Model selection

STEP 1 Confirming positioning time

Calculate the positioning time with the selected product according to the following example and confirm that the required tact is attainable.

Positioning time for pressing operation

Descriptions		Code	Unit	Remarks
Set value	Set angular speed	V	deg/s	
	Set angular acceleration	a	deg/s ${ }^{2}$	
	Set angular deceleration	d	deg/s ${ }^{2}$	
	Travel angle	S	deg	
Calculated value	Achieved angular speed	Vmax	deg/s	$=\{2 \times a \times d \times S /(a+d)\}^{1 / 2}$
	Effective angular speed	Vb	deg/s	The lesser value of V and V max
	Acceleration time	Ta	S	$=\mathrm{Vb} / \mathrm{a}$
	Deceleration time	Td	S	$=\mathrm{Vb} / \mathrm{d}$
	Constant speed time	Tc	S	$=\mathrm{Sc} / \mathrm{Vb}$
	Acceleration angle	Sa	deg	$=\left(\mathrm{a} \times \mathrm{Ta}^{2}\right) / 2$
	Deceleration angle	Sd	deg	$=\left(\mathrm{d} \times \mathrm{Td}^{2}\right) / 2$
	Constant speed angle	Sc	deg	$=S-(S a+S d)$
	Positioning time	T	S	$=\mathrm{Ta}+\mathrm{Tc}+\mathrm{Td}$

* Do not use at angular speeds that exceed the specifications
* Depending on angular acceleration/deceleration and travel angle, the trapezoid speed waveform may not be formed (the set angular speed may not be achieved)
In this case, select the effective angular speed (Vb) from the set angular
speed (V) and the achieved angular speed (Vmax), whichever is smaller.
* Use at the angular acceleration/angular deceleration of $3000 \mathrm{deg} / \mathrm{s}^{2}$ or less
* While settling time depends on working conditions, it may take 0.2 seconds or so
* $1 \mathrm{G} \div 9800 \mathrm{deg} / \mathrm{s}^{2}$

Descriptions		Code	Unit	Remarks
Set value	Set angular speed	V	deg/s	
	Set angular acceleration	a	$\mathrm{deg} / \mathrm{s}^{2}$	
	Set angular deceleration	d	$\mathrm{deg} / \mathrm{s}^{2}$	
	Travel angle	S	deg	
	Pressing speed	V n	deg/s	
	Pressing angle	Sn	deg	
Calculated value	Achieved angular speed	Vmax	deg/s	$=\left\{2 \times a \times d \times\left(S-S n+\mathrm{Vn}^{2} / 2 / \mathrm{d}\right) /(\mathrm{a}+\mathrm{d})\right\}^{1 / 2}$
	Effective angular speed	Vb	deg/s	The lesser value of V and Vmax
	Acceleration time	Ta	S	$=\mathrm{Vb} / \mathrm{a}$
	Deceleration time	Td	S	$=(\mathrm{Vb}-\mathrm{Vn}) / \mathrm{d}$
	Constant speed time	Tc	S	= Sc/Vb
	Pressing time	Tn	S	$=\mathrm{Sn} / \mathrm{Vn}$
	Acceleration angle	Sa	deg	$=\left(\mathrm{a} \times \mathrm{Ta}^{2}\right) / 2$
	Deceleration angle	Sd	deg	$=((\mathrm{Vb}+\mathrm{Vn}) \times \mathrm{Td}) / 2$
	Constant speed angle	Sc	deg	$=\mathrm{S}-(\mathrm{Sa}+\mathrm{Sd}+\mathrm{Sn})$
	Positioning time	T	S	$=\mathrm{Ta}+\mathrm{Tc}+\mathrm{Td}+\mathrm{Tn}$

* Do not use at angular speeds that exceed the specifications.
* Depending on angular acceleration/deceleration and travel angle, the
trapezoid speed waveform may not be formed (the set angular speed may not be achieved).
In this case, select the effective angular speed (Vb) from the set angular
speed (V) and the achieved angular speed (Vmax), whichever is smaller.
* Use at the angular acceleration/angular deceleration of $3000 \mathrm{deg} / \mathrm{s}^{2}$ or less
* While settling time depends on working conditions, it may take 0.2 seconds or so. $1 \mathrm{G} \doteqdot 9800 \mathrm{deg} / \mathrm{s}$

STEP 2 Confirming load moment of inertia

Calculate the load moment of inertia, and then select a model from the angular speed and allowable moment of inertia graph.

Shape	Sketch	Requirements	Moment of inertia I $\mathrm{kg} \cdot \mathrm{m}^{2}$	Radius of rotation
$\begin{aligned} & \frac{9}{0} \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$		- Diameter d (m) - Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{8}$	$\frac{d^{2}}{8}$
		-Plate length a_{1} a_{2} -Side length b -Weight M_{1} M_{2}	$\begin{aligned} & I= \frac{M_{1}}{12}\left(4 a_{1}{ }^{2}+b^{2}\right) \\ &+ \\ & \frac{M_{2}}{12}\left(4 a_{2}{ }^{2}+b^{2}\right) \end{aligned}$	$\frac{\left(4 a_{1}^{2}+b^{2}\right)+\left(4 a_{2}^{2}+b^{2}\right)}{12}$

*Refer to page 43

[At 24 VDC]

Allowable moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$

*Refer to pages 30, 32 and 34.

STEP 3 Confirming required torque

Use the following equations to determine the maximum load torque，and then refer to the angular speed and output torque graph to select the applicable model．

Selection method is roughly categorized into three load types．
In each case，the required torque must be calculated．If the load is a compound load，add each torque to calculate the required torque．
（1）Static load（Ts）
When static pushing force is required for clamp，etc．
Ts＝Fs $\times \mathrm{L}$
Ts：Required torque（ $\mathrm{N} \cdot \mathrm{m}$ ）
Fs：Required force（ N ）
L ：Length from center of rotation to pressure cone apex（m）
（2）Resistance load（TR）
When force including frictional force，gravity or other external force is applied

［At 24 VDC$]$

TA：Required torque $(\mathrm{N} \cdot \mathrm{m})$
I：Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\dot{\omega}:$ Set angular acceleration／deceleration $\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
Ө：Travel angle（rad）
t：Travel time（s）
＊Calculate $\dot{\omega}$ from angular acceleration or angular deceleration，whichever is higher．
The formula below can be used to determine the radian（rad）from the degree（deg）． rad $=\operatorname{deg} \times(\pi / 180)$
Use the moment of inertia and travel time（pages 30，32，and 34）or the figure for moment of inertia calculation （page 43）to calculate the moment of inertia．

STEP 4 Confirming allowable load

If load applies to table，load is to be within allowable value on Table 1.
For combined multiple load，ensure that the total is 1.0 or less．
Table 1

Model No．	$\mathbf{W}_{\mathbf{s}} \max$	$\mathbf{W}_{\mathbf{R}} \mathbf{m a x}$	$\mathbf{M} \max$
FGRC－10	80	80	2.5
FGRC－30	200	200	5.5
FGRC－50	450	320	10

$W_{\text {S }} \quad$ ：Thrust load（N）
$W_{R} \quad$ ：Radial load（N）
M ：Moment load（N•m）
$W_{\text {smax }}$ ：Allowable thrust load（N）
$W_{\text {Rmax }}$ ：Allowable radial load（N）
$M_{\max }$ ：Allowable moment load（ $\mathrm{N} \cdot \mathrm{m}$ ）
（1）Thrust load（axial load）

（2）Radial load（lateral load）
（3）Moment load

Combined load
Substitute the result to the following formula，and check after each load is calculated．

$$
\frac{W_{s}}{W_{s m a x}}+\frac{W_{R}}{W_{R} m a x}+\frac{M}{M \max } \leq 1.0
$$

FGRC ${ }_{\text {series }}$

Selection example［Horizontal］

Rectangle plate（iron）
Weight： 1.28 kg
$(1.07+0.21) \mathrm{kg}$
［Operation conditions］

Travel angle： 90 deg
Travel time： 1.2 s
Angular acceleration／deceleration： $1000 \mathrm{deg} / \mathrm{s}^{2}(0.1 \mathrm{G})$

STEP 1 Confirming positioning time

Positioning time is 1.09 s according to operation conditions．
This is lower than the required travel time of 1.2 s ，so proceed
to the next step．

Set value

Angular speed	V	$90 \mathrm{deg} / \mathrm{s}$
Angular acceleration	a	$1000 \mathrm{deg} / \mathrm{s}^{2}$
Angular deceleration	d	$1000 \mathrm{deg} / \mathrm{s}^{2}$
Travel angle	S	90 deg

Calculated value

Achieved angular speed	Vmax	$300 \mathrm{deg} / \mathrm{s}$
Effective angular speed	Vb	$90 \mathrm{deg} / \mathrm{s}$
Acceleration time	Ta	0.09 s
Deceleration time	Td	0.09 s
Constant speed time	Tc	0.91 s
Positioning time	T	1.09 s

STEP 2 Confirming load moment of inertia

Calculate the moment of inertia I，and then temporarily select a model from the angular speed and allowable moment of inertia graph．
［Rectangle plate］
$I 1=1.07 \times \frac{4 \times 0.15^{2}+0.06^{2}}{12}+0.21 \times \frac{4 \times 0.03^{2}+0.06^{2}}{12}=0.00847$
［Cube］
I2 $=0.85 \times\left[\frac{0.06^{2}+0.06^{2}}{12}+0.09^{2}\right]=0.00740$
The overall moment of inertia I is as follows．
$I=I 1+I 2=0.01587\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$.
From the graph of angular speed and allowable moment of inertia，select FGRC－30［DC48V］，which satisfies the allowable moment of inertia at angular speed 90 deg／s．

STEP 3 Confirming required torque

Calculate the load torque and confirm that it is within the range in the graph of angular speed and output torque.
Set acceleration/deceleration from $a=d=1000 \mathrm{deg} / \mathrm{s}^{2}$

$$
\begin{align*}
\dot{\omega} & =1000 \times \frac{\pi}{180} \\
& =17.45 \mathrm{rad} / \mathrm{s}^{2} \ldots . \tag{2}
\end{align*}
$$

From (1) and (2), inertia load (TA) is
$\mathrm{TA}=3 \times 0.01587 \times 17.45$

$$
=0.831(\mathrm{~N} \cdot \mathrm{~m})
$$

[48 VDC] <FGRC-30>

The intersection of angular speed $V=90(\mathrm{deg} / \mathrm{s})$ and $T_{A}=0.598(\mathrm{~N} \cdot \mathrm{~m})$ is toward the interior of the graph, meaning use is possible.

STEP 4 Confirming allowable load

Finally, check if value is within allowable load range after load value that applies to table is calculated.
[Thrust load]
The total weight is
$1.07+0.21+0.85=2.13(\mathrm{~kg})$
Therefore, the thrust load (Ws) is
$W s=2.13 \times 9.8=20.9(N)$
[Radial load]
Since no radial load is applied,
$\mathrm{W}_{\mathrm{R}}=0(\mathrm{~N})$
[Moment load]
The moment load from the rectangle plate (M1) is
$1.07 \times 9.8=10.5(\mathrm{~N})$
$0.21 \times 9.8=2.06(\mathrm{~N})$
Therefore,
$\mathrm{M}_{1}=10.5 \times 0.075-2.06 \times 0.015=0.76(\mathrm{~N} \cdot \mathrm{~m})$
The moment load from the rectangular parallelepiped $(\mathrm{M} 2)$ is $0.85 \times 9.8=8.3(\mathrm{~N})$
Therefore,
$\mathrm{M} 2=8.3 \times 0.09=0.75(\mathrm{~N} \cdot \mathrm{~m})$

When M_{1} and M 2 are totaled,
$\mathrm{M}=0.76+0.75=1.51(\mathrm{~N} \cdot \mathrm{~m})$
$\frac{W s}{W \operatorname{Wmax}}+\frac{W R}{W R \max }+\frac{M}{M \max }$
$\frac{20.9}{200}+\frac{0}{200}+\frac{1.51}{5.5}=0.4 \leq 1.0$
The total load value is within the allowable load value, so FGRC-30 can be selected.
(1) Thrust load (axial load)

(2) Radial load (axial load)

(3) Moment load (axial load)

FGRC ${ }_{\text {series }}$

Selection example [Wall-mounted]

Load details

(Distance from center of rotation to rectangle plate load center)
Travel time: 1.8 s
Angular acceleration/deceleration: $1000 \mathrm{deg} / \mathrm{s}^{2}(0.1 \mathrm{G})$

STEP 1 Confirming positioning time

Positioning time is 1.57 s according to operation conditions.
This is lower than the required travel time of 1.8 s , so proceed to the next step.

Set value

Angular speed	V	$125 \mathrm{deg} / \mathrm{s}$
Angular acceleration	a	$1000 \mathrm{deg} / \mathrm{s}^{2}$
Angular deceleration	d	$1000 \mathrm{deg} / \mathrm{s}^{2}$
Travel angle	S	180 deg

Calculated value

Achieved angular speed	Vmax	$424.3 \mathrm{deg} / \mathrm{s}$
Effective angular speed	Vb	$125 \mathrm{deg} / \mathrm{s}$
Acceleration time	Ta	0.125 s
Deceleration time	Td	0.125 s
Constant speed time	Tc	1.315 s
Positioning time	T	1.57 s

STEP 2 Confirming load moment of inertia

Calculate the moment of inertia I, and then temporarily select a model from the angular speed and allowable moment of inertia graph.
[Rectangular parallelepiped]

$$
I_{1}=0.2 \times \frac{\left(0.01^{2}+0.15^{2}\right)}{12}+0.2 \times 0.105^{2}=0.00258\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

[Cube]

$$
\mathrm{I}_{2}=0.58 \times \frac{\left(0.06^{2}+0.06^{2}\right)}{12}=0.00035\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

Therefore, the overall moment of inertia is as follows.
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=0.00293\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
From the graph of angular speed and allowable moment of inertia, select FGRC-10 [DC48V], which satisfies the allowable moment of inertia at angular speed $125 \mathrm{deg} / \mathrm{s}$.

Technical data

STEP 3 Confirming required torque

Calculate the load torque and confirm that it is within the range in the graph of angular speed and output torque．
Calculate the load torque using the gravitational resistance load（ T_{R} ）and inertia load（TA）．
［Resistance load］

$$
\begin{align*}
\mathrm{TR} & =3 \times 0.2 \times 9.8 \times 0.105 \\
& =0.617(\mathrm{~N} \cdot \mathrm{~m}) \quad \ldots \ldots .(2 \tag{2}
\end{align*}
$$

［Inertia load］
Set acceleration／deceleration from $\quad a=d=1000 \mathrm{deg} / \mathrm{s}^{2}$

$$
\begin{align*}
\dot{\omega} & =1000 \times \frac{\pi}{180} \\
& =17.45 \mathrm{rad} / \mathrm{s}^{2} . \tag{3}
\end{align*}
$$

From（1）and（3），inertia load（TA）is
［48 VDC］＜FGRC－10＞

STEP 4 Confirming allowable load

Finally，check if value is within allowable load range after load value that applies to table is calculated．

［Thrust load］

Since no thrust load is applied，
$\mathrm{Ws}=0(\mathrm{~N})$

［Radial load］

The total weight is
$0.2+0.58=0.78(\mathrm{~kg})$
Therefore，the radial load $\left(W_{R}\right)$ is
$W_{R}=0.78 \times 9.8=7.64(N)$

［Moment load］

Based on the figure to the lower right，the moment load (M) is $M=0.03 \times(0.2+0.58) \times 9.8=0.23(N \cdot m)$

Therefore，
（1）Thrust load（axial load）

（2）Radial load（axial load）
（3）Moment load（axial load）

$\frac{W s}{W s \max }+\frac{W R}{W R \max }+\frac{M}{M \max }$
$\frac{0}{80}+\frac{7.64}{80}+\frac{0.23}{2.5}=0.19 \leq 1.0$
Therefore，the total load value is within the total allowable load，so FGRC－10 can be selected．

FGRC ${ }_{\text {series }}$

Table deflection *Reference value

Table deflection at 100 mm away from center of rotation when moment load is applied to FGRC. (It is assumed that the table is in a non-rotating stationary state.)
Table deflection

Deflection: Displacement during 180° travel *Reference value

Technical data
Figure for moment of inertia calculation
When rotary shaft passes through the workpiece

$\frac{\text { 욜 }}{5}$	Sketch	Requirements	Moment of inertia $\mathrm{kg} \cdot \mathrm{m}^{2}$	Rasius of iotation $\mathrm{K}_{1}{ }^{2}$	Remarks
$\begin{aligned} & 9 \\ & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{\pi}{0} \end{aligned}$		－Diameter $\mathrm{d}(\mathrm{m})$ －Weight $\mathrm{M}(\mathrm{kg})$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{8}$	$\frac{d^{2}}{8}$	－No mounting direction For sliding use， contact CKD．
		－Diameter $\quad d_{1}(\mathrm{~m})$ －Weight d_{1} section $\mathrm{M}_{2}(\mathrm{~m})$ m_{2} section $\mathrm{M}_{2}(\mathrm{~kg})$	$\mathrm{I}=\frac{1}{8}\left(\mathrm{M}_{1} \mathrm{~d}_{1}{ }^{2}+M_{2 d} \mathrm{~d}^{2}\right)$	$\frac{\mathrm{d}_{1}{ }^{2}+\mathrm{d} 2^{2}}{8}$	－Ignore when the d 2 section is extremely small compared to the d_{1} section
		－Bar length $R(\mathrm{~m})$ －Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{3}$	$\frac{\mathrm{R}^{2}}{3}$	Mounting direction is horizontal －Oscillating time changes when the mounting direction is vertical
		－Bar lengthWeight R_{1} R_{2} M_{1} M_{2}	$\mathrm{I}=\frac{\mathrm{M}_{1} / \mathrm{R}_{1}{ }^{2}}{3}+\frac{M_{2} / R_{2}{ }^{2}}{3}$	$\frac{R_{1}{ }^{2}+\mathrm{R}^{2}{ }^{2}}{3}$	－Mounting direction is horizontal －Oscillating time changes when the mounting direction is vertical
		－Bar length $R(\mathrm{~m})$ －Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{MR}^{2}}{12}$	$\frac{\mathrm{R}^{2}}{12}$	－No mounting direction
		Plate length a_{1} Side length a_{2} Weight b M_{1} M_{2}	$I=\frac{M_{1}}{12}\left(4 a_{1}^{2}+b^{2}\right)+\frac{M_{2}}{12}\left(4 a_{2}^{2}+b^{2}\right)$	$\frac{\left(4 a a_{1}^{2}+b^{2}\right)+\left(4 a_{2}^{2}+b^{2}\right)}{12}$	－Mounting direction is horizontal －Oscillating time changes when the mounting direction is vertical
			$I=\frac{M}{12}\left(a^{2}+b^{2}\right)$	$\frac{a^{2}+b^{2}}{12}$	－No mounting direction For sliding use， contact CKD．

			$I=M_{1}\left(R_{1}{ }^{2}+k_{1}{ }^{2}\right)+\frac{M_{2} R_{2}{ }^{2}}{3}$	Calculate $\mathrm{k}_{1}{ }^{2}$ according to shape of concentrated load	－Mounting direction is horizontal When M2 is extremely small compared to M1，it may be calculated as $\mathrm{M} 2=0$

How to convert load Jı to rotary actuator shaft rotation when using with gear

$\begin{aligned} & \text { \% } \\ & \stackrel{\circ}{0} \\ & \hline 0 \end{aligned}$		－Gear Rotary side（No．of teeth）a Load side（No．of teeth） Load moment of inertia	Load moment of inertia for the rotary actuator＇s shaft rotation $I_{H}=\left(\frac{a}{b}\right)^{2} I L$	When gear shape is larger，gear moment of inertia should be considered．

	$\frac{\ddot{\circ}}{\frac{\ddot{3}}{5}}$	Sketch	Requirements		Moment of inertia l kg m^{2}	Remarks
$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$			- Side length - Distance from rotary shaft to load center - Weight	$\begin{gathered} \mathrm{a}(\mathrm{~m}) \\ \mathrm{b}(\mathrm{~m}) \\ \mathrm{R}(\mathrm{~m}) \\ \mathrm{M}(\mathrm{~kg}) \end{gathered}$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+M R^{2}$	- Same for cube
0	\qquad		- Side length - Distance from rotary shaft to load center - Weight	$\begin{aligned} & \mathrm{h}_{1}(\mathrm{~m}) \\ & \mathrm{h}_{2}(\mathrm{~m}) \\ & \\ & \mathrm{R}(\mathrm{~m}) \\ & \mathrm{M}(\mathrm{~kg}) \end{aligned}$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{~h}_{1}{ }^{2}+h_{2}{ }^{2}\right)+M R^{2}$	- Cross section is for cube only
1			- Diameter Distance from rotary shaft to load center - Weight	$\begin{array}{r} \mathrm{d}(\mathrm{~m}) \\ \mathrm{R}(\mathrm{~m}) \\ \mathrm{M}(\mathrm{~kg}) \end{array}$	$\mathrm{I}=\frac{M \mathrm{~d}^{2}}{16}+M \mathrm{R}^{2}$	
$\frac{\mathrm{C}}{\mathrm{O}}$			- Diameter - Distance from rotary shaft to load center - Weight	$\begin{aligned} & \mathrm{d}_{1}(\mathrm{~m}) \\ & \mathrm{d}_{2}(\mathrm{~m}) \\ & \\ & \mathrm{R}(\mathrm{~m}) \\ & \mathrm{M}(\mathrm{~kg}) \end{aligned}$	$I=\frac{M}{16}\left(d_{1}{ }^{2}+d_{2} 2^{2}\right)+M R^{2}$	

* To find moment of inertia, first convert load, jig, etc., to simple shapes with modeling, then calculate values.

For the combined load, calculate each inertial moment and their total.

