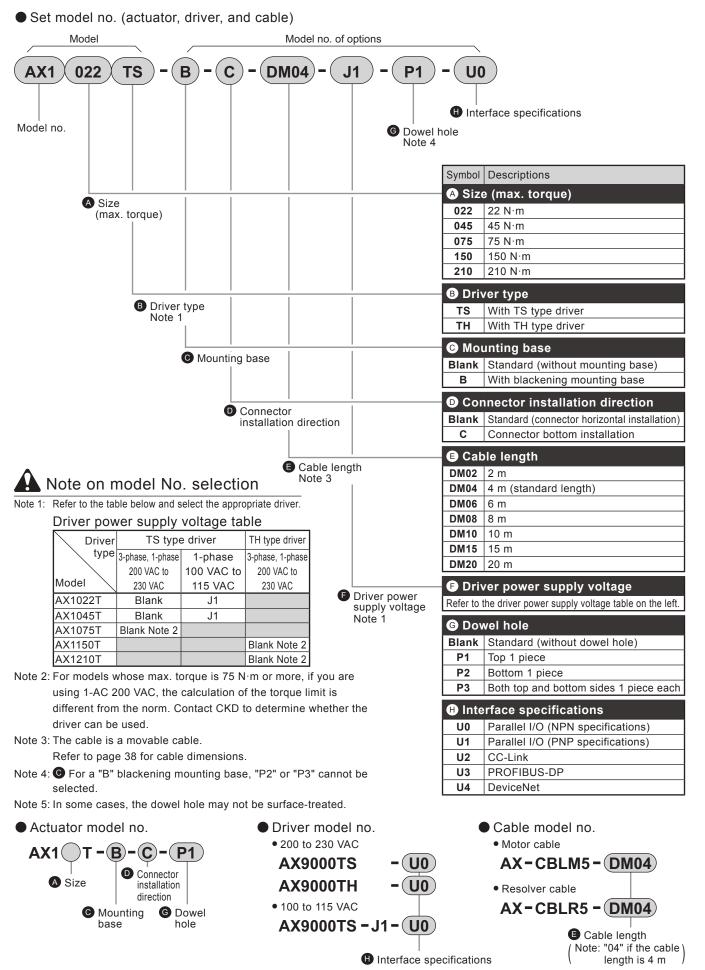
AX1000T Series

High precision specifications (index precision, run out of output shaft, etc.) ● Max. torque: 22, 45, 75, 150, 210 N·m


Actuator specifications

Descriptions		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T	
Max. output torque	N∙m	22	45	75	150	210	
Continuous output torque	N∙m	7	15	25	50	70	
Max. rotation speed	rpm	240 (N	lote 1)	140 (Note 1)	120 (N	lote 1)	
Allowable axial load	N	60	00		2200		
Allowable moment load	N∙m	19	38	70	140	170	
Output shaft moment of inertia	kg∙m²	0.00505	0.00790	0.03660	0.05820	0.09280	
Allowable load moment of inertia	kg∙m²	0.6	0.9	4.0	6.0	10.0	
Index precision (Note 2)	sec.			±15			
Repeatability (Note 2)	sec.		±5				
Output shaft friction torque	N∙m	2	.0	8.0			
Resolution	P/rev			540672			
Motor insulation class			F				
Motor withstand voltage			1	500 VAC for 1 minut	e		
Motor insulation resistance			10	/I Ω and over at 500 \	/DC		
Operating ambient temperature			0 to	45°C (0 to 40°C: No	te 3)		
Operating ambient humidity			20 to 85%	RH (with no dew con	densation)		
Storage ambient temperature				-20 to 80°C			
Storage ambient humidity			20 to 90%	RH (with no dew con	densation)		
Atmosphere			Free of corrosive and explosive gases and dust				
Weight	kg	8.9	12.0	23.0	32.0	44.0	
Run out of output shaft (Note 2)	mm	0.01					
Surface run out of output shaft (Note 2)	mm		0.01				
Degree of protection				IP20			

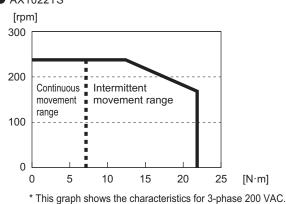
Note 1: Use at 80 rpm or less during continuous rotary operation.


Note 2: For details on index precision, repeatability, run out of output shaft, and surface run out of output shaft, refer to "Terminology" on page 42.

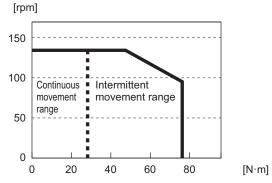
Note 3: The temperature upper limit is 40°C when the product is being used as a UL certified product.

AX1000T series How to order

How to order

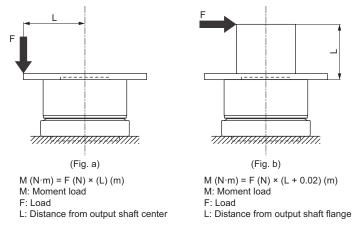


* Custom order models will not support CE, UL/cUL, or RoHS. Consult with CKD for details.


AX1000T Series

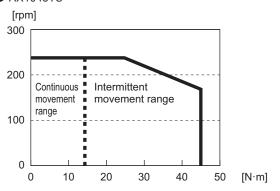
Speed and max. torque characteristics

AX1075TS

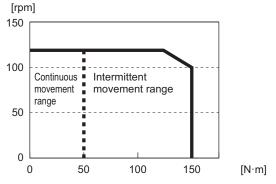


* This graph shows the characteristics for 3-phase 200 VAC.

AX1210TH

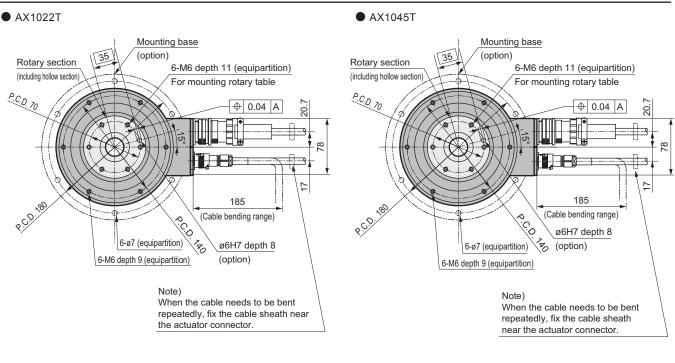


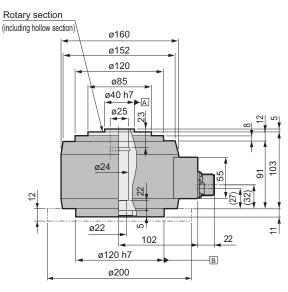
(Note) moment load

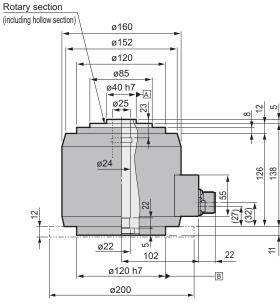

Read the precautions on Intro 9 to 14 before use.

* This graph shows the characteristics for 3-phase 200 VAC.

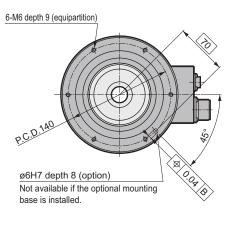
• AX1150TH

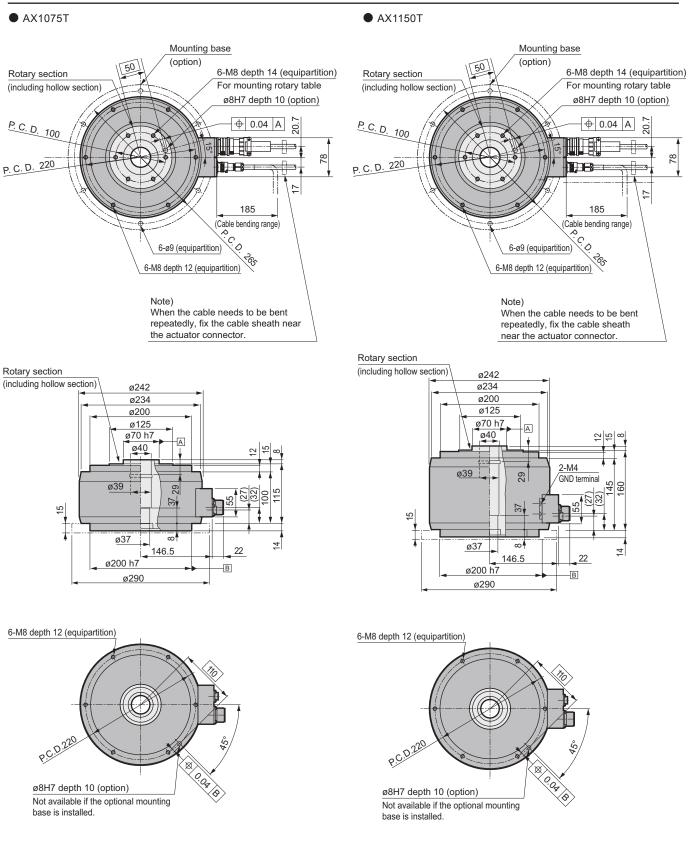



* This graph shows the characteristics for 3-phase 200 VAC.


AX1000T Series

Dimensions

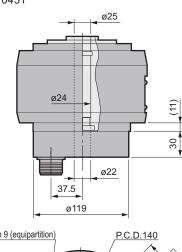

Dimensions

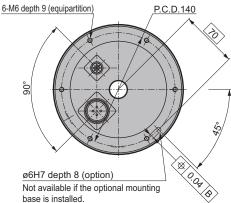

6-M6 depth 9 (equipartition)

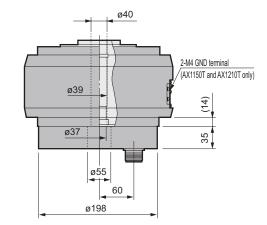
Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

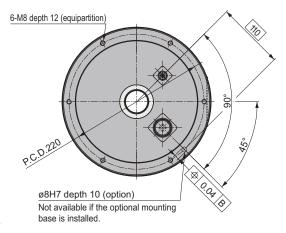
AX1000T Series

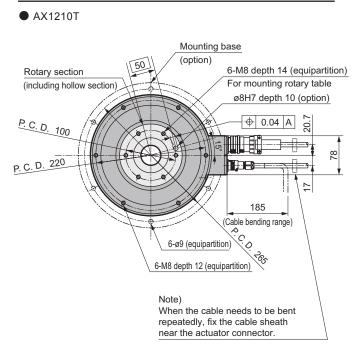
Dimensions



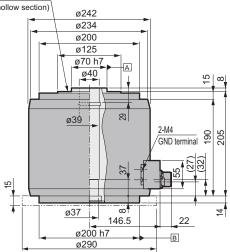

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

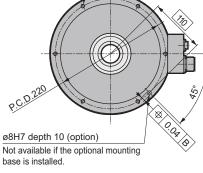

Dimensions with options


• Connector bottom installation (C) AX1022T/AX1045T



AX1075T/AX1150T/AX1210T




Dimensions

Rotary section (including hollow section)

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

6

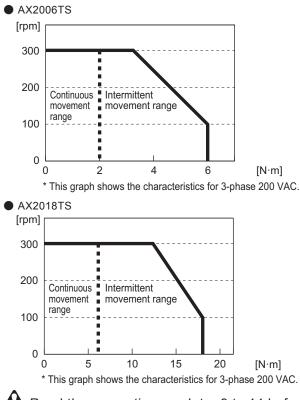
Direct drive actuator ABSODEX

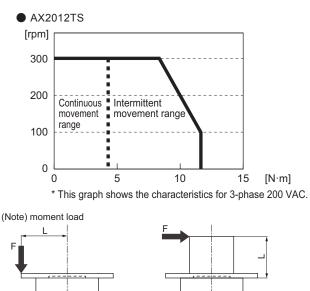
AX2000T Series

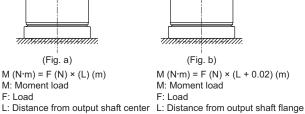
Compatible function with free combinations of driver, actuator, and cable High speed (Max. speed 300 rpm), small diameter and compact, and large hollow shaft (ø30)

- Max. torque: 6, 12, 18 N·m
- Compatible driver: TS type driver

Actuator specifications

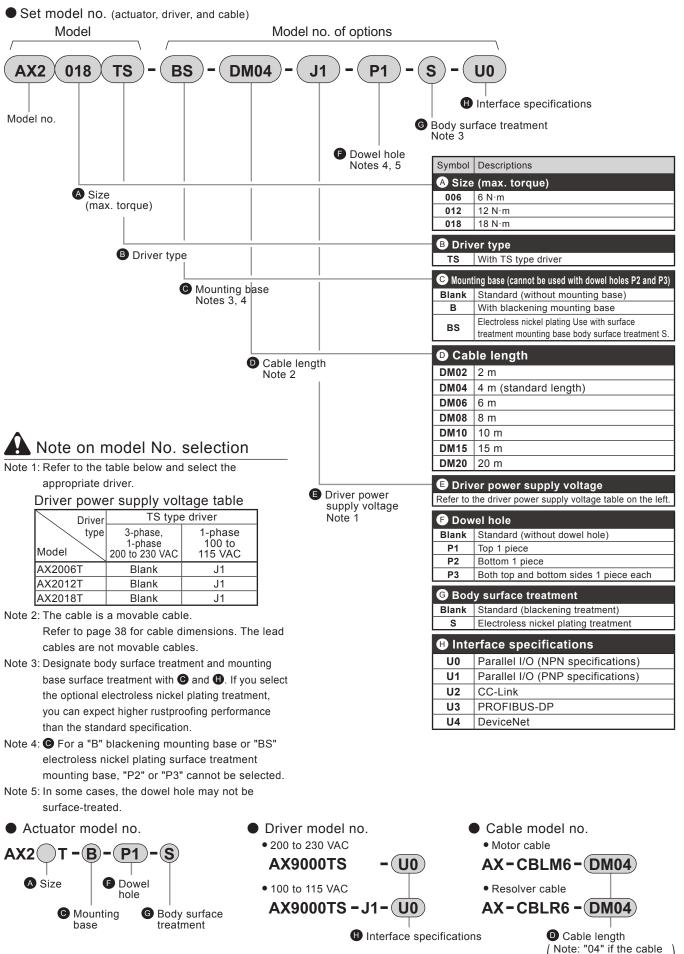

Descriptions		AX2006T	AX2012T	AX2018T			
Max. output torque	N∙m	6	12	18			
Continuous output torque	N∙m	2	4	6			
Max. rotation speed	rpm		300 (Note 1)				
Allowable axial load	N		1000				
Allowable moment load	N∙m		40				
Output shaft moment of inertia	kg∙m²	0.00575	0.00695	0.00910			
Allowable load moment of inertia	kg∙m²	0.3	0.4	0.5			
Index precision (Note 2)	sec.		±30				
Repeatability (Note 2)	sec.		±5				
Output shaft friction torque	N∙m	0.	0.6 0.7				
Resolution	P/rev	540672					
Motor insulation class		F					
Motor withstand voltage			1500 VAC for 1 minute				
Motor insulation resistance			$10M\Omega$ and over at 500 VDC				
Operating ambient temperature			0 to 45°C (0 to 40°C: Note 3)				
Operating ambient humidity		20 t	o 85%RH (with no dew condensat	tion)			
Storage ambient temperature			-20 to 80°C				
Storage ambient humidity		20 to 90%RH (with no dew condensation)					
Atmosphere		Free of corrosive and explosive gases and dust					
Weight	kg	4.7	5.8	7.5			
Run out of output shaft (Note 2)	mm	0.03					
Surface run out of output shaft (Note 2)	mm		0.03				
Degree of protection			IP20				


Note 1: Use at 80 rpm or less during continuous rotary operation.


Note 2: For details on index precision, repeatability, run out of output shaft, and surface run out of output shaft, refer to "Terminology" on page 42. Note 3: The temperature upper limit is 40°C when the product is being used as a UL certified product.

F: Load

Speed and max. torque characteristics

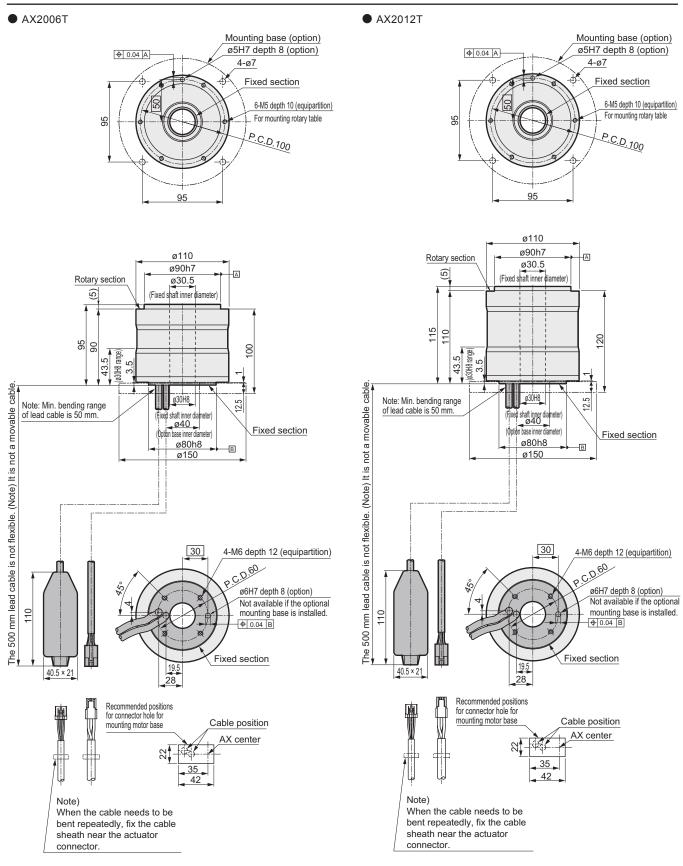


Read the precautions on Intro 9 to 14 before use.

X2000T Series How to order

How to order

* Custom order models will not support CE, UL/cUL, or RoHS. Consult with CKD for details.

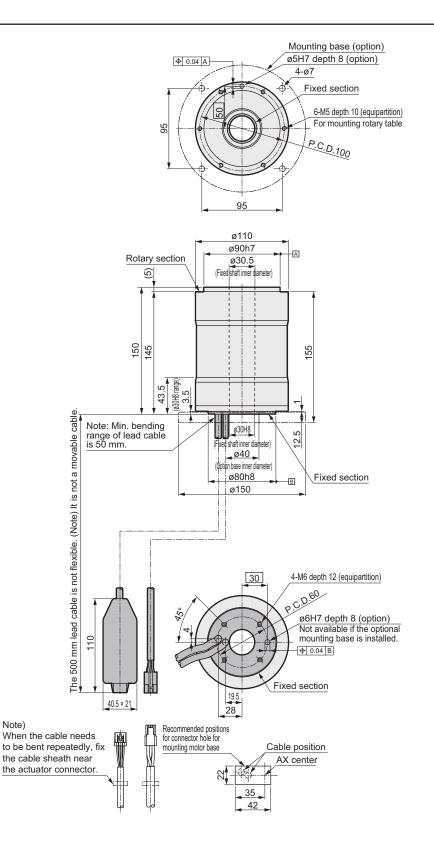

AX20001

Actuator

length is 4 m

AX2000T Series

Dimensions



Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

Dimensions

• AX2018T

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

Direct drive actuator ABSODEX

AX4000T Series

Capable of handling loads with large moment of inertia Compatible function with free combinations of driver, actuator, and cable Large hollow shaft handy for cable wiring and piping, and a variety of options

● Max. torque: 9, 22, 45, 75 N·m

• Compatible driver: TS type driver

Actuator specifications

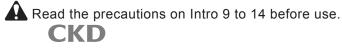
Descriptions		AX4009T	AX4022T	AX4045T	AX4075T		
Max. output torque	N∙m	9	22	45	75		
Continuous output torque	N∙m	3	7	15	25		
Max. rotation speed	rpm		240 (Note 1)		140 (Note 1)		
Allowable axial load	N	800	37	00	20000		
Allowable moment load	N∙m	40	60	80	200		
Output shaft moment of inertia	kg∙m²	0.009	0.0206	0.0268	0.1490		
Allowable load moment of inertia	kg∙m²	0.35 (1.75) (Note 2)	0.60 (3.00) (Note 2)	0.90 (5.00) (Note 2)	5.00 (25.00) (Note 2)		
Index precision (Note 4)	sec.		±3	30			
Repeatability (Note 4)	sec.		±5				
Output shaft friction torque	N∙m	0.8	0.8 3.5 10.0				
Resolution	P/rev		540	672			
Motor insulation class			F	-			
Motor withstand voltage			1500 VAC f	or 1 minute			
Motor insulation resistance			10MΩ and ove	er at 500 VDC			
Operating ambient temperature			0 to 45°C (0 to	40°C: Note 5)			
Operating ambient humidity			20 to 85%RH (with n	o dew condensation)			
Storage ambient temperature			-20 to	80°C			
Storage ambient humidity			20 to 90%RH (with n	o dew condensation)			
Atmosphere			Free of corrosive and ex	plosive gases and dust			
Weight	kg	5.5	12.3	15.0	36.0		
Weight when brake is set	kg	-	16.4	19.3	54.0		
Run out of output shaft (Note 4)	mm	0.03					
Surface run out of output shaft (Note 4)	mm		0.05				
Degree of protection			IP	20			

Note 1: Use at 80 rpm or less during continuous rotary operation.

Note 2: In the load conditions up to values in (), set parameter 72 (integral gain magnification) to 0.3 (reference).

Note 3: Contact CKD when using continuous rotary operation and parameter 72 (integral gain magnification) together.

Note 4: For details on index precision, repeatability, run out of output shaft, and surface run out of output shaft, refer to "Terminology" on page 42.


Note 5: The temperature upper limit is 40°C when the product is being used as a UL certified product.

Electromagnetic brake specifications (option)

Supporte Descriptions	d models	AX4022T, AX4045T	AX4075T
Туре		Non-backlash dry non-e	excitation activation type
Rated voltage	V	24 \	/DC
Power supply capacity	W	30	55
Rated current	A	1.25	2.30
Static friction torque	N∙m	35	200
Amateur release time (brake on)) msec	50 (reference value)	50 (reference value)
Amateur absorption time (brake of	off) msec	150 (reference value)	250 (reference value)
Retention precision	min	45 (refere	nce value)
Max. usage frequency	cycles/min	60	40

Note 1: When the output shaft is rotating, rubbing sound may be generated at the electromagnetic brake's disc and fixing section. Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time. Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation. Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise.

Note 5: Brakes are manually released by alternately screwing screws int o manual release taps (three positions). Lightly tighten screws until they stop, then turn them another 90°. When finish ed with manual release, remove the three bolts immediately and apply brakes.

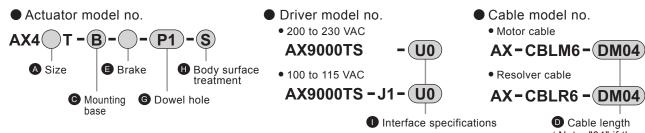
X4000T Series

How to order • Set model no. (actuator, driver, and cable) Model Model no. of options AX4 022 TS BS **DM04 J1 P1** EB Brake G Dowel hole Note 7 Notes 5.6 Model no. Driver power supply voltage D Cable length Note 3 Note 1 Symbol Descriptions A Size (max. torque) A Size (max. torque) B Driver type C Mounting base Notes 4. 5. 7 Note on model No. selection Note 1: Refer to the table below and select the appropriate driver. Driver power supply voltage table TS type driver Driver type 3-phase. 1-phase 100 to 1-phase Model 200 to 230 VAC 115 VAC AX4009T Blank J1 AX4022T Blank J1 AX4045T Blank J1 Blank Note 2 AX4075T Note 2: For models whose max. torque is 75 N·m, if you are using 1-A the calculation of the torque limit is different from the norm. Co determine whether the driver can be used. Note 3: The cable is a movable cable. Refer to page 38 for cable dimensions. The lead cables are not movable cables. Note 4: Designate body surface treatment and mounting base surface • and •. If you select the optional electroless nickel plating can expect higher rustproofing performance than the standard Note 5: O For a "B" blackening mounting base or "BS" electroless nic surface treatment mounting base, "P2" or "P3" cannot be sele Note 6: In some cases, the dowel hole may not be surface-treated. Note 7: Refer to the Option Table below and select required options. **Option Table**

	009	9 N·m
	022	22 N·m
	045	45 N·m
	075	75 N·m
	B Driv	/er type
	TS	With TS type driver
	C Mount	ting base (cannot be used with dowel holes P2 and P3)
	Blank	Standard (without mounting base)
	B	With blackening mounting base
		Electroless nickel plating Use with surface
	BS	treatment mounting base body surface treatment S.
	O Cak	alo longth
		ole length
	DM02	2 m
	DM04	4 m (standard length)
	DM06	6 m
	DM08	8 m
	DM10	10 m
	DM15	15 m
	DM20	20 m
	🕒 Bral	ke
	Blank	Standard (no electromagnetic brake)
AC 200 VAC,	EB	With negative activation electromagnetic brake
Contact CKD to	Driv	ver power supply voltage
		the driver power supply voltage table on the left.
		vel hole
	Blank P1	Standard (without dowel hole) Top 1 piece
e treatment with	P2	Bottom 1 piece (2 pieces for the AX4009T)
treatment, you	P3	Both top and bottom sides 1 piece each (top 1 piece and bottom 2 pieces for the AX4009T)
d specification.		
ckel plating	Blank	y surface treatment
ected.	S	Standard (rotational section-blackening/fixed section casting surface plane-paint) Rotational section: electroless nickel plating treatment, fixed section: nitriding
	🕕 Inte	erface specifications
	UO	Parallel I/O (NPN specifications)
AX40757	U1	Parallel I/O (PNP specifications)
AX4075T	U2	CC-Link
	U3	PROFIBUS-DP
0	U4	DeviceNet
0		
el no.		Cable model no.
AC		Motor cable
S - (U0		AX-CBLM6-(DM04)
AC		Resolver cable
S-J1-(U0		

S

H Body surface treatment Note 4

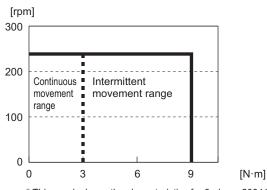

U0

Interface specifications

Actuator

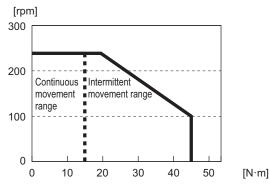
AX4000T

	AX4009T	AX4022T	AX4045T	AX4075T
Mounting base (-B)	×	0	0	0
Mounting base (-BS)	×	0	0	0
Brake (-EB)	×	0	0	0

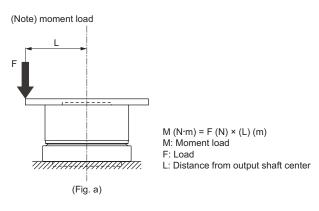

D Cable length Note: "04" if the cable length is 4 m

* Custom order models will not support CE, UL/cUL, or RoHS. Consult with CKD for details.

AX4000T Series

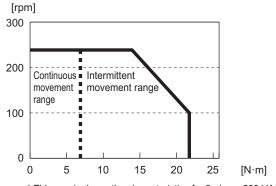

Speed and max. torque characteristics

AX4009TS

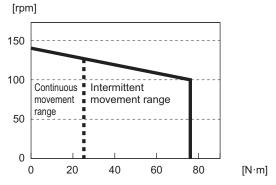


* This graph shows the characteristics for 3-phase 200 VAC.

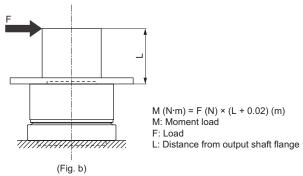
AX4045TS



* This graph shows the characteristics for 3-phase 200 VAC.

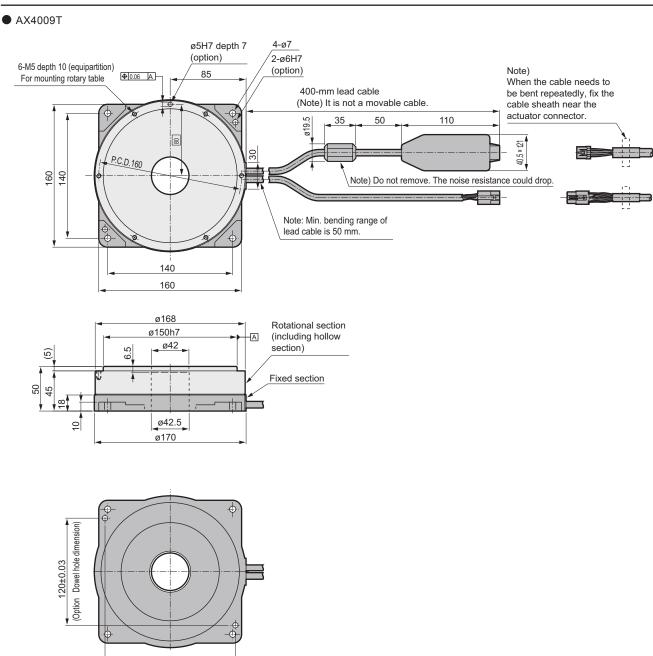

Read the precautions on Intro 9 to 14 before use.

AX4022TS



* This graph shows the characteristics for 3-phase 200 VAC.

AX4075TS


* This graph shows the characteristics for 3-phase 200 VAC.

14

AX4000T Series

Dimensions

(Option Dowel hole dimension)

Dimensions AX4022T AX4022T-EB With electromagnetic brake For other options, refer to the drawing on the left. 200 С . 70 150 Mounting base (option) 4-M6 depth 12 (equipartition) For mounting optional electromagnetic brake P.C.D. 160 4-M6 depth 12 (equipartition) P.C.D.160 (Valid screw length 9) For mounting rotary table 200 150 45° 4-M6 depth 12 (equipartition) (Valid screw length 9) P.C.D.54 For mounting rotary table ×2ø6H7 depth 8 (option) -da U 4-ø7 Ln1 Ш Ln. 135 Cable bending range ⊕ 0.06 A Ы Note) When the cable needs to be ۲_ bent repeatedly, fix the cable sheath near the actuator connector. ø170 ø170 ø100h7 ø100h7 ø70 Α Rotary section Rotary section ø25 ø45 (including hollow section) (including hollow section) ŝ ŝ 11 65 63 63 119.5 109.5 95 95 Electromagnetic brake 28.5 ° (A) 32. 32 28.5 ° (A) \sim (protection element attached) (6.5) ø44 45.2 (9.5)0 ø140h7 В ø180±2 ø140h7 ø180±2 88 45° 25.6 27.3 25.6 27.3 1 45° Electromagnetic brake lead wire [U] 300 from outlet 5 37.50 P.C.D. 122 3-M6 depth 12 (equipartition) For mounting optional 115 è electromagnetic brake P.C.D. 125 Recommended value Ó for lead wire relief 3-M5 (equipartition) 80 dimensions P.C.D. 160 Ø For electromagnetic P.C.D. 160 ø brake manual release 4-M6 depth 12 (equipartition) 4-M6 depth 12 (equipartition) ø6H7 depth 8 (option) ⊕ 0.06 B

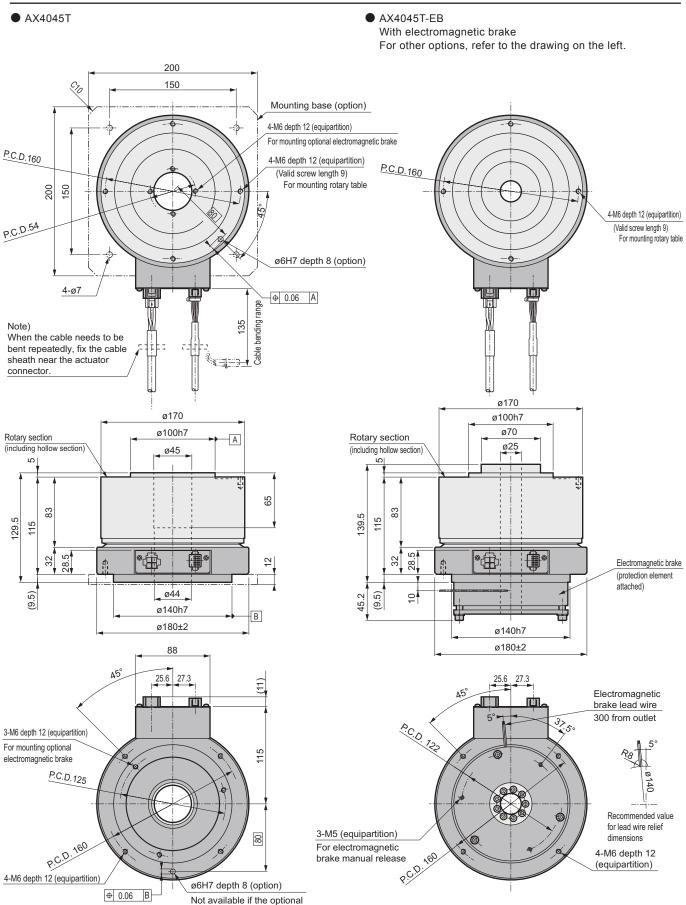
Not available if the optional mounting base is installed.

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

16

CKD

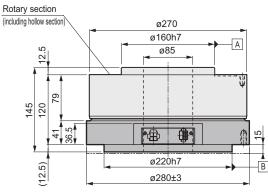
AX4000T


Actuator

AX4000T Series

Dimensions

AX4000T Series


Dimensions

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

mounting base is installed.

AX4000T Series Dimensions • AX4075T-EB With electromagnetic brake For other options, refer to the drawing on the left. 280 240 P.C.D. 235 4-M8 depth 16 (equipartition) t For mounting optional electromagnetic brake Mounting base (option) 127.5 ø8H7 depth 10 (option) ⊕ 0.06 A 6-M8 depth 16 (equipartition) For mounting rotary table ¢ 6-M8 depth 16 (equipartition) Cable bending range For mounting rotary table Ŧ 135 When the cable needs to be ÷.

88

25.6 27.3

Dimensions

AX4075T

P.C.D. 255

P.C.D.100

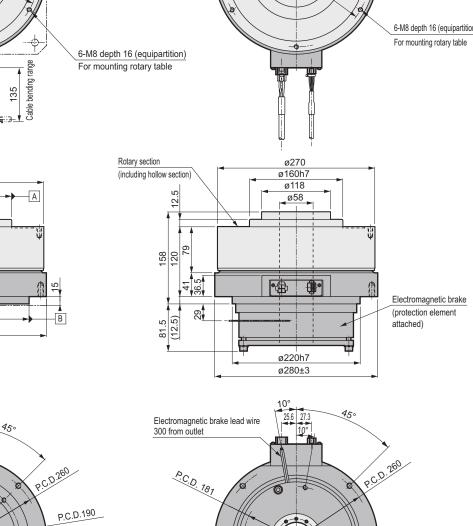
Note)

280 240

4-ø12

bent repeatedly, fix the cable sheath near the

(11)


163.5

130

⊕ 0.06 B

ø

actuator connector.

0

Ø

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

4-M10 depth 20 (equipartition)

3-M8 depth 16 (equipartition)

For mounting optional

electromagnetic brake ø10H7 depth 12 (option) Not available if the optional mounting base is installed

3-M8 (equipartition)

For electromagnetic

brake manual release

AX4000T Actuator

4-M10 depth 20 (equipartition)

CKD

0

ø

Direct drive actuator ABSODEX

AX4000T Series

Capable of handling loads with large moment of inertia Compatible function with free combinations of driver, actuator, and cable Large hollow shaft handy for cable wiring and piping, and a variety of options

- Max. torque: 150, 300, 500 N·m
- Compatible driver: TH type driver

Actuator specifications

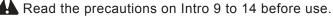
Descriptions		AX4150T	AX4300T	AX4500T			
Max. output torque	N∙m	150	300	500			
Continuous output torque	N∙m	50	100	160			
Max. rotation speed	rpm	100 (N	Note 1)	70			
Allowable axial load	N		20000				
Allowable moment load	N∙m	300	400	500			
Output shaft moment of inertia	kg∙m²	0.2120	0.3260	0.7210			
Allowable load moment of inertia	kg∙m²	75.00 (Note 2)	180.00 (Note 2)	300.00 (Note 2)			
Index precision (Note 3)	sec.		±30				
Repeatability (Note 3)	sec.		±5				
Output shaft friction torque	N∙m	10	0.0	15.0			
Resolution	P/rev		540672				
Motor insulation class		F					
Motor withstand voltage			1500 VAC for 1 minute				
Motor insulation resistance			10 $M\Omega$ and over at 500 VDC				
Operating ambient temperature			0 to 45°C (0 to 40°C: Note 4)				
Operating ambient humidity		20 t	to 85%RH (with no dew condensa	tion)			
Storage ambient temperature			-20 to 80°C				
Storage ambient humidity		20 t	to 90%RH (with no dew condensa	tion)			
Atmosphere		Free o	f corrosive and explosive gases a	nd dust			
Weight	kg	44.0	66.0	115.0			
Weight when brake is set	kg	63.0	86.0	-			
Run out of output shaft (Note 3)	mm	0.03					
Surface run out of output shaft (Note 3)	mm	0.05					
Degree of protection			IP20				

Note 1: Use at 80 rpm or less during continuous rotary operation.

Note 2: When shipped from the factory, the actuator is set to support large moment of inertia.

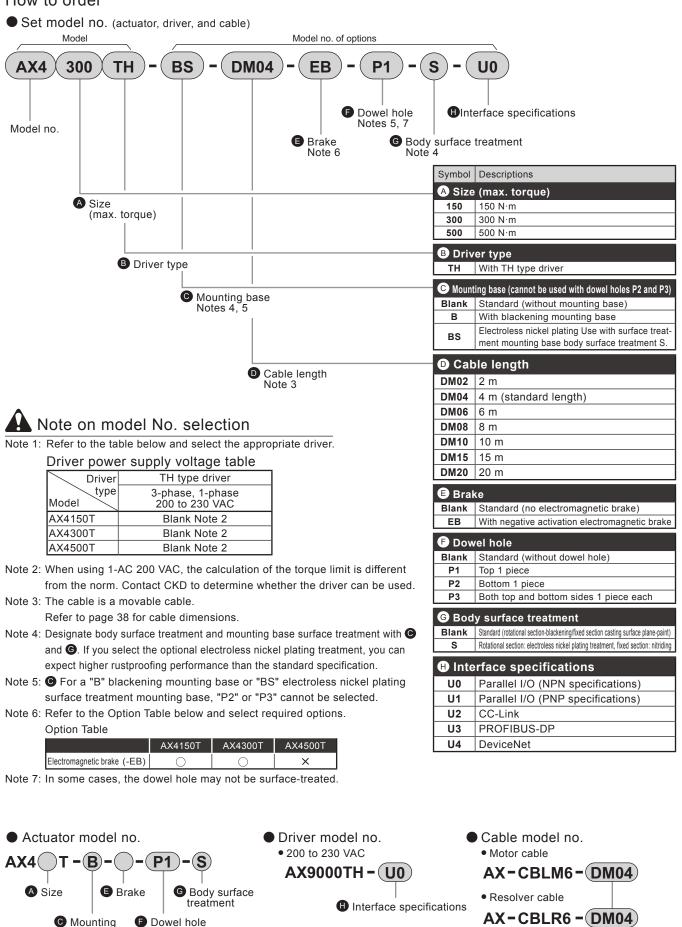
Note 3: For details on index precision, repeatability, run out of output shaft, and surface run out of output shaft, refer to "Terminology" on page 42.

Note 4: The temperature upper limit is 40°C when the product is being used as a UL certified product.


Electromagnetic brake specifications (option)

Supported m Descriptions	odels	AX4150T, AX4300T
Туре		Non-backlash dry non-excitation activation type
Rated voltage	V	24 VDC
Power supply capacity	W	55
Rated current	А	2.30
Static friction torque	N∙m	200
Amateur release time (brake on)	msec	50 (reference value)
Amateur absorption time (brake off)	msec	250 (reference value)
Retention precision	min	45 (reference value)
Max. usage frequency	cycles/min	40

Note 1: When the output shaft is rotating, rubbing sound may be generated at the electromagnetic brake's disc and fixing section. Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time. Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation.


Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise. Note 5: Brakes are manually released by alternately screwing screws int o manual release taps (three positions). Lightly tighten screws until they stop, then turn them another 90°. When finish ed with manual release, remove the three bolts immediately

and apply brakes.

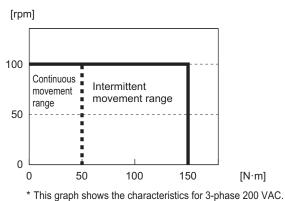
AX4000T Series How to order

* Custom order models will not support CE, UL/cUL, or RoHS. Consult with CKD for details.

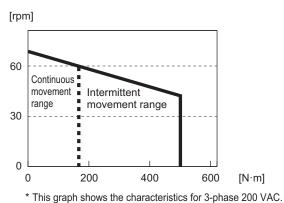
base

20

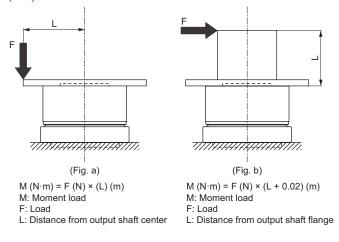
Cable length (Note: "04" if the cable


length is 4 m

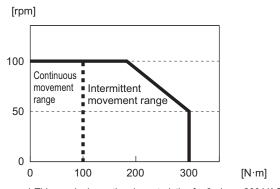
Actuator


AX4000T Series

Speed and max. torque characteristics


AX4150TH

• AX4500TH



(Note) moment load

Read the precautions on Intro 9 to 14 before use.

• AX4300TH

* This graph shows the characteristics for 3-phase 200 VAC.

Dimensions • AX4150T • AX4150T-EB With electromagnetic brake For other options, refer to the drawing on the left. 280 240 P.C.D.255 P.C.D.255 4-M8 depth 16 (equipartition) For mounting optional electromagnetic brake Mounting base (option) 127.5 ø8H7 depth 10 (option) 280 240 ⊕ 0.06 A P.C.D.100 6-M8 depth 16 (equipartition) 6-M8 depth 16 (equipartition) For mounting rotary table ¢ For mounting rotary table <u>4-ø12</u> Cable bending range Note) When the cable needs to be 135 bent repeatedly, fix the cable sheath near the actuator connector. ø270 Rotary section Rotary section ø160h7 ø270 (including hollow section) (including hollow section) ø118 ø160h7 Α 12.5 ø58 12.5 ø85 183 145 104 145 170 104 ŝ •@曲 ∘மைய் 4 8 5 Electromagnetic brake (protection element attached) 53 (12.5) (12.5) ø220h7 81.5 В ø280±3 ø220h7 ø280±3 116 26 6.5 (11) Electromagnetic brake lead wire 10° 450 10° 300 from outlet фб P.C.D.260 \$5. P.C.D.260 P.C.D. 181 168 0 à 6 3-M8 depth 16 (equipartition) For mounting optional electromagnetic brake 6 P.C.D.190 3-M8 (equipartition) 130 0 For electromagnetic Ø ø Q, 4-M10 depth 20 brake manual release (equipartition) 4-M10 depth 20 (equipartition) 4 ⊕ 0.06 B

ø10H7 depth 12 (option) Not available if the optional mounting base is installed

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position. Actuator

AX4000T Series

Dimensions • AX4300T • AX4300T-EB With electromagnetic brake For other options, refer to the drawing on the left. 295 250 3 P.C.D.255 4-M8 depth 16 (equipartition) For mounting optional electromagnetic brake P.C.D.255 Mounting base (option) 127.5 ø10H7 depth 12 (option) 295 250 ⊕ 0.06 A P.C.D.100 ¢ -\$ 6-M10 depth 20 (equipartition) 6-M10 depth 20 (equipartition) For mounting rotary table <u>4-ø14</u> Cable bending range For mounting rotary table Note) 135 When the cable needs to be bent repeatedly, fix the cable sheath near the actuator connector ø272 ø160h7 Rotary section ø272 Rotary section (including hollow section) ø118 (including hollow section) ø160h7 ø58 Α ŝ ŝ ø85 15. S U 159 159 200 200 231 244 36.5 36.5 • 偷 •₫₫ 솁 Electromagnetic brake 20 (protection element attached) 29 81.5 (15.5)ø220h7 2 В 2-M4 (15. GND terminal ø288±3 2-M4 ø220h7 GND terminal ø288±3 116 26 6.5 (11) 10° Electromagnetic brake lead wire 30 10 300 from outlet ×5 30 P.C.D. 190 Ø P.C.D. 181 ର 168 3-M8 depth 16 (equipartition) For mounting optional electromagnetic brake

Note 1) The actuator's origin may differ from that in the dimensional drawing. The origin offset feature enables you to set the origin at any position.

Ò

¢

ø10H7 depth 12 (option)

Not available if the optional mounting base is installed.

130

P.C.D.265

6-M12 depth 24 (equipartition)

0

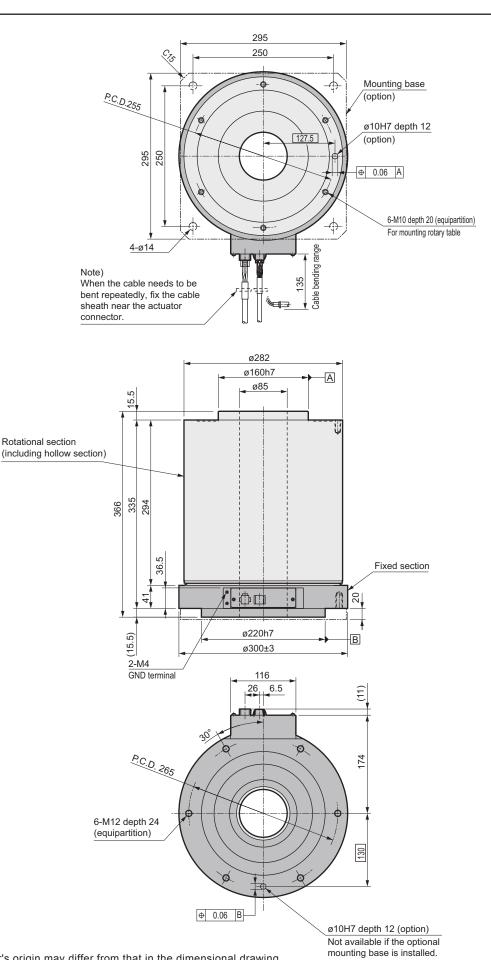
Ò

3-M8 (equipartition)

For electromagnetic brake manual release

P.C.D.265

6-M12 depth 24 (equipartition)


CKD

⊕ 0.06 B

AX4000T Series Dimensions

Dimensions

• AX4500T

Actuator AX4000T

CKD

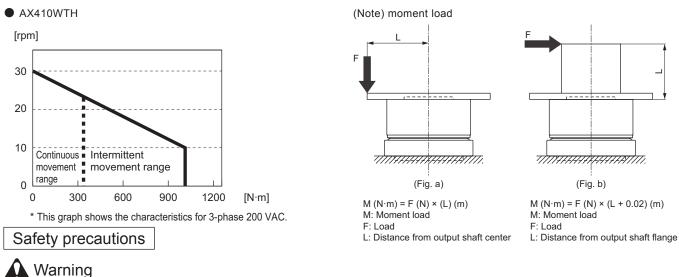
Large type direct drive actuator ABSODEX

AX400WT Series

Max. torque 1000 N·m

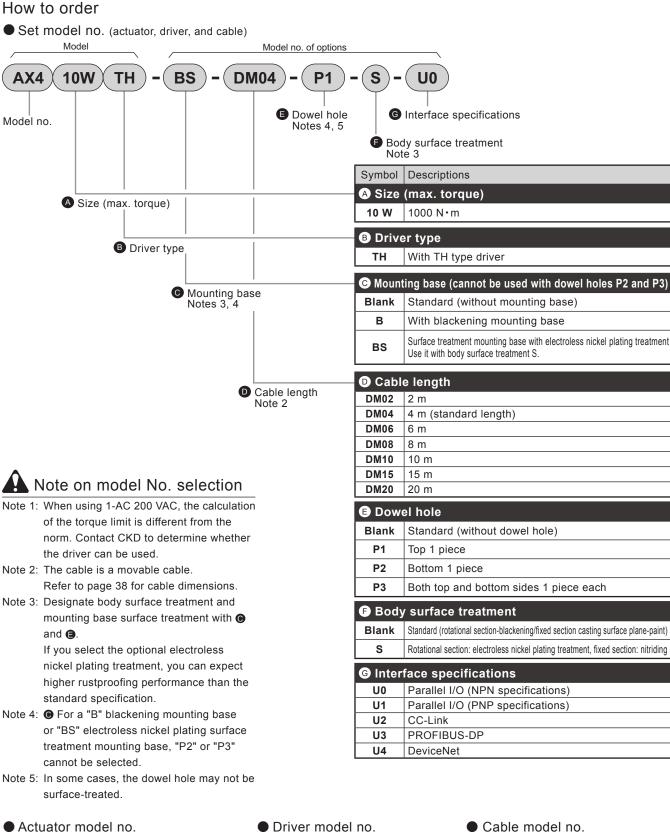
Interchangeable functions enabling free combinations of driver, actuator, and cable Large hollow shaft handy for cable wiring and piping, and a variety of options

- Max. torque: 1000 N·m
- Compatible driver: TH type driver



Actuator specifications

Descriptions		AX410WT	
Max. output torque	N∙m	1000	
Continuous output torque	N∙m	330	
Max. rotation speed	rpm	30	
Allowable axial load	N	20000	
Allowable moment load	N∙m	400	
Output shaft moment of inertia	kg∙m²	2.72	
Allowable load moment of inertia	kg∙m²	600.00	
Index precision (Note 1)	sec.	±30	
Repeatability (Note 1)	sec.	±5	
Output shaft friction torque	N∙m	20.0	
Resolution	P/rev	540672	
Motor insulation class		F	
Motor withstand voltage		1500 VAC for 1 minute	
Motor insulation resistance		10 MΩ and over at 500 VDC	
Operating ambient temperature		0 to 45°C (0 to 40°C: Note 2)	
Operating ambient humidity		20 to 85%RH (with no dew condensation)	
Storage ambient temperature		-20 to 80°C	
Storage ambient humidity		20 to 90%RH (with no dew condensation)	
Atmosphere		Free of corrosive and explosive gases and dust	
Weight	kg	198	
Run out of output shaft (Note 1)	mm	0.03	
Surface run out of output shaft (Note 1)	mm	0.08	
Degree of protection		IP20	


Note 1: For details on index precision, repeatability, run out of output shaft, and surface run out of output shaft, refer to "Terminology" on page 42. Note 2: The temperature upper limit is 40°C when the product is being used as a UL certified product.

Speed and max. torque characteristics

In an emergency stop, it may take several seconds to stop depending on the rotation speed and the load inertial moment.

Read the precautions on Intro 9 to 14 before use.

AX410WT - (B)-(P1)-(S Dowel hole C Mounting Body surface base treatment

• 200 to 230 VAC

AX9000TH-(U0)

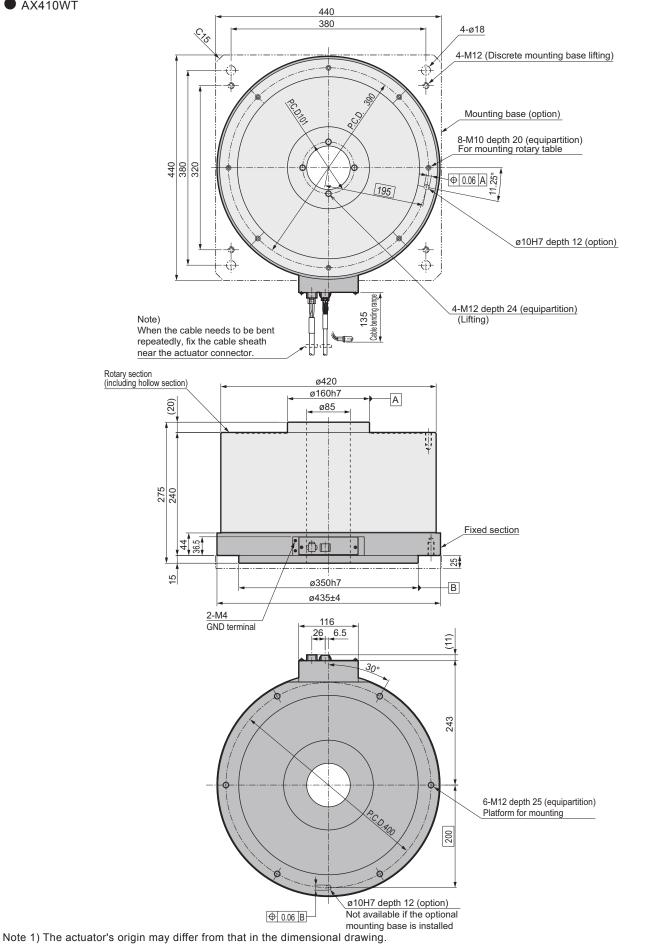
G Interface specifications

Motor cable

AX-CBLM6-(DM04) • Resolver cable

AX-CBLR6-(DM04)

D Cable length Note: "04" if the cable length is 4 m


* Custom order models will not support CE, UL/cUL, or RoHS. Consult with CKD for details.

26

AX400WT Series

Dimensions

• AX410WT

Direct drive actuator ABSODEX

TS/TH type driver

Interface specifications: Parallel I/O (NPN specifications)

Parallel I/O (PNP specifications) CC-Link **PROFIBUS-DP** DeviceNet

Features

- Power supply separated into main power supply and control power supply
- Wiring method changed from terminal block to connector
- Compact and light (resin body)
- 7 segment LED 2-digit display
- Additional encoder output (parallel I/O only)
- Serial communication option (built into circuit board)
- Additional monitoring feature for positioning and alarms (U2, U3, and U4 options only)

Common specifications

Descriptions		Model		
		TS type driver TS type driver AX9000TS AX9000TH		
Power	Main power supply	3-phase, 1-phase 200 VAC ± 10 100 VAC ± 10% to 115 VAC ± 10	0% to 230 VAC ± 10% (Note 1) 0% (J1 option) (Note 2) (Note 3)	
voltage	Control power supply	200 VAC ± 10% to 230 VAC ± 1 100 VAC ± 10% to 115 VAC ± 1	- / -	
Power fre	quency	50/6	0 Hz	
Rated input current		200 VAC: 1.8 A 100 VAC: 2.4 A	200 VAC: 5.0 A	
Rated out	out current	1.9 A	5.0 A	
Structure		Integrated driver and controller (open type)		
Operating ambient temperature		0 to 50°C		
Operating ambient humidity		20 to 90% RH (with no dew condensation)		
Storage ambie	ent temperature	-20 to 65°C		
Storage amb	ient humidity	20 to 90% RH (with no dew condensation)		
Atmosphere		No corrosive gases or powder dust		
Noise resistance		1000 V (P-P), pulse width 1 µs, rising edge 1 ns, impulse noise test, induction noise (capacitive coupling)		
Vibration resistance		4.9 m/s ²		
Weight		Approx. 1.6 kg Approx. 2.1 kg		
Degree of protection		IP2X (excludii	ng CN4, CN5)	

Note 1) For models whose max. torque is 75 N·m or more, if you are using 1-AC 200 VAC, the calculation of the torque limit is different from the norm. Contact CKD to determine whether the driver can be used.

Note 2) If you connect 200 VAC to 230 VAC to a driver with 100 VAC to 115 VAC power supply voltage specification (-J1 option), the driver's

Note 5) After the main power is turned off, the motor may drive due to the voltage remaining in the driver.

Breaker capacity

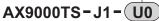
TS	type	driver	

Actuator Model	Driver Model	Inrush current (A)		Breaker capacity	
Actuator Model	Driver woder	1-phase 100 V	1-phase, 3-phase 200 V	Rated current (A)	
AX2006T					
AX1022T, AX2012T, AX2018T		10 (Nata 1)			
AX4009T, AX4022T	AX9000TS	16 (Note 1)	56 (Note 1)	10	
AX1045T, AX4045T					
AX1075T, AX4075T	1	-]		

Note 1) The inrush current values are typical values for 115 and 230 VAC.

TH type driver

Driver Medel	Inrush current (A)	Breaker capacity	
Driver Model	3-phase 200 V	Rated current (A)	
AVOOOTU		20	
AX90001H	50 (Note 1)		
	Driver Model	Driver Model 3-phase 200 V	


rush current value is a typical value for AC230 V. Note 1) The in

СКД

How to order

• 200 to 230 VAC

Interface specification
U0: Parallel I/O (NPN)
U1: Parallel I/O (PNP)
U2: CC-Link
U3: PROFIBUS-DP
U4: DeviceNet

Performance specifications

Descriptions	Descriptions
Control shafts	1 shaft, 540672 pulses/1 rotation
Angle setting unit	° (degrees), pulses, index numbers
Min. angle setting unit	0.001°, 1 pulse
Speed setting unit	sec. rpm
Speed setting range	0.01 to 100 s; 0.01 to 300 rpm (Note 1)
Equal divisions	1 to 255
Max. command value	7-digit number input ± 9999999
Timer	0.01 s to 99.99 s
Program language	NC language
Programming	Data can be set with an interactive terminal or
method	personal computer, etc., using the RS-232C port.
Operation Mode	Auto, MDI, job, single block, servo OFF, pulse string
	input
Coordinates	Absolute, incremental
	<5 types>
Acceleration curve	Modified sine (MS), modified constant velocity (MC,
	MC2), modified trapezoidal (MT), and trapecloid (TR)
Status display	LED power display
Operating indication	7-segments LED display (2 digits)
Communication interface	RS-232 compatible
I/O signals	Refer to the relevant interface specifications page.
Program size	Approx. 6000 characters (256 lines)
Electronic thermal	Actuator overheat protection

Note 1) Max. rotation speed varies depending on the actuator to be connected.

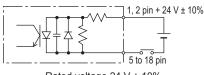
Parallel I/O (NPN specifications)

CN3 Input signal

Pin no.	Signal	Logic	Decision
1 to 2	External power supply input +24 V ± 10%		
3 to 4	External power supply input GND		
5	Program number selection input (bit 0)	Positive	Level
6	Program number selection input (bit 1)	Positive	Level
7	Program number selection input (bit 2)	Positive	Level
8	Program number selection input (bit 3)	Positive	Level
9	Program number selection input 2nd digit/	Positive	Edge
5	program number selection input (bit 4)		Level
10	Program number selection input 1st digit/	Positive	Edge
10	program number selection input (bit 5)	FUSITIVE	Level
11	Reset input	Positive	Edge
12	Origin return instruction input	Positive	Edge
13	Start input	Positive	Edge
14	Servo ON input/	Positive	Level
14	program stop input	Positive	Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release Input	Positive	Level

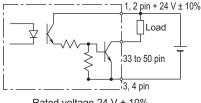
CN3 pulse string input signal

Pin no.	Signal
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

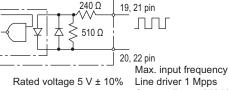

I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. points (circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK+, BK-)	75	2	150	

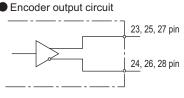
* The max. number of simultaneous output points for the output circuits is 14 out of 18.


CN3 I/O circuit specifications

Input circuit


Rated voltage 24 V \pm 10% Rated current 4 mA (for 24 VDC)

Output circuit



Rated voltage 24 V \pm 10% Rated current 50 mA (max)

Pull string input circuit

age 5 V ± 10% Line driver 1 Mpps Open collector 250 Kpps

Output type: line driver Line driver to use: DS26C31

CN3 output signal

Pin no.	Signal	Logic
33	M code output (bit 0)	Positive
34	M code output (bit 1)	Positive
35	M code output (bit 2)	Positive
36	M code output (bit 3)	Positive
37	M code output (bit 4)	Positive
38	M code output (bit 5)	Positive
39	M code output (bit 6)	Positive
40	M code output (bit 7)	Positive
41	In-position output	Positive
42	Positioning completion output	Positive
43	Start input waiting output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Intermediate index output 1/ origin output	Positive
47	Intermediate index output 2/servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (incremental)

Pin no.	Signal		
23	A phase (line driver output)		
24	-A phase (line driver output)		
25	B phase (line driver output)		
26	-B phase (line driver output)		
27	Z phase (line driver output)		
28	-Z phase (line driver output)		

Read the precautions on Intro 9 to 14 before use. * Custom order models will not support CE, UL/cUL, or RoHS.

TS/TH type driver

Parallel I/O (PNP specifications)

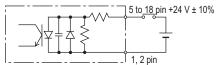
CN3 Input signal

Dimme	0:====1	Lanta	Desister
Pin no.	Signal	Logic	Decision
1 to 2	External power supply input GND (Note 1)		
3 to 4	External power supply input +24 V ± 10% (Note 1)		
5	Program number selection input (bit 0)	Positive	Level
6	Program number selection input (bit 1)	Positive	Level
7	Program number selection input (bit 2)	Positive	Level
8	Program number selection input (bit 3)	Positive	Level
9	Program number selection input 2nd digit/	Positive	Edge
9	program number selection input (bit 4)	POSITIVE	Level
10	Program number selection input 1st digit/	Positive	Edge
10	program number selection input (bit 5)	POSITIVE	Level
11	Reset input	Positive	Edge
12	Origin return instruction input	Positive	Edge
13	Start input	Positive	Edge
14	Servo ON input/	Positive	Level
14	program stop input	POSITIVE	Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation counter reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18 Brake release Input		Positive	Level

Note 1) The wiring is different from the PNP specifications of the AX9000GS/ AX9000GH.

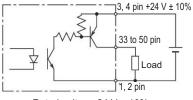
CN3 pulse string input signal

Pin no.	Signal
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase


I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. points (circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK+, BK-)	75	2	150	

* The max. number of simultaneous output points for the output circuits is 14 out of 18.

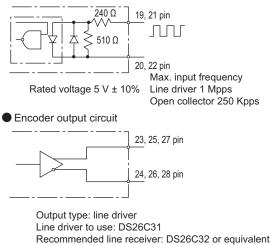

CN3 I/O circuit specifications

Input circuit

Rated voltage 24 V ± 10% Rated current 4 mA (for 24 VDC)

Output circuit

Rated voltage 24 V ± 10% Rated current 50 mA (max)


CN3 output signal

Pin no.	Signal	Logic
33	M code output (bit 0)	Positive
34	M code output (bit 1)	Positive
35	M code output (bit 2)	Positive
36	M code output (bit 3)	Positive
37	M code output (bit 4)	Positive
38	M code output (bit 5)	Positive
39	M code output (bit 6)	Positive
40	M code output (bit 7)	Positive
41	In-position output	Positive
42	Positioning completion output	Positive
43	Start input waiting output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Intermediate index output 1/ origin output	Positive
47	Intermediate index output 2/servo state output	Positive
48	Ready output	Positive
49	Segment position strobe output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (incremental)

Pin no.	Signal
23	A phase (line driver output)
24	-A phase (line driver output)
25	B phase (line driver output)
26	-B phase (line driver output)
27	Z phase (line driver output)
28	-Z phase (line driver output)

Pull string input circuit

CC-Link specification

Communication specifications

Item	Specifications
Power supply	Supplies DC5 V from the servo amp
CC-Link version	Ver.1.10
Occupied stations (station type)	2 stations (remote device station)
Remote input points	48 points
Remote output points	48 points
Remote register I/O	Input 8 words, output 8 words
Communication	10M, 5M, 2.5M, 625k, 156kbps
speed	(selection by parameter)
Coupling cable	CC-Link Ver.1.10-compatible cable
	(shielded 3-core cable)
Transmission format	HDLC compliant
Remote station No.	1 to 63 (set by parameter)
Connections	Remote device stations (2 stations)
Connections	occupy 32 units (max).
	Current position within 1 rotation
Monitor function	(degrees, pulses), amount of position
	deviation, program number, electronic
	thermal, rotation speed, alarm

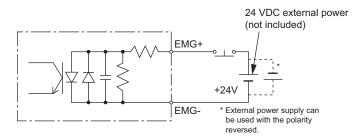
I/O signals

PLC -> AX	(Input)
Device	

Device No.	Signal	Logic	Decision
RYn0	Program number selection input (bit 0)	Positive	Level
RYn1	Program number selection input (bit 1)	Positive	Level
RYn2	Program number selection input (bit 2)	Positive	Level
RYn3	Program number selection input (bit 3)	Positive	Level
RYn4	Program number selection input 2nd digit/ program number selection input (bit 4)	Positive	Edge level
RYn5	Program number selection input 1st digit/ program number selection input (bit 5)	Positive	Edge level
RYn6	Reset input	Positive	Edge
RYn7	Origin return instruction input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo ON input/ program stop input	Positive	Level edge
RYnA	Ready return input/ continuous rotation stop input	Positive	Edge
RYnB	Answer input/ position deviation counter reset input	Positive	Edge
RYnC	Emergency stop input	Negative	Level
RYnD	Brake release Input	Positive	Level
RYnE	Not available	$\overline{\ }$	
RYnF	Not available	$\overline{\ }$	\square
RY (n + 1) 0 to RY (n + 1) F	Not available		
RY (n + 2) 0	Monitor output execution request	Positive	Edge
RY (n + 2) 1	Instruction code execution request	Positive	Edge
RY (n + 2) 2 to RY (n + 2) F	Not available		

AX (Output) -> PLC

Device


R

R

No.	Signal	Logic
RXn0	M code output (bit 0)	Positive
RXn1	M code output (bit 1)	Positive
RXn2	M code output (bit 2)	Positive
RXn3	M code output (bit 3)	Positive
RXn4	M code output (bit 4)	Positive
RXn5	M code output (bit 5)	Positive
RXn6	M code output (bit 6)	Positive
RXn7	M code output (bit 7)	Positive
RXn8	In-position output	Positive
RXn9	Positioning completion output	Positive
RXnA	Start input waiting output	Positive
RXnB	Alarm output 1	Negative
RXnC	Alarm output 2	Negative
RXnD	Intermediate index output 1/ origin output	Positive
RXnE	Intermediate index output 2/ Servo state output	Positive
RXnF	Ready output	Positive
RX (n + 1) 0	Segment position strobe output	Positive
RX (n + 1) 1	M code strobe output	Positive
RX (n + 1) 2 to RX (n + 1) F	Not available	
RX (n + 2) 0	Monitoring	Positive
RX (n + 2) 1	Instruction code execution complete	Positive
RX (n + 2) 2 to RX (n + 2) F	Not available	

n is a value that is determined by the station No. setting.

TB3 input circuit specifications (emergency stop)

Rated voltage 24 V ± 10%, rated current 5 mA or less

Safety precautions

Provide adequate spacing between communication cables and power lines (motor cables, power cables, etc.).

- If communication cables and power lines are brought close together or bundled, communication will become unstable, and communication errors and retransmission may occur due to noise.
- For details on laying communication cables, refer to the CC-Link laying manual and other related information.

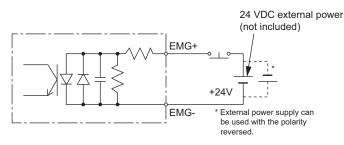
TS/TH type driver

DeviceNet specifications

Communication specifications

ltem	Specifications		
Communication	11 to 25 VDC		
power supply			
Communication power	50 mA or less		
supply current consumption	So TIA OF less		
Communication	DeviceNet compliant: Remote I/O		
protocol	Bevicence compliant. Remote #0		
Occupied nodes	Input 8 bytes, output 8 bytes		
Communication	500, 250, 125 kbps		
speed	(selected by parameter)		
	DeviceNet		
Coupling cable	(shielded 5-core cable, 2 signal lines,		
	2 power lines, 1 shield)		
Node address	0 to 63 (set by parameter)		
Connections	64 units max. (including the master)		
	Current position within 1 rotation		
Monitor function	(degrees, pulses), amount of position		
	deviation, program number, electronic		
	thermal, rotation speed, alarm		

I/O signals


Dutte				Dutte	
Byte No.	Signal	Logic	Decision	Byte No.	Signal
0.0	Program number selection input (bit 0)	Positive	Level	0.0	M code output (
0.1	Program number selection input (bit 1)	Positive	Level	0.1	M code output (
0.2	Program number selection input (bit 2)	Positive	Level	0.2	M code output (I
0.3	Program number selection input (bit 3)	Positive	Level	0.3	M code output (I
0.4	Program number selection input (bit 4)/ program number selection input 2nd digit	Positive	Level edge	0.4	M code output (I
0.5	Program number selection input 1st digit/ program number selection input (bit 5)	Positive	Level edge	0.5	M code output (I
0.6	Reset input	Positive	Edge	0.6	M code output (b
0.7	Origin return instruction input	Positive	Edge	0.7	M code output (I
1.0	Start input	Positive	Edge	1.0	In-position outpu
1.1	Servo ON input/ program stop input	Positive	Level edge	1.1	Positioning completion outp
1.2	Ready return input/ continuous rotation stop input	Positive	Edge	1.2	Start input waitir output
1.3	Answer input/ position deviation counter reset input	Positive	Edge	1.3	Alarm output 1
1.4	Emergency stop input	Negative	Level	1.4	Alarm output 2
1.5	Brake release Input	Positive	Level	1.5	Intermediate index ou origin output
1.6	Not available	\square	\square	1.6	Intermediate index ou Servo state output
1.7	Not available		\square	1.7	Ready output
		\square		2.0	Segment position strobe output
2.0 to	Not available		$ \rangle $	2.1	M code strobe o
2.5				2.2 to 2.5	Not available
2.6	Monitor output execution request	Positive	Level	2.6	Monitoring
2.7	Instruction code execution request	Positive	Edge	2.7	Instruction code execution compl

tive	Level	0.0	M code output (bit 0)	Positive
tive	Level	0.1	M code output (bit 1)	Positive
tive	Level	0.2	M code output (bit 2)	Positive
tive	Level	0.3	M code output (bit 3)	Positive
tive	Level edge	0.4	M code output (bit 4)	Positive
tive	Level edge	0.5	M code output (bit 5)	Positive
tive	Edge	0.6	M code output (bit 6)	Positive
tive	Edge	0.7	M code output (bit 7)	Positive
tive	Edge	1.0	In-position output	Positive
tive	Level edge	1.1	Positioning completion output	Positive
tive	Edge	1.2	Start input waiting output	Positive
tive	Edge	1.3	Alarm output 1	Negative
tive	Level	1.4	Alarm output 2	Negative
tive	Level	1.5	Intermediate index output 1/ origin output	Positive
/	$\overline{\ }$	1.6	Intermediate index output 2/ Servo state output	Positive
	$\overline{}$	1.7	Ready output	Positive
	\setminus	2.0	Segment position strobe output	Positive
		2.1	M code strobe output	Positive
		2.2 to 2.5	Not available	
tive	Level	2.6	Monitoring	Positive

Logic

Positiv

TB3 input circuit specifications (emergency stop)

Rated voltage 24 V ± 10%, rated current 5 mA or less

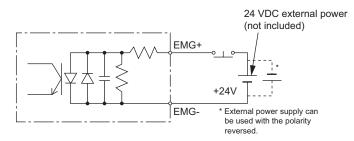
Safety precautions

Provide adequate spacing between communication cables and power lines (motor cables, power cables, etc.).

- If communication cables and power lines are brought close together or bundled, communication will become unstable, and communication errors and retransmission may occur due to noise.
- For details on laying communication cables, refer to the DeviceNet laying manual and other related information.

PROFIBUS-DP specifications

Communication specifications


Item	Specifications		
Communication protocol	PROFIBUS DP-V0 compliant		
I/O data	Input 8 bytes, output 8 bytes		
Communication	12 M, 6 M, 3 M, 1.5 M, 500 k, 187.5 k, 93.75 k, 45.45 k,		
speed	19.2 k, 9.6 kbps (auto baud rate function)		
Coupling cable	PROFIBUS cable (shielded 2-core twist pair cable)		
Node address	0 to 125 (set by parameter)		
Connections	Without repeaters: 32 stations max. per segment With repeaters: 126 stations max. in total		
Monitor function	Current position within 1 rotation (degrees, pulses), amount of position deviation, program number, electronic thermal, rotation speed, alarm		

I/O signals PLC -> AX (Input)

LC -> A	(Input)			AX (Outp	ut) -> PLC
Byte No.	Signal	Logic	Decision	Byte No.	Sig
0.0	Program number selection input (bit 0)	Positive	Level	0.0	M code ou
0.1	Program number selection input (bit 1)		Level	0.1	M code ou
0.2	Program number selection input (bit 2)	Positive	Level	0.2	M code ou
0.3	Program number selection input (bit 3)	Positive	Level	0.3	M code ou
0.4	Program number selection input (bit 4) /program number selection input 2nd digit	Positive	Level edge	0.4	M code ou
0.5	Program number selection input 1st digit /program number selection input (bit 5)	Positive	Level edge	0.5	M code ou
0.6	Reset input	Positive	Edge	0.6	M code ou
0.7	Origin return instruction input	Positive	Edge	0.7	M code ou
1.0	Start input	Positive	Edge	1.0	In-position
1.1	Servo ON input/ program stop input		Level edge	1.1	Positioning completior
1.2	Ready return input/ continuous rotation stop input	Positive	Edge	1.2	Start input output
1.3	Answer input/ position deviation counter reset input	Positive	Edge	1.3	Alarm outp
1.4	Emergency stop input	Negative	Level	1.4	Alarm outp
1.5	Brake release Input	Positive	Level	1.5	Intermediate origin output
1.6	Not available	\smallsetminus	\square	1.6	Intermediate Servo state c
1.7	Not available	\nearrow	\square	1.7	Ready out
		\setminus	\setminus	2.0	Segment p strobe out
2.0 to	Not available			2.1	M code str
2.5				2.2 to 2.5	Not availa
2.6	Monitor output execution request	Positive	Level	2.6	Monitoring
2.7	Instruction code execution request	Positive	Edge	2.7	Instruction execution

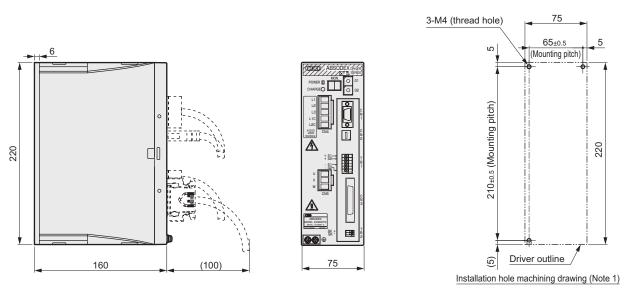
(Outp	ut) -> PLC	
3yte No.	Signal	Logic
0.0	M code output (bit 0)	Positive
0.1	M code output (bit 1)	Positive
0.2	M code output (bit 2)	Positive
0.3	M code output (bit 3)	Positive
0.4	M code output (bit 4)	Positive
0.5	M code output (bit 5)	Positive
0.6	M code output (bit 6)	Positive
0.7	M code output (bit 7)	Positive
1.0	In-position output	Positive
1.1	Positioning completion output	Positive
1.2	Start input waiting output	Positive
1.3	Alarm output 1	Negative
1.4	Alarm output 2	Negative
1.5	Intermediate index output 1/ origin output	Positive
1.6	Intermediate index output 2/ Servo state output	Positive
1.7	Ready output	Positive
2.0	Segment position strobe output	Positive
2.1	M code strobe output	Positive
2.2 to 2.5	Not available	
2.6	Monitoring	Positive
2.7	Instruction code execution complete	Positive

TB3 input circuit specifications (emergency stop)

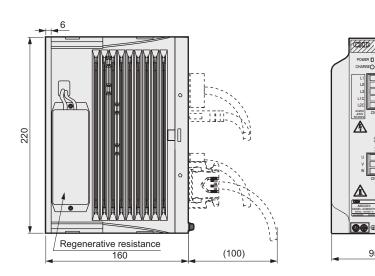
Rated voltage 24 V ± 10%, rated current 5 mA or less

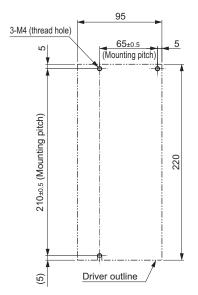
Safety precautions

For details on laying communication cables, refer to "Installation Guideline for PROFIBUS DP/FMS" issued by the PROFIBUS Organization, the PROFIBUS wiring guide, etc.


AX9000TS

34


TS/TH type driver


Dimensions

TS type driver

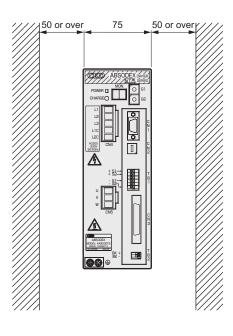
TH type driver

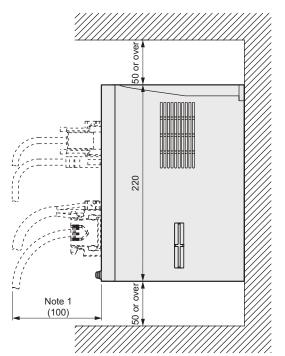
Installation hole machining drawing (Note 1)

Driver accessories

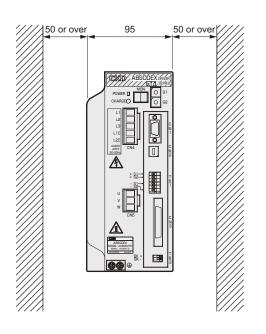
Model no.	Specifications	Power supply connector (CN4)	Motor cable connector (CN5)	CN3 connector
AX9000TS-U0	Parallel I/O (NPN)	PC4/5-ST-7.62 PHOENIX CONTACT	PC4/3-ST-7.62 PHOENIX CONTACT	10150-3000PE (plug) 10350-52A0-008 (shell) Sumitomo 3M
AX9000TS-U1	Parallel I/O (PNP)	PC4/5-ST-7.62 PHOENIX CONTACT	PC4/3-ST-7.62 PHOENIX CONTACT	10150-3000PE (plug) 10350-52A0-008 (shell) Sumitomo 3M
AX9000TS-U2	CC-Link specification	PC4/5-ST-7.62 PHOENIX CONTACT	PC4/3-ST-7.62 PHOENIX CONTACT	BLZ5.08/FAU Weidmüeller
AX9000TS-U3	PROFIBUS-DP specifications	PC4/5-ST-7.62 PHOENIX CONTACT	PC4/3-ST-7.62 PHOENIX CONTACT	Not included
AX9000TS-U4	DeviceNet specifications	PC4/5-ST-7.62 PHOENIX CONTACT	PC4/3-ST-7.62 PHOENIX CONTACT	MSTB2.5/5-STF-5.08AUM PHOENIX CONTACT

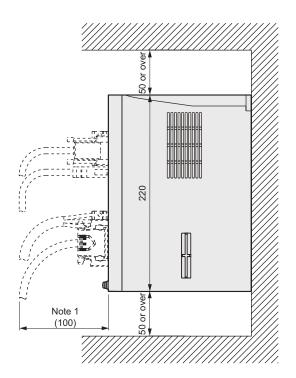
Ъð


95


To order additional parts, see the table for how to order.

Installation dimensions

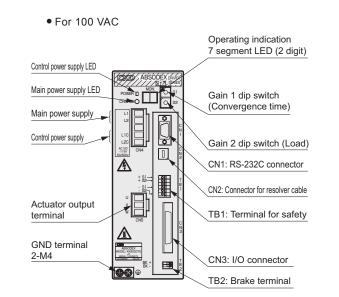

• TS type driver


- The Absodex driver is not dustproof or waterproof.
- Protect the driver so that dust, water, oil, etc. do not enter the driver.
- If you are installing the Absodex driver in the control box, make sure that the temperature inside the box does not exceed 50°C, and install the driver as shown in the following diagram to secure space around it.
 - exceed 50°C, and install the driver as shown in the following diagram to secure space arou

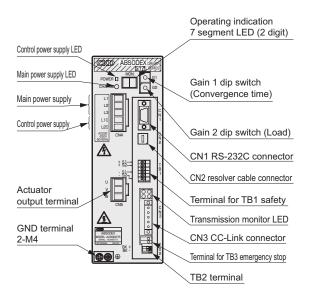
• TH type driver

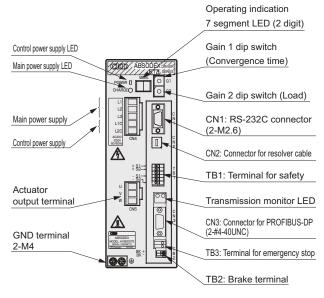
Note 1) Determine a dimension that is sufficient for the cable that you are using.

Driver

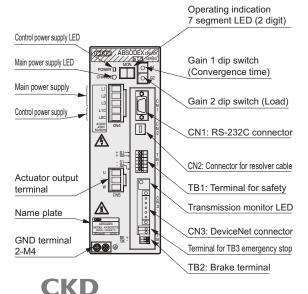

TS/TH type driver

Panel description

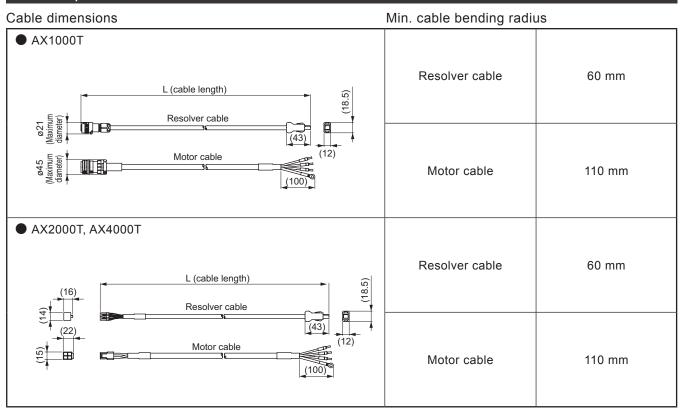

CC-Link specification


Parallel I/O (NPN, PNP specifications)
 For 200 VAC

Operating indication 7 segment LED (2 digit) Control power supply LED Main power supply LED Gain 1 dip switch (Convergence time) Main power supply Control power supply V Gain 2 dip switch (Load) A CN1: RS-232C connector 8000 CN2: Connector for resolver cable Actuator output TB1: Terminal for safety terminal ∕⋒ GND terminal 2-M4 CN3: I/O connector **F** 00 TB2: Brake terminal



PROFIBUS-DP specifications



DeviceNet specifications

Cable specifications

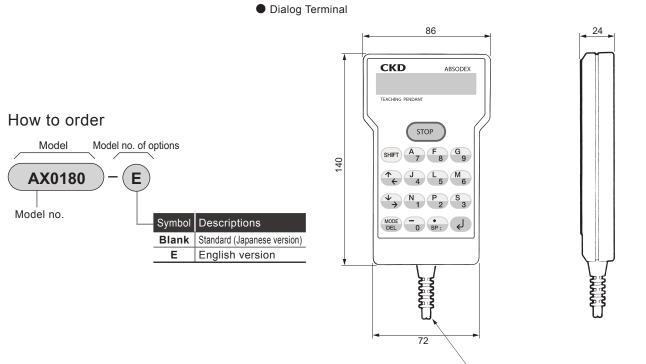
Safety precautions

- When connecting the motor cable and driver, check that the cable's mark tubes and the driver's indication s are correct.
- When the cable needs to be bent repeatedly, fix the cable sheath near the actuator connector.
- The cables for the AX4009T and AX2000T Series are not movable cables. Be sure to fix the cables at the connectors so that they do not move. Do not lift up the body by the cable or apply excessive force to the cable as the cable may break.
- When connecting the cable, insert the connector securely to the back. Tighten the connector's set screws and fixing screws.
- Do not modify the cable by cutting or extending it. Failure to observe this could result in faults or malfunctions.
- For cable length L, refer to the cable lengths in "How to order".

Direct drive actuator ABSODEX (Interactive Terminal)

• For TS type and TH type drivers

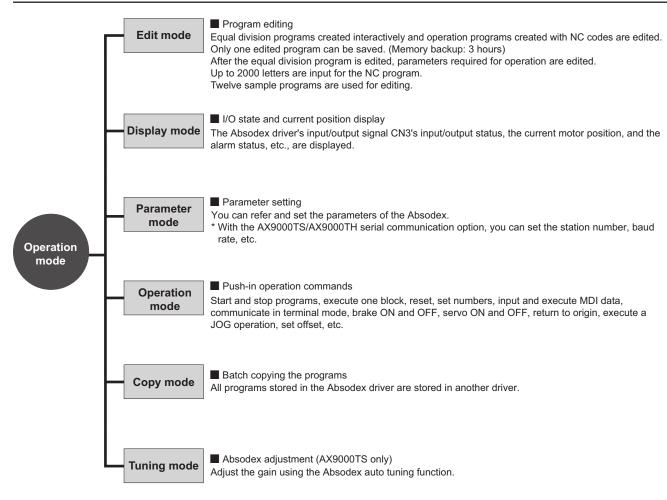
Features


- Programming is easy.
 Equal index programs are created easily by answering questions interactively with the dialog terminal.
- (2) No dedicated power supply required. Power is supplied from the Absodex.
- (3) Backup is possible.Program parameters can be saved.Programs can be copied.
- (4) Can be used with conventional models. This terminal can be used with S, GS, H, GH, and WGH type drivers, in the same manner as the conventional interactive terminal (AX0170H).

Specifications

opoomoatione	
Descriptions	AX0180
Operation mode	Edit, view, parameter, operation, and copy
Program size	Equal divisions, or 2000 NC program characters (1 program)
Program no.	Equal division programs: Program No. 0 to 999
Display	16 characters × 2 lines (LCD)
Input keys	17 keys
input keys	(Stop key: 1, control keys: 5, numeric keys: 11)
Backup	Super capacitor (approx. 3 hours)
Power supply	Supplied from the Absodex
Cable length	2 m
Operating ambient temperature	0 to 50°C
Operating ambient humidity	20 to 90% (with no dew condensation)
Storage ambient temperature	-20 to 80°C
Storage ambient humidity	20 to 90% (with no dew condensation)
Atmosphere	No corrosive gases or powder dust
Weight	Terminal only approx. 140 g

* The English version displays English messages. The operation panel keys are the same as those of the Japanese version.


Dimensions

Cable length 2 m

Dialog Terminal

Interactive pro	gramming	Examples of use
You can easily created to those shown below	te programs by entering settings similar ow.	Try operating the Absodex. Edit mode Twelve types of sample programs
[Program input exa	mple]	are selectable, so try these during adjustment.
New	Program No. [0 to 999]	
Origin return position	n 1. Origin 2. Index	Create an Absodex Edit mode
Return direction	1. CW 2. CCW	the Absodex. Programs and parameters are stored, and programs are copied.
Return speed	3. Shortest route [1.0 to 20.0] rpm	Start a program stored Operation mode in the Absodex.
Divisions Movement time	[1 to 255] [0.01 to 100] sec	Programs are created easily by inputting the following setting items.
Rotational direction		Use features of each Parameter mode
Stop process	1. Start wait 2. Dwell	cam curve. Five types of cam curves are selectable. Drives that use features of each type are
Brake	1. Used 2. Not used	realized in Push-in operation.
Delay timer M code	[0.01 to 99.99] sec 1. M code 2. Segment position	Check the I/O ON/OFF Display mode state. You can view the I/O state.

40

How to order Absodex related parts

Related parts

Part name	Applicable model	Model no.
PC communication cable	AX Series	AX-RS232C-9P

Note) Starting adjustment support tool "AX Tools" (Windows version) is provided for free. Download the latest version from our website. http://www.ckd.co.jp/kiki/caddata/ax_t.htm

Mounting base

Part name	Applicable model	Model no.
Mounting base	AX Series (Note 1)	AX-AXBASE (Note 2)

(Note 1) Mounting base does not support the AX4009T.

(Note 2) Please contact our sales department regarding mounting base mod el numbers.

Noise filter

Part name	Applicable model	Model no.
Noise filter for power supply (3-AC 10A)	AX Series	AX-NSF-3SUP-EF10-ER-6
Noise filter for power supply (1-AC 15A)	AX Series	AX-NSF-NF2015A-OD
Surge protector	AX Series	AX-NSF-RAV-781BXZ-4
Ferrite core for motor cable	AX Series	AX-NSF-RC5060

(Note 1) The parts listed on this page can be purchased from CKD.

(Note 2) To comply with EU Standards (CE marking) and UL standards, peripheral components such as circuit breakers and FG clamps must be provided by the customer. For details, refer to the instruction manual or the technical information (ABSODEX AX Series TS Type TH Type Technical Information).

Others

Part name	Applicable model	Model no.
Power supply connector (CN4)	AX Series	AX-CONNECTOR-PC45
Motor cable connector (CN5)	AX Series	AX-CONNECTOR-PC43
Housing (cover) (CN4: power connector)	AX Series	AX-COVER-KGG-PC45
Connector housing (cover) (CN5: Motor cable)	AX Series	AX-COVER-KGG-PC43
I/O connector (CN3: for parallel I/O)	AX Series (-U0, U1)	AX-CONNECTOR-MDR
I/O connector (CN3: for CC-Link)	AX Series (-U2)	AX-CONNECTOR-BLZ5
I/O connector (CN3: for DeviceNet)	AX Series (-U4)	AX-CONNECTOR-MSTB
Protection element for electromagnetic brake	AX Series (-EB)	AX-PARTS-TNR20V121K

Terminology

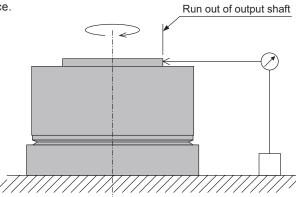
Index precision

The Absodex index precision is the difference between the target position set by an NC program and the actual stop position. The target position is an angle (seconds) from the reference station (origin return position).

As shown in the diagram on the right, the index precision is calculated from the maximum and minimum values of the differences between the target positions and the actual stop positions. Measurement is expressed in terms of the width using positive and negative seconds, as shown on the right.

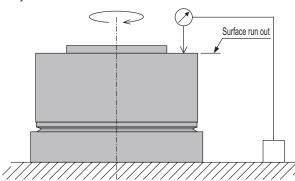
A high precision encoder is used for the angular measurement.

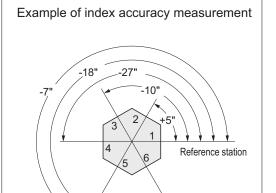
Repeatability

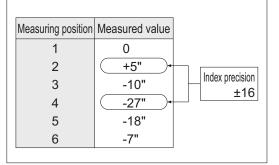

Repeatability expresses the deviation in the angles of the stop positions measured repeatedly under the same conditions for the same target position. It is expressed as an angle (seconds). Depending on the precision characteristics that the machine requires,

repeatability and index precision must be used separately.

* Second: A unit used to express angles (degrees, minutes, and seconds). 1 degree = 60 minutes = 3600 seconds

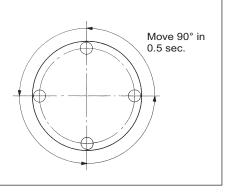

Run out of output shaft


The run-out accuracy of the inside-low section of the table installation surface. Run out of

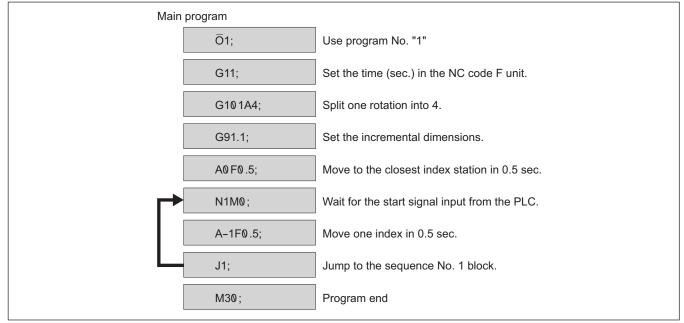


Surface run out of output shaft

The run-out accuracy of the table installation surface.



Use cases (1)


Operation specifications 1 (index unit operation)

Operation specifications

- 4 divisions (equally divided by 90°)
- Movement time 0.5 sec.
- 1 index in counterclockwise direction each time start is input from a PLC.

Program example

(Note) When using the interactive terminal or Teaching Note, if the program No. 1 is input, $\overline{0}1$ will be automatically set and does not need to be described.

PLC operation signal example

Initial process: process done only once in the beginning

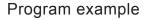
Process name	I/O signal name	PLC output	PLC input	Remarks
(1) Program no. selection	 No. selection bit 0 No. selection bit 1 No. selection bit 2 No. selection bit 3 No. setting first digit 			Select program No. 1 (Select the program number you will be using. Program No.1 is selected in this example.)
(2) Return process	- Start signal - Positioning completion signal - Start input waiting output			Return complete by using positioning complete signal

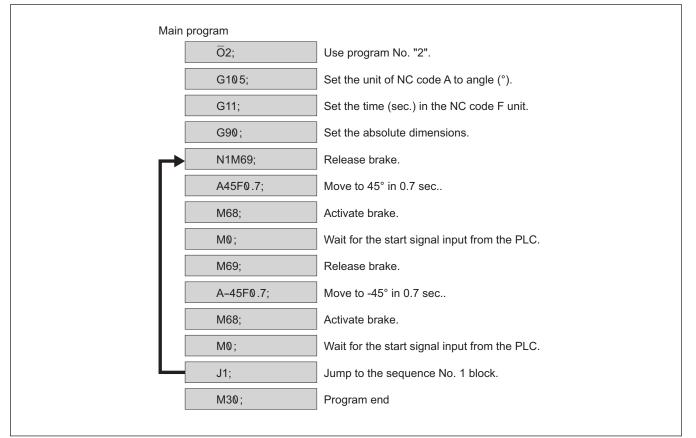
Indexing process: process done each time when indexing

Process name	I/O signal name	PLC output	PLC input	Remarks
(3) Index	- Start signal - Positioning completion signal - Start input waiting output			Index complete by using positioning complete signal

45°

0°


Direct drive actuator ABSODEX


-45

Operation specifications 2 (oscillator unit operation)

Operation specifications

- Movement between -45° and 45° is repeated each time start is input from a PLC.
- Movement time 0.7 sec.
- Applies the brakes when stopping (Note 1)
- Enables emergency stop input (Note 2)

Note 1: Use an Absodex with brakes.

When using the type with optional magnetic brakes, refer to the section "Using the magnetic brakes" (on page 13 in the introduction).

Note 2: If an emergency stop is input during braking, the brakes will function even after the emergency stop is reset.

When inputting the start signal without selecting the program No. again, release the brakes with the brake release signal, and then input the first start signal.

Brake release input		
Start input		1
	100 msec and over	
Positioning completion output		

Selection guide

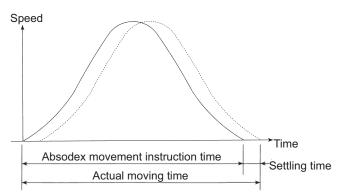
Units and symbols for operation condition specifications		
Load moment of inertia	(kg∙m²)	J
Movement angle	(°)	Ψ
Movement time	(s)	t ₁
Cycle time	(S)	to
Load friction torque	(N·m)	T _F
Work torque	(N·m)	Tw
Cam curve		Select from MS, MC, MT, and TR

1. Load moment of inertia

Calculate the load moment of inertia, and temporarily select an actuator that handles moment of inertia.

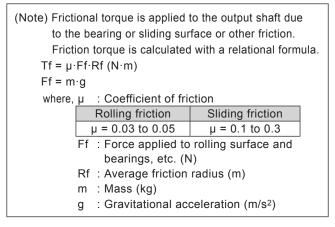
2. Rotation speed

The max. rotation speed Nmax is determined by


 $N_{max} = V_m \cdot \frac{\psi}{6 \cdot t_1}$

where ψ (°) is the movement angle and t₁(s) is the movement time. V_m is a constant that is determined by the cam curve.

Confirm that Nmax does not exceed the actuator's specified max. rotation speed.


<Precautions>

The actual movement time is the result of adding the settling time to the Absodex movement instruction time.

The settling time differs according to the working condition, but generally is between 0.025 and 0.2 s.

Use the Absodex movement instruction time for the movement time t_1 in model selection. In addition, use the Absodex movement instruction time for the designation of the movement time in an NC program.

3. Load torque

(a) The maximum load torque is obtained with the following formula.

$$T_{m} = [A_{m} \cdot (J + J_{M}) \cdot \frac{\psi \cdot \pi}{180 \cdot t_{1}^{2}} + T_{F} + T_{W}] \cdot fc + T_{MF}$$

(b) The effective value of the load torque is obtained with the following formula.

$$T_{rms} = \sqrt{\frac{t_1}{t_0}} \cdot [r \cdot A_m \cdot (J + J_M) \cdot \frac{\psi \cdot \pi}{180 \cdot t^2} \cdot fc]^2 + (T_F \cdot fc + T_W \cdot fc + T_{MF})^2$$

Here, use the values in the following table for Vm, Am, and r.

Cam curve	Vm	Am	r
MS	1.76	5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

 $J_{\text{M}},\,T_{\text{MF}}$ and f are as follows:

(rpm)

 J_M : Output shaft moment of inertia (kg·m²)

 T_{MF} : Output shaft friction torque (N·m)

fc : Usage factor (fc = 1.5 under normal use)

Regarding the actuator selected temporarily

Max. load torque < Max. output torque

Effective load torque value < Continuous output torque If either of the conditions above is not met, increase the actuator size, and recalculate the load torque.

- Note) There is a torque limit area where the max. torque is reduced during high-speed rotation. When using the actuator in the torque limit area, use the model selection software to check whether the actuator can be used
- (Note) The work torque expresses, with a torque value, the external load, etc., applied on the output shaft as a load.

Calculate the work torque TW using the following formula.

 $T_W = F_W \times R_W (N \cdot m)$ $F_W (N)$: Force required for work $R_W (m)$: Work radius (Example)

If the actuator is installed horizontally (the output shaft is horizontal), table, work, and jig, etc. are the work torque.

4. Regenerative power

For AX9000TS and AX9000TH type drivers, use the following simplified formula to calculate the regenerative power and determine whether the drivers can be used.

● AX9000TS type driver

AX9000TS type driver does not have a built-in regenerative resistor.

Therefore, check that the energy that can be charged with the capacitor (table below) does not exceed the regenerative energy value determined using the simplified formula below.

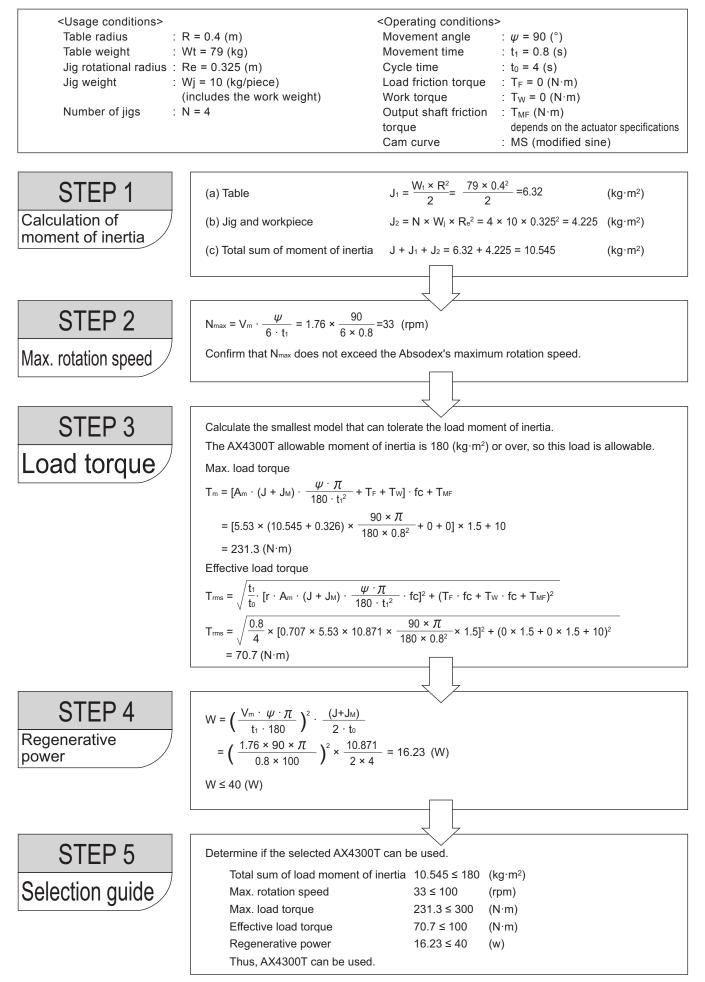
$$\mathsf{E} = \left(\frac{\mathsf{V}_{\mathsf{m}} \cdot \psi \cdot \pi}{\mathsf{t}_1 \cdot 180}\right)^2 \cdot \frac{(\mathsf{J} + \mathsf{J}_{\mathsf{M}})}{2} (\mathsf{J})$$

Power	Processable	Remarks	
specifications	regenerative energy (J)	Remarks	
200 VAC		When the input voltage to the	
		main voltage supply is 200 VAC	
100 VAC (-J1)	17.2	When the input voltage to the	
		main voltage supply is 100 VAC	

If this condition cannot be met, consult with CKD.

AX9000TH type driver

With AX9000TH type driver, the power regenerated by the consumption capacity of the regenerative resistor is limited.


It is determined using the following simplified formula.

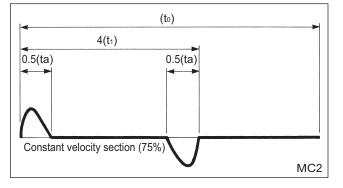
$$W = \left(\frac{V_{m} \cdot \psi \cdot \pi}{t_{1} \cdot 180}\right)^{2} \cdot \frac{(J+J_{M})}{2 \cdot t_{0}} (W)$$

 $W \le 40$

If this condition is not satisfied, reconsider operation and load conditions.

AX series Selection guide (1)

When selecting a model for "MC2 curve"


What is the MC2 curve?

The MC2 curve has a constant velocity in movement the same as the MC (modified constant velocity) curve, but by setting an acceleration/deceleration time, the constant velocity is set freely.

With the MC (general name: MCV50) curve, the constant velocity section is 50%.

Note. Acceleration/deceleration time is set to one-half or less of movement time. If acceleration/deceleration time setting exceeds one-half of movement time, the cam curve is automatically changed to an MS (modified sine wave) curve.

In the example, acceleration/deceleration time (ta) is set to 0.5 sec. for movement time (t₁): 4 sec., a speed pattern that sets the constant velocity to 75% is created.

Selection procedure

With the MC2 curve, the model is selected using the following formula:

-	
Movement angle	:ψ(°)
Cycle time	: t ₀ (s)
Movement time	: t ₁ (s)
Acceleration/deceleration time	: ta (s)
Load moment of inertia	: J (kg·m²)
Output shaft moment of inertia	: J _M (kg·m²)
Friction torque	: Tf (N·m)
Work torque	: T _w (N·m)
Output shaft friction torque	∶T _{MF} (N·m)

Max. speed: Nmax (rpm)

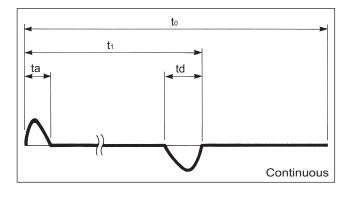
Nmax =
$$\frac{\psi}{6(t_1 - 0.863t_2)}$$

Load torque (max.): T_m (N·m)

$$\mathsf{Tm} = \left[5.53 \ (\mathsf{J} + \mathsf{J}_{\mathsf{M}}) \cdot \frac{\psi \cdot \left(1 - \frac{\mathsf{t}_1 - 2\mathsf{ta}}{\mathsf{t}_1 - 0.863\mathsf{ta}}\right) \cdot \pi}{720 \cdot \mathsf{ta}^2} + \mathsf{Tf} + \mathsf{T}_{\mathsf{W}} \right] \cdot \mathsf{fc} + \mathsf{T}_{\mathsf{MF}}$$

Load torque (min.): Trms (N·m)

 $\mathsf{Trms} = \sqrt{\frac{2\mathsf{ta}}{\mathsf{t}_0}} \cdot \left[3.91 \left(\mathsf{J} + \mathsf{J}_{\mathsf{M}} \right) \cdot \frac{\psi \cdot \left(1 - \frac{\mathsf{t}_1 - 2\mathsf{ta}}{\mathsf{t}_1 - 0.863\mathsf{ta}} \right) \cdot \pi}{720 \cdot \mathsf{ta}^2} \cdot \mathsf{fc} \right]^2 + \left[(\mathsf{Tf} + \mathsf{Tw}) \cdot \mathsf{fc} + \mathsf{T}_{\mathsf{MF}} \right]^2$


When selecting a model for "continuous rotation"

What is continuous rotation?

Continuous rotation has the following features.

1. Continuous rotation	: To continuously rotates at a set speed until the continuous rotation stop signal is input.
2. Equal division position stop	 To stop at an equal division when the continuous rotation stop signal is input if used with equal division designation.

In the example, the shaft accelerates at acceleration time ta to set speed N, and when a continuous rotation stop is input, stops with deceleration time td.

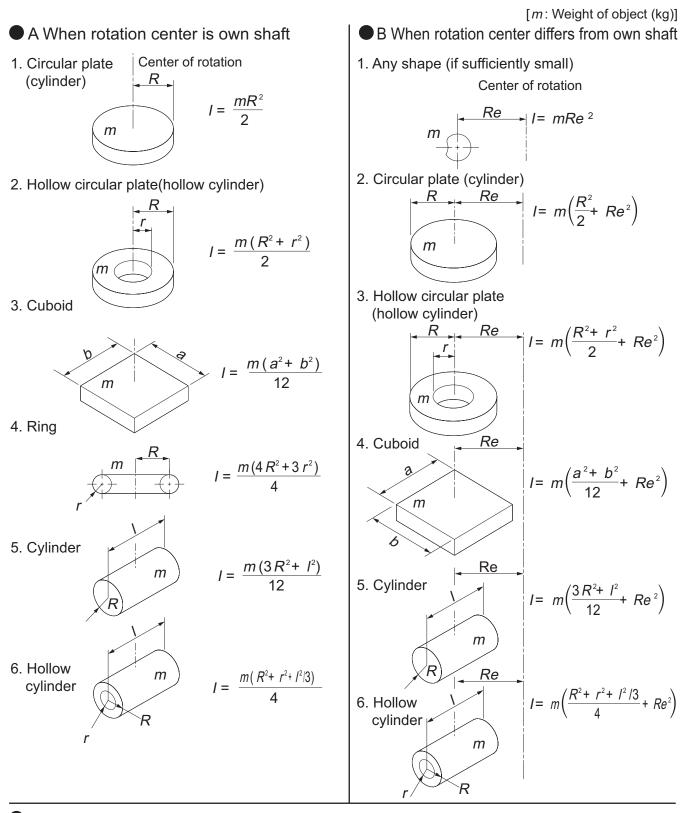
Selection procedure

With continuous rotation, the model is selected using the following formula:

8	
Rotation speed	: N (rpm)
Cycle time	: t ₀ (s)
Acceleration time	: ta (s)
Deceleration time	: td (s)
Load moment of inertia	: J (kg·m²)
Output shaft moment of inertia	: J _M (kg⋅m²)
Friction torque	: Tf (N · m)
Work torque	: Tw (N·m)
Output shaft friction torque	: T _{MF} (N·m)

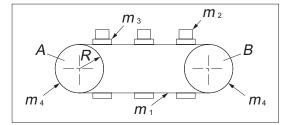
Max. speed: Nmax (rpm) (Note 1) Nmax = N

Load torque (max.): Tm (N·m)


$$Tm = \left[5.53 (J + J_M) \cdot \frac{6.82N \cdot ta \cdot \pi}{720 \cdot ta^2} + Tf + Tw\right] \cdot fc + T_{MF}$$

Load torque (min.): Trms (N·m)

$$\text{Trms} = \sqrt{\frac{2\text{ta}}{\text{to}}} \cdot \left[3.91 \left(\text{J} + \text{J}_{\text{M}} \right) \cdot \frac{6.82\text{N} \cdot \text{ta} \cdot \pi}{720 \cdot \text{ta}^2} \cdot \text{fc} \right]^2 + \left[(\text{Tf} + \text{Tw}) \cdot \text{fc} + \text{T}_{\text{MF}} \right]^2$$


The above formula applies for the case of ta \leq td. If ta > td, then replace ta with td, and select.

Note 1) When continuous rotation is used, the max. speed is limited. Follow the actuator specifications.

For conveyor

CKD

- m_1 : Chain weight m_2 : Workpiece total weight
- $I = (m_1 + m_2 + m_3 + \frac{m_4}{2}) \cdot R^2$
- m_3 : Jig (pallet) total weight
- m4: Sprocket A (drive) + B total weight
- R : Drive side sprocket radius

Absodex selection guide specifications check sheet Table direct drive	(Note) Contact CKD for chain drives and gear drives.
Your company name	Name
Department	
TEL	FAX
Operating conditions	
1. Index 2. Oscillator	
	Index numbers
Movement time t1 (sec)	
	sle time = Moving time + Dwelling time
(Note) Index time is movement time + settling time.	5 5
The settling time differs according to the working condition	ion, but generally is between 0.025 and 0.20 s.
Load conditions	Dt Workpiece
Table	Pallet jig
Material 1. Steel 2. Aluminum	
Outline Dt (mm)	
Plate thickness ht (mm)	Rf F
Weight m1 (kg)	
Workpiece	1//////////////////////////////////////
Quantity nw (pcs)	(Fig.1) Load conditions
Max. weight mw (kg/pcs)	
Installation center Dp (mm)	
Pallet jig	
Quantity np (pcs)	
Max. weight mw (kg/pcs)	
■ Others	
Mounting orientation	(Fig.2) Installation direction: Horizontal (Fig.3) Installation direction: Vertical
1. Horizontal (Fig.2) 2. Vertical (Fig. 3)	
External work	
1. No 2. Yes	
(Note) Eccentric load caused by gravity from vertical	
installation, external load caused by caulking work.	
Dial plate support form bottom	
1. No 2. Yes	
Coefficient of friction µ	
Work radius Rf (mm)	(Fig.4) Installation rigidity: Low
Device rigidity	
1. High 2. Low (Note)	
(Note) When using a spline, when unit cannot be fixed directly onto the devi	
(Fig. 4), when there is a mechanism such as a chuck on the table.	
Extension with table shaft	
1. No 2. Yes (Fig. 5)	
Actuator movement	
1. No 2. Yes	
(Note) When actuator is mounted on X-Y table or vertical	777777777777777777777777777777
(Note) If 2 is calculated for any item contact CKD	(Fig. 5) Extension with shaft
(Note) If 2 is selected for any item, contact CKD.	(Note) Attach system outline and reference drawings so that the optimal
	model can be selected.

Related products

Absodex Compact type AX6000M series

Space saving

With the smallest dimensions in the industry and the concentric circle shape (the rotation axis and the fixed axis are the same), you can design space-saving compact equipment.

Flexible

The extensive programing features enable your desired operations. Simple operation settings are also supported including automatic creation of point specification programs.

Highly reliable and maintenance free

The direct drive method (no gears) provides stable operation without accuracy degradation through damage or attrition of gears during overloaded operation.

Electric driven actuator ERL2/ESD2 series

Free combination

- Common controller for all models
- Automatic recognition of actuator Less spare parts required
- - 63-point positioning now available
 - Most compact model in the industry
 - Most compact model in the indus
- Optional selection tool
 - Setting software "E Tools" for easy setting
 - Easy operation with the teaching pendant
 - The next button to be pressed is indicated by illumination. Easy even for novices

Electric driven actuator motor-less type

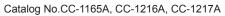
Ball screw driven type ETS series

- Motor size: 8 types, Lead: 7 types, Motor mounting orientation: 5 types
- Install your favorite motor
- Selectable installation specifications of the origin sensor and the limit sensor
- 100 to 1500 mm (50 mm pitch) strokes are selectable.
- Wide range of use with a maximum load capacity of 150 kg and a maximum speed of 2000 mm/s

Ball screw driven type Low dust generation ECS series

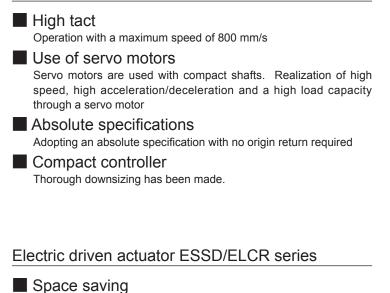
- Based on the ETS series, this model realizes low dust generation with the fully covered structure and suction ports.
- Motor size: 7 types, Lead: 7 types, Motor mounting orientation: 5 types
- Install your favorite motor
- Selectable installation specifications of the origin sensor and the limit sensor
- 100 to 1500 mm (50 mm pitch) strokes are selectable.
- Wide range of use with a maximum load capacity of 150 kg and a maximum speed of 2000 mm/s

Belt-driven type ETV series


- Belt-driven type based on the ETS series.
- A stroke of 100 to 3500 mm (50 mm pitch) can be selected. Long strokes and high speeds are realized with a maximum speed of 2000 mm/s.
- Motor size: 6 types, Motor mounting orientation: 6 types
- Install your favorite motor

Catalog No.CC-1148A

Catalog No.CC-1219A



Electric driven actuator KBZ series

Catalog No.CC-1102A

With the built-in controller, the controller space and wiring are not necessary.

Install it like a pneumatic cylinder External shape, controls, and the usage are like a pneumatic cylinder.

Flexible control of operation

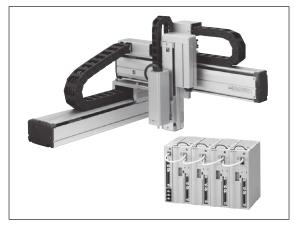
Three control modes, speed and acceleration controls, and a positioning completion range (in-position) can be set.

Easy teaching

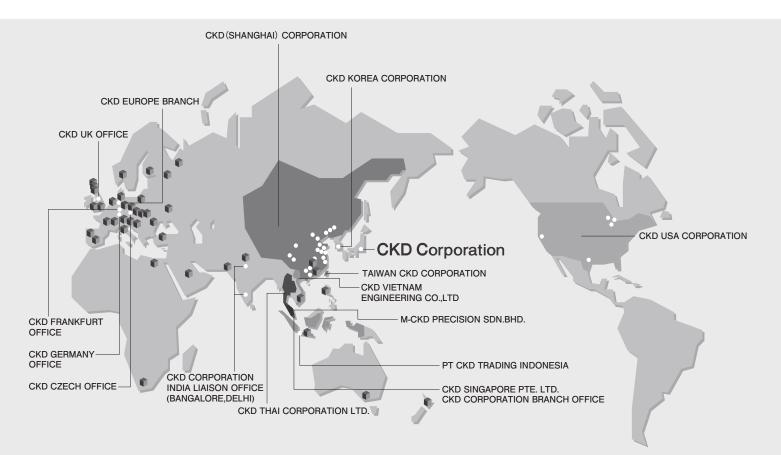
Handy direct teaching with five buttons

Electric driven actuator KBB series

- High tact Maximum of 2000 mm/s (timing belt driven)
 High precision
 - Repeatability: ±0.01 mm (ball screw driven)


Absolute specifications

All models use long-life lithium battery (lifespan: 50,000 hours) and do not require origin returning.


High-performance processing with high-speed CPU The high-speed CPU provides high performance.

Abundant variations

Ball screw: 7 types, Timing belt: 6 types Motor mounting position: 4 directions are provided for each axis. Catalog No.CC-783A

WORLD-NETWORK

CKD Corporation

- 🗌 2-250 Ouji Komaki, Aichi 485-8551, Japan
- PHONE +81-(0)568-74-1338 FAX +81-(0)568-77-3461

U.S.A

CKD USA CORPORATION

- CHLOSA COMPORATION
 CHICAGO HEADQUARTERS
 4080 Winnetka Avenue, Rolling Meadows, IL 60008, USA
 PHONE +1-847-368-0539 FAX +1-847-788-0575
 CINCINNATI OFFICE
 CINCINNATI OFFICE

- SAN ANTONIO OFFICE SAN JOSE OFFICE
- DETROIT OFFICE

Europe

- CKD CORPORATION EUROPE BRANCH De Fruittuinen 28 Hoofddorp, the Netherlands PHONE +31-(0)23-5541490 FAX +31-(0)23-5541491 CZECH OFFICE

- UK OFFICE
 GERMANY OFFICE
 FRANKFURT OFFICE

Malaysia

- Malaysia M-CKD PRECISION SDN.BHD. ●HEAD OFFICE Lot No.6, Jalan Modal 23/2, Seksyen 23, Kawasan MIEL, Fasa 8, 40300 Shah Alam, Selangor Darul Ehsan, Malaysia PHONE +60-(0)3-5541-1468 FAX +60-(0)3-5541-1533 JOHOR BAHRU BRANCH OFFICE MELAKA BRANCH OFFICE PENANG BRANCH OFFICE

- Thailand

- CKD THAI CORPORATION LTD.
 SALES HEADQUARTERS
 Suwan Tower, 14/1 Soi Saladaeng 1, North Sathorn Road,
 Kwaeng Silom, Khet Bangrak, Bangkok 10500, Thailand
 PHONE +66-(0)2-267-6300 FAX +66-(0)2-267-6305
 RAYONG OFFICE
 NAVGNB OFFICE
- NAVANAKORN OFFICE EASTERN SEABORD OFFICE

- LAMPHUN OFFICE KORAT OFFICE AMATANAKORN OFFICE PRACHINBURI OFFICE SARABURI OFFICE

Singapore

- CKD SINGAPORE PTE. LTD. No. 33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 347789, Singapore PHONE +65-67442623, FAX +65-67442486
- CHDONE +05-01/44/26/3 FAX +05-01/44/2480 CKD CORPORATION BRANCH OFFICE No.33 Tannery Lane #04-01 Hoesteel Industrial Building, Singapore 347789, Singapore PHONE +65-67447260 FAX +65-68421022 INDIA LIAISON OFFICE BANGALORE INDIA LIAISON OFFICE DELHI

Indonesia

PT CKD TRADING INDONESIA Wisma Keiai, 17th Floor, JI. Jendral Sudirman Kav.3, Jakarta 10220, Indonesia PHONE +62-(0)21-572-3220 FAX +62-(0)21-573-4112 Vietnam

CKD VIETNAM ENGINEERING CO.,LTD. 18th Floor, CMC Tower, Duy Tan Street, Cau Giay District, Hanoi, Vietnam PHONE +84-4-37957631 FAX +84-4-37957637

Taiwan

- 湾喜開理股份有限公司
- 古海宮開理版初有胞ななり TAIWAN CKD CORPORATION 16F-3, No. 7, Sec. 3, New Taipei Blvd., Xinzhuang Dist., New Taipei City 242, Taiwan PHONE +886-(0)2-8522-8198 FAX +886-(0)2-8522-8128 新竹営業所(HSINCHU OFFICE) ・ 台中営業所(TAICHUNG OFFICE) ・ 台南営業所(TAINAN OFFICE)

Website http://www.ckd.co.ip/

Constributors

- China 喜開理(上海)機器有限公司 CKD(SHANGHAI)CORPORATION 雲湖/上海海專務所(SLES HEADQUARTER/ SHANGHAI PUXI OFFICE) Room 601 6th Floor, Yuanzhongkeyan Building, No. 1905 Hongmei Road, Xinhui District, Shanghai 200233, China PHONE +88-(0)21-61911888 FAX +86-(0)21-60905366 上海浦東事務所 (SHANGHAI PUDONG OFFICE) 無錫專務所 (NINGBO OFFICE) 前京專務所 (NINGBO OFFICE) 南京專務所 (NINGBO OFFICE) 副山事務所 (KUNSHAN OFFICE) 是山事務所 (KUNSHAN OFFICE) 北京專務所 (DALIAN OFFICE) 大連專務所 (DALIAN OFFICE) 大連事務所 (CHANGCHUN OFFICE) 清南專務所 (YANTAI OFFICE) 清南專務所 (YANTAI OFFICE) 満爾專務所 (SHENYANG OFFICE) 演爾專務所 (SHENYANG OFFICE) 武爾專務所 (SHENYANG OFFICE) 武寧專務所 (CHENGDU OFFICE) 武寧專務所 (CHANGSHA OFFICE) 長沙專務所 (CHANGSHA OFFICE) 長沙專務所 (GUANGZHOU OFFICE) 長沙專務所 (SHENZHEN OFFICE) 二八喇事務所 (SHENZHEN OFFICE) 東莞專務所 (DONGGUAN OFFICE) 東莞專務所 (CHANGSHA OFFICE) 反沙專務所 (CHANGSHA OFFICE) 長沙專務所 (CHANGSHA OFFICE) 長沙專務所 (SHENZHEN OFFICE) 反沙專務所 (CHANGSHA OFFICE) 反沙專務 (CHANGSHA OFFICE) 反沙專 (CHANGSHA OFFICE) 反沙專 (CHANGSHA OFFICE) (CHANGSHA OFFICE) (CHA

- Korea
- CKD KOREA CORPORATION
- CHCD KOHEA CORPORATION
 ●HEADQUARTERS
 (3rd Floor), 44, Sinsu-ro, Mapo-gu, Seoul 121-856, Korea PHONE +82-(0)2-783-5201 5203 FAX +82-(0)2-783-5204
 ・水原営業所 (SUWON OFFICE)
 ・ 蔚山営業所 (ULSAN OFFICE)

- The goods and their replicas, or the technology and software in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan.

If the goods and their replicas, or the technology and software in this catalog are to be exported, laws require the exporter to make sure they will never be used for the development or the manufacture of weapons for mass destruction.