Product MAP with brake function

1) Cylinder with position locking and brake

ULK* JSK/M2

JSC3/JSC4 USSD UFCD USC

JSB3 LMB LML

Model	Function	Structure/Operation	onal principle	Driving cylinder	Features
ULKP		Swash pl Brake operating principle Brake spring Brake plate Brak	When air is discharged from port A, the brake plates A and B tilt to the arrow direction from the fulcrum. This boosts the brake force by generating cylinder thrust, enabling retention of the piston rod.	SCP*2 φ16	Cylinder with brake. It can be stopped or held stationary during operation. JSG saves more space
ULK		● Brake release principle Port ②	When air is supplied from port A, the brake plates A and B are pushed by the release piston. The brake plates A and B become perpendicular to the piston rod, and the piston rod becomes free to move.	CMK2 φ20 to φ40	in the brake area when compared to the conventional JSC3 Series. The ULK also saves more space by reducing the brake
JSK2	With brake (Stop when operating)	Rod clam Brake release principle Port A Piston	ping Air supplied from port A pushes the piston under it and opens the	CMK2 φ20 to φ40	height compared to the conventional JSK2
JSM2	. 5,	Lever Eccentric ring Piston rod	lever. The eccentric rings directly connected to the lever rotate and release the piston rod.	CMA2 φ20 to φ40	Series. [Applications] (1) When multipoint
JSG		Brake operating principle	If air is discharged from port A,	SCG φ40 to φ100	positioning is required (2) When position locking is required
JSC3		Port A	the eccentric rings rotate with the spring force, generating an eccentric load to brake the	SCA2 φ40 to φ100	(3) When emergency stop is required (4) When locking a
JSC4			piston rod.	SCS2 φ125 to φ180	workpiece
USSD	Free position locking (Retain stationary state)	Round slit m Port A Lock metal B	New long life position locking mechanism is used. Applying torque M to the lock metal generates axial force F. This force holds the rod.	SSD φ25 to φ100	Cylinder with position locking mechanism (for holding cylinder stationary). 2 lock direction Opposite locking direction is free
UFCD		A F	000	FCD φ25 to φ63	
USC		Rod contact surface	iew A View B When locked When unlocked	SCA2 φ40 to φ100	[Application] When position locking is required

2) Braking unit

•	•		
Model	Function	Size	Features
JSB3	Brake (Stop when operating)	Rod size φ16 to φ45	A module of the brake mechanism of JSC3 Series. Able to stop the movable rod immediately and lock it firmly, it can be used in safety mechanisms and clamping mechanisms of many kinds of devices.
LMB	Stationary state	Rail width: 15/20/25	A lock unit installed in a linear guide. When used with a system incorporating a linear guide, this lock unit can
LML	locked	THK,	be used to lock a workpiece after moving it to a specified position, or to enable emergency stop for safety, etc. LMB is narrower than LML, and LML is lower-profile than LMB.

JSG

With brake/position locking

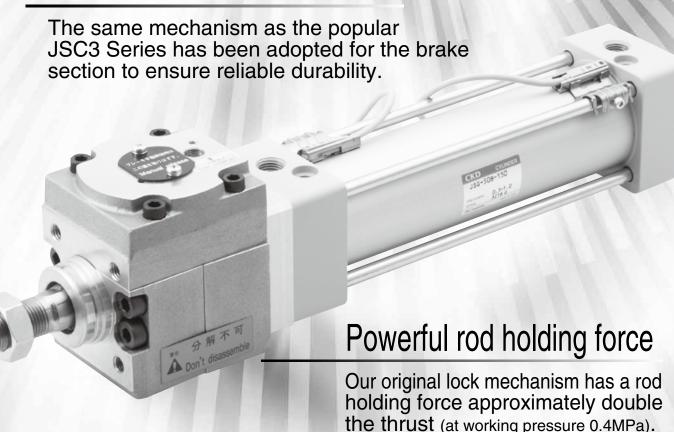
Tie rod cylinder with brake

φ40/φ50/φ63/φ80/φ100

CONTENTS

Product introduction Series variation	728 730
Double acting/single rod (JSG)Double acting/with valve for brake release (JSG-V)	732 732
JSG Series common dimensions	748
Applications	751
⚠ Safety precautions	752

LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 RCS PCC SHC MCP MFC BBS RRC RV3* NHS HR LN Hand Chuk MecHnd/Chuk ShkAbs SpdContr


Ending

LCW LCR

Succeeding the outstanding traits of the JSC3.

The JSC3 Series brake mechanism popular for its high stopping accuracy, powerful holding force and superb reliability has been incorporated into the new environmentally friendly cylinder SCG Series. This new tie-rod JSG cylinder with brakes is free of harmful substances and is compliant with RoHS Directives. (\$\phi\$ 40 to \$\phi\$ 100)

Reliable and accomplished brake mechanism

Evolving into a smaller, easier-to-use cylinder.

LCM

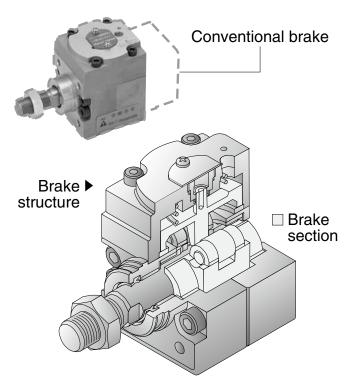
ULK*

USSD UFCD

JSB3

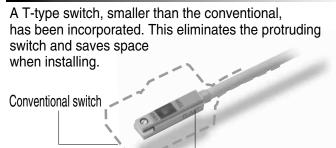
LMB

LBC


BBS RRC

LN Chuk ShkAbs

Endina


Compact and reliable brake section

Light weight

The weight has been reduced by an average of 17% compared to the conventional cylinder.

Built-in compact switch

New switch mounting method

The switch can be easily and smoothly fixed with the switch fitting using our original shape.

(1) Easy switch mounting
The mechanism which
sandwiches the tie-rod
allows the switch position
to be adjusted
without supporting the switch body.

(2) Complete fixing with screw Fixing is completed by adjusting the switch position and then tightening the screw.

The T-type switch in the rail can be finely adjusted.

Click

Ecological products

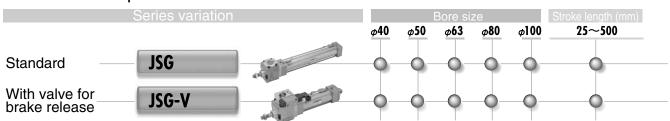
All substances which could adversely affect the environment, including lead and hexavalent chrome, have been eliminated from the cylinder body and cylinder switch.

This product complies with the RoHS Directive issued by the EU.

KOH2

Magnet provided as standard

Switches can be additionally mounted on all products.


Space saving

The overall length of the cylinder has been shortened compared to the conventional JSC3, thereby reducing the installation space.

Unification in white

White has been adopted for the product surface color to match various devices.

JSG Series products

T-type switch

CKD

LCW
LCR
LCG
LCX
LCM
STM
STG
STS/STL
STR2
UCA2
ULK*

UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
JSB3
LMB

HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2

PCC SHC MCP GLC MFC BBS RRC GRC

GRC RV3* NHS HR LN Hand Chuk

MecHnd/Chuk
ShkAbs
FJ
FK

SpdContr Ending

Series variation

Tie rod cylinder with brake JSG Series

	,
LCW	
LCR	
LCG	
LCX	
LCX LCM	
STM	
STG	ı
STS/STL	
STR2	
UCA2	
ULK*	
JSK/M2	
JSG	
JSC3/JSC4	
USSD	
UFCD	
USC	
JSB3	
LMB	
LML	
HCM	
HCA	
LBC CAC4	
CAC4	
UCAC2	
CAC-N	
UCAC-N RCC2	
RCC2	
RCS	
PCC	
SHC MCP	
MCP	
GLC	
MFC BBS	
BBS	
RRC	
GRC	
RV3*	
RV3*	
RV3*	

Chuk MecHnd/Chuk ShkAbs

SpdContr Ending

Variation	Model No. JIS symbol										Min. stroke length					
			25	50	75	100	150	200	250	300	350	400	450	500		
Double acting/ single rod	JSG	φ40 φ50/φ63 φ80 φ100	•	•	•	•	•	•	•	•	•	•	•	•	1	
Double acting/ with valve for brake release	JSG-V	φ40 φ50/φ63 φ80 φ100	•	•	•	•	•	•	•	•	•	•	•	•	1	

LCW LCR LCG LCX LCM ●: Standard, ◎: Option, ○: Custom order, ■: Not available STM STG

STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML HCM

RCS PCC SHC MCP GLC MFC BBS RRC RV3* NHS HR LN Hand Chuk MecHnd/Chuk

ShkAbs

FK SpdContr Ending

									_			-, -			, _				- , -					0.70
						M	ounti	ng				Cus	hion	Op	tion			Acces	ssory	,				STG STS/STL
Max. stroke length	Available stroke length	Custom stroke length	Basic	Axial foot	Rod side flange	Head side flange	Eye bracket	Clevis bracket	Rod side trunnion	Head side trunnion	Intermediate trunnion	Two-sided air cushion	Two-sided rubber cushion	Bellows (60°C)	Piston rod material stainless steel	Rod eye	Rod clevis	Eye bracket	Clevis bracket	Eye bracket	Trunnion No. 2 bracket	Switch	Page	STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML HCM
			00	LB	FA	FB	CA	СВ	TA	ТВ	TC	В	D	J	М	1	Υ	В1	B2	ВЗ	B4			HCA LBC
600 700 800	800 1200 1400 1500	1	•	•	•	•	•	•	•	•	•	•	0	0	0	0	0	0	0	0	0	0	732	CAC4 UCAC2 CAC-N UCAC-N RCC2
600 700 800	800 1200 1400 1500	1	•	•	•	•	•	•	•	•	•	•		0	0	0	0	0	0	0	0	0	732	RCG2 RCS PCC SHC MCP GLC

LCW LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML НСМ **HCA** LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 **RCS** PCC SHC MCP GLC MFC BBS RRC GRC RV3

NHS

Ending

HR
LN
Hand
Chuk
MecHnd/Chuk
ShkAbs
FJ
FK
SpdContr

Tie rod cylinder with brake Double acting single rod/double acting with valve for brake release

JSG/JSG-V Series

Bore size: φ40/φ50/φ63/φ80/φ100

JIS symbol Double acting

● Double acting, with valve for brake release

Specifications

Choculous													
Descriptions				JSG					JSG-V				
Bore size	mm	φ40	φ50	φ63	φ80	φ100	φ40	φ50	φ63	φ80	φ100		
Actuation				ouble actin	g			Double	e acting/witl	n valve			
Working fluid			Co	mpressed	air	,		Co	mpressed	air			
Max. working pro	essure MPa		1.0 (*	≈150 psi, 10) bar)			0.7 (≈100 psi, 7	bar)			
Min. working pre	ssure MPa		0.3	(≈44 psi, 3	bar)		0.3 (≈44 psi, 3 bar)						
Proof pressure	MPa		1.6 (*	≈230 psi, 16	6 bar)			1.6 (*	≈230 psi, 16	6 bar)			
Ambient tempera	ature °C	-1	0 (14°F) to	60 (140°F)	(no freezin	g)	-1	0 (14°F) to	60 (140°F)	(no freezin	g)		
Dowt size	Brake section	Rc	1/8	Rc	1/4	Rc3/8	Ro	1/8		Rc1/4			
Port size	Cylinder	Rc	1/4	Rc	3/8	Rc1/2	Ro	1/4	Rc	Rc1/2			
Stroke	With rubber cushion		^{+1.4} ₀ (to 1	1000), +1.8 (1	to 1500)			$^{+1.4}_{0}$ (to 1000), $^{+1.8}_{0}$ (to 1500)					
tolerance mm	With air cushion	+1.0 0	(to 360), +1	4 (to 1000)), +1.8 (to 15	00)	^{+1.0} (to 360), ^{+1.4} (to 1000), ^{+1.8} (to 1500)						
Working piston s	speed mm/s	50 to 1000	(Operate wit	thin the allow	vable absorb	ed energy.)	50 to 1000	(Operate wit	thin the allov	vable absorb	ed energy.)		
Cushion		Either air	cushion or	rubber cus	hion can be	selected	Either air	cushion or	rubber cus	hion can be	selected		
Effective air cushi	on length mm	8.6	13.4	13.4	15.4	15.4	8.6	13.4	13.4	15.4	15.4		
Lubrication		Not required (use turbine oil o	lass 1 ISO VG	32 if necessary	for lubrication)	Not required (use turbine oil o	lass 1 ISO VG	32 if necessary	for lubrication)		
Stopping accura	cy mm		±1 (30	00 mm/s, no	load)			±1 (30	00 mm/s, no	load)			
Holding force	N	980	1569	2451	3922	6178	980	1569	2451	3922	6178		
Allowable	With rubber cushion	0.9	1.6	1.6	3.3	5.8	0.9	1.6	1.6	3.3	5.8		
absorbed energy J	With air cushion	3.7	8.0	14.4	25.4	45.6	5.6 3.7 8.0 14.4 25.4 45						

Electrical specification for brake valve

Descriptions		Specifications				
Rated voltage (V)	100 AC(50/60 Hz)	200 AC(50/60 Hz)	24 DC			
Starting current (A)	0.056/0.044	0.028/0.022	0.075			
Holding current (A)	0.028/0.022	0.014/0.011	0.075			
Power consumption (W)	1.8	/1.4	1.8			
Thermal class B (molded coil)						

- *1 : 100/200 VAC coil is available for 110/220 VAC (60 Hz).
- *2 : The valve specifications are the same as those of the standard model 4KB2. For details, refer to "Pneumatic Valves (CB-23SA)". Contact CKD when placing an order, as model numbers differ.

Stroke length

Bore size (mm)	Standard stroke length (mm)	Max. stroke length (mm)	Available stroke length (mm)	Min. stroke length (mm)
φ40	25/50/75/100		800	
φ50	150/200/250	600	1200	
φ63	300/350/400		1200	1
φ80	450/500	700	1400	
φ100	450/500	800	1500	

- *1 : The custom stroke length is available in 1 mm increments.
- *2 : If the maximum stroke is exceeded, product specifications may not be met, depending on operating conditions. Contact CKD in this case.
- $\mbox{^*3}$: The available stroke lengths for models with bellows are as shown below. $\phi 40 \colon 500 \text{ mm}$

φ50, φ63: 600 mm

φ80, φ100: 750 mm

Specifications

Min. stroke length with switch

● T0/T5 type switch

	D	ifferent mou		ce	Same	e surfac	ce mou	nting	Cente	r trunn	ion mo		Rod side trunnion mounting Position cannot be detected at the rod side stroke end.	Head side trunnion mounting No position detection at head side stroke end.
Switch quantity	1	2	3	4	1	2	3	4	1	2	3	4	1	1
φ40	9	18	36	54	9	48(33)	78(64)	109(94)	81(81)	81(81)	164(142)	164(142)	38	38
φ50	9	18	36	54	9	18	36	54	112(112)	112(112)	121(121)	121(121)	51	53
φ63	10	19	38	57	10	19	38	57	85(73)	85(73)	91(91)	91(91)	41	42
φ80	10	20	39	59	10	20	39	59	96(79)	96(79)	99(99)	99(99)	41	47
φ100	10	20	40	60	10	20	40	60	101(84)	101(84)	105(105)	105(105)	47	53

^{*1:} The values in () are of T*V (radial lead wire).

T8 type switch

• 10 type 3	VILCII													
	D	ifferent mou	t surfac	се	Same	e surfa	ce mou	ınting	Cente	r trunn	ion mo		Rod side trunnion mounting Position cannot be detected at the rod side stroke end.	Head side trunnion mounting No position detection at head side stroke end.
Switch quantity	1	2	3	4	1	2	3	4	1	2	3	4	1	1
φ40	9	18	36	54	9	54(31)	84(62)	115(92)	87(87)	87(87)	178(148)	178(148)	41	41
φ50	9	18	36	54	9	18	36	54	116(116)	116(116)	121(121)	121(121)	54	55
φ63	10	19	38	57	10	19	38	57	89(77)	89(77)	99(99)	99(99)	44	44
φ80	10	20	39	59	10	20	39	59	100(75)	100(75)	111(111)	111(111)	43	49
φ100	10	20	40	60	10	20	40	60	105(80)	105(80)	117(117)	117(117)	49	55

^{*1:} The values in () are of T*V (radial lead wire).

T2/T3 switch

12/13 SWI		ifferent mou		ce	Same	e surfa	ce mou	ınting	Cente	r trunn	ion mo	_	Rod side trunnion mounting Position cannot be detected at the rod side stroke end.	
Switch quantity	1	2	3	4	1	2	3	4	1	2	3	4	1	1
φ40	5	10	20	30	5	40(33)	70(64)	101(94)	69(60)	69(60)	152(121)	152(121)	32	32
φ50	5	10	20	30	5	10	20	30	71(62)	71(62)	71(61)	71(61)	31	32
φ63	6	11	21	32	6	11	21	32	77(68)	77(68)	77(68)	77(68)	37	38
φ80	6	11	22	33	6	11	22	33	88(79)	88(79)	88(80)	88(80)	37	43
φ100	6	11	22	33	6	11	22	33	93(84)	93(84)	93(85)	93(85)	43	49

^{*1:} The values in () are of T*V (radial lead wire).

● T1/T2Y/T3Y/T2W/T3W/T2YD switches

	D	ifferent mou	t surfac	ce	Same	e surfac	ce mou	ınting	Cente	r trunn	ion mo		Rod side trunnion mounting Position cannot be detected at the rod side stroke end.	Head side trunnion mounting No position detection at head side stroke end.	
Switch quantity	1	2	3	4	1	1 2 3 4				2	3	4	1	1	
φ40	6	11	22	33	6	62(49)	92(80)	123(110)	91(66)	91(66)	182(127)	182(127)	43	43	
φ50	6	12	24	36	6	12	24	36	93(68)	93(68)	93(68)	93(68)	42	43	
φ63	6	12	24	36	6	12	24	36	99(74)	99(74)	99(74)	99(74)	48	49	
φ80	7	13	25	38	7	13	25	38	110(85)	110(85)	110(86)	110(86)	48	54	
φ100	7	13	26	39	7	13	26	39	115(90)	115(90)	115(92)	115(92)	54	60	

^{*1:} The values in () are of T*V (radial lead wire). T2YD does not have a radial lead wire (V).

LCW LCR LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD **UFCD**

UFCD USC JSB3 LMB LML HCM HCA LBC

HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 RCS PCC SHC MCP GLC

MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HR
LN
Hand
Chuk
MecHndlChuk
ShkAbs
FJ
FK

SpdContr Ending

^{*2:} When the stroke length is 15 mm or less, the two switches could turn ON at the same time. In this case, adjust switch mounting positions to be as far apart as possible.

^{*2:} When the stroke length is 15 mm or less, the two switches could turn ON at the same time. In this case, adjust switch mounting positions to be as far apart as possible.

^{*2:} When the stroke length is 15 mm or less, the two switches could turn ON at the same time. In this case, adjust switch mounting positions to be as far apart as possible.

^{*2:} When the stroke length is 15 mm or less, the two switches could turn ON at the same time. In this case, adjust switch mounting positions to be as far apart as possible.

Switch specifications

LCW

LCR

LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML НСМ **HCA** LBC CAC4 UCAC2

CAC-N

UCAC-N

RCC2

RCS

PCC SHC MCP GLC MFC

BBS
RRC
GRC
RV3*
NHS
HR
LN
Hand
Chuk
MetholChuk
ShkAbs

FK

SpdContr

Ending

● 1-color/2-color display/for AC magnetic field proof

				/ to mag	J												
		Proximity 2-wire	Prox	imity 2	-wire	Р	roximi	ty 3-wi	re			Ree	d 2-wir	e (*4)			Proximity 2-wire
Descrip	tions	T1H/ T1V			T2WH/ T2WV			T3YH/ T3YV		I TOH	/T0V	T5H	/T5V	1	[8H/T8	V	T2YD
Applica	tions	For programmable controller, relay, compact solenoid valve		edicated nmable c				ammab er, relay		For progr	rammable er, relay	relay, IČ circ	nable controller, uit (no indicator al connection		rogramr troller, r		For programmable controller
Output m			_				PNP output	NPN output	NPN output					-			
Pwr. sup	p. V.		-				10 to 2	28 VDC						-			
Load vo	ltage	85 to 265 VAC	10 to 3	80 VDC	24 VDC ±10%					12/24 VDC	110 VAC	5/12/24 VDC	110 VAC	12/24 VDC 110 VAC 220 VAC			24 VDC ±10%
Load cu	ırrent	5 to 100 mA	5 to	20 mA	(*2)	100 mA	or less	50 mA	or less	5 to 50 mA	7 to 20 mA	≤50 mA	<20 mA	5 to 50 mA	7 to 20 mA	7 to 10 mA	5 to 20 mA
Indica	ator	LED	LED (Lit	Red/green	Red/green	LED (Lit	Yellow	Red/green	Red/green	1.5	ΞD	\/\/it	hout				Red/green
lamp	ato:	(Lit when	when	LED (Lit	LED (Lit	when	LED (Lit	LED (Lit	LED (Lit		(Lit when ON)		or lamp	LED ((Lit whe	n ON)	LED
lamp		ON)	ON)	when ON)	when ON)	ON)	when ON)	when ON)	when ON)	(Lit Will	CII OIV)	Indicat	or lamp				(Lit when ON)
Leaka	age	≤ 1 mA at 100 VAC,	1	mA or le			10 μΔ	or less					0 mA				1 mA or
curre	nt	≤2 mA at 200 VAC	1 1		:55		10 μΑ	01 1655					UIIIA				less
-		1 m:33	m:33 1 m:18 1 m:33 1 m:18		1 m:18	3 1 m:18 1 m		1 m:33	1 m:18					1	m:33		1 m:61
Weigl	nt g	3 m:87	3 m:49	3 m:87	3 m:49	3 m	1:49	3 m:87	3 m:49	1 m:	:18 3 n	n:49 5	m:80	3	m:87		3 m:166
		5 m:142	:87 3 m:49 3 m:87 3 m:4 142 5 m:80 5 m:142 5 m:8			5 m	1:80	5 m:142	5 m:80					5	m:142		5 m:272

- *1 : Refer to Ending Page 1 for other switch specifications.
- *2 : The above max. load current is 20 mA at 25°C. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than 25°C. (5 to 10 mA at 60°C)
- *3 : Switch for AC magnetic field (T2YD) cannot be used in DC magnetic field.
- *4 : The T0/T5 switch can also be used with 220 VAC. Contact CKD about working conditions.
- *5 : Dimensions depend on switch model No. Refer to Ending Page 18 for details.

Weight table

Unit: kg

-	Bore size		Weig	ht for 0 m	m stroke le	ength		Added weight	Switch	Mounting	Accesso	ry weight
	(mm)	Basic (00)	Foot (LB)	Flange (FA, FB)	Eye bracket (CA)	Clevis bracket (CB)	Trunnion (TA,TB,TC)	/50 mm stroke	weight	bracket weight	ı	Υ
	φ40	1.75	1.89	2.16	1.94	1.94	2.09	0.17	Refer to the		0.09	0.14
-	φ50	2.91	3.07	3.54	3.32	3.32	3.40	0.23	weight in the		0.20	0.33
$\frac{1}{2}$	φ63	3.94	4.28	4.96	4.49	4.51	4.82	0.25	switch	0.008	0.20	0.33
	φ80	7.81	8.24	9.38	9.08	9.09	9.30	0.40	switch specifications.		0.52	0.96
	φ100	12.08	12.94	14.40	13.80	13.83	14.65	0.51	specifications.		0.48	0.92

Product weight for stroke length 0 mm3.07 kg

Weight of rod clevis0.33 kg

Product weight3.07+0.92+0.036+0.016+0.33=4.372 kg

Theoretical thrust table

(Unit: N)

Bore size	Operating					Wo	rking pr	essure N	/IPa				
(mm)	direction	0.05	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
φ40	Push	62.8	1.26×10 ²	1.88×10 ²	2.51×10 ²	3.77×10 ²	5.03×10 ²	6.28×10 ²	7.54×10^{2}	8.80×10^{2}	1.01×10^{3}	1.13×10 ³	1.26×10^{3}
Ψ40	Pull	52.8	1.06×10 ²	1.58×10 ²	2.11×10 ²	3.17×10 ²	4.22×10 ²	5.28×10 ²	6.33×10^{2}	7.39×10^{2}	8.44×10 ²	9.50×10^{2}	1.06×10 ³
φ50	Push	98.2	1.96×10 ²	2.95×10 ²	3.93×10 ²	5.89×10 ²	7.85×10 ²	9.82×10 ²	1.18×10 ³	1.37×10 ³	1.57×10^{3}	1.77×10 ³	1.96×10^{3}
ψ50	Pull	82.5	1.65×10 ²	2.47×10 ²	3.30×10^{2}	4.95×10 ²	6.60×10^{2}	8.25×10 ²	9.90×10^{2}	1.15×10 ³	1.32×10^{3}	1.48×10 ³	1.65×10 ³
φ63	Push	1.56×10^{2}	3.12×10 ²	4.68×10 ²	6.23×10 ²	9.35×10 ²	1.25×10 ³	1.56×10 ³	1.87×10^{3}	2.18×10 ³	2.49×10 ³	2.81×10 ³	3.12×10 ³
Ψοσ	Pull	1.40×10^{2}	2.80×10^{2}	4.20×10^{2}	5.61×10 ²	8.41×10 ²	1.12×10 ³	1.40×10 ³	1.68×10 ³	1.96×10 ³	2.24×10^{3}	2.52×10 ³	2.80×10^{3}
φ80	Push	2.51×10^{2}	5.03×10 ²	7.54×10^{2}	1.01×10 ³	1.51×10 ³	2.01×10 ³	2.51×10 ³	3.02×10^{3}	3.52×10 ³	4.02×10^{3}	4.52×10 ³	5.03×10 ³
Ψου	Pull	2.27×10^{2}	4.54×10 ²	6.80×10^{2}	9.07×10 ²	1.36×10 ³	1.81×10 ³	2.27×10 ³	2.72×10^{3}	3.17×10 ³	3.63×10^{3}	4.08×10 ³	4.54×10^{3}
φ100	Push	3.93×10^{2}	7.85×10 ²	1.18×10 ³	1.57×10 ³	2.36×10 ³	3.14×10 ³	3.93×10 ³	4.71×10 ³	5.50×10 ³	6.28×10 ³	7.07×10 ³	7.85×10^{3}
Ψ100	Pull	3.57×10^{2}	7.15×10^{2}	1.07×10^{3}	1.43×10 ³	2.14×10 ³	2.86×10^{3}	3.57×10^{3}	4.29×10^{3}	5.00×10^{3}	5.72×10^3	6.43×10 ³	7.15×10^3

low to order

LCW LCR

LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD

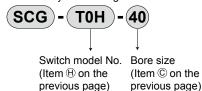
USC JSB3 LMB LML НСМ **HCA** LBC CAC4 UCAC2

CAC-N

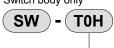
UCAC-N

RCC2

RCS PCC


SHC MCP GLC MFC BBS RRC GRC RV3 NHS HR LN Hand Chuk MecHnd/Chuk ShkAbs

FK


SpdContr Ending

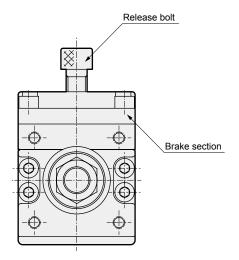
How to order switch

Switch body + mounting bracket set

Switch body only

Switch model No. (Item (H) on the previous page)

Note: Contact CKD when using an environmentfriendly T type switch.


Mounting Bore size (Item © on the previous page) bracket

How to order mounting bracket

Bore size (mm) Mounting bracket		φ40	φ50	φ63	φ80	φ100
Foot (LB)	*1	JSG-LB-40	JSG-LB-50	JSG-LB-63	SCG-LB-80	SCG-LB-100
Flange (FA) (FB)	*2	JSG-FA-40	JSG-FA-50	JSG-FA-63	SCG-FA-80	SCG-FA-100
Eye bracket (CA)		SCG-CA-40	SCG-CA-50	SCG-CA-63	SCG-CA-80	SCG-CA-100
Clevis bracket (CB)	*3	SCG-CB-40	SCG-CB-50	SCG-CB-63	SCG-CB-80	SCG-CB-100

- *1: The foot (LB) mounting bracket is provided as 2 pcs./set.
- *2: Specify the flange (FA) with bellows as "JSG-FA-(bore size)-J".
- *3: Pin, split pin and plain washer are attached.
- *4: All mounting brackets have mounting bolts attached.

How to release the brake section manually

The brakes are released by screwing a bolt into the manual release port (female threads on top of brakes).

(The brake may go out if the bolt is screwed in too far.

Refer to the appropriate screw-in volume in the table below.)

Always remove the bolt during normal use.

Release bolt size

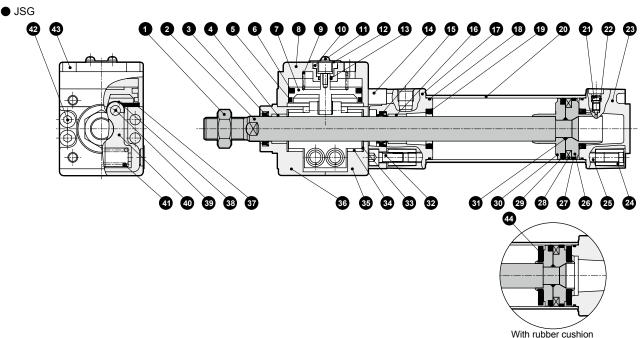
Bore size	Bolt screw	Bolt I	ength	Appropriate
Bole Size	diameter	JSG	JSG-V	screw-in volume
φ40	M12×1.75	16 or more	40 or more	3 rotations or less
φ50	M12×1.75	16 or more	40 or more	4 rotations or less
φ63	M14×2	16 or more	40 or more	4 rotations or less
φ80	M16×2	20 or more	40 or more	4.5 rotations or less
φ100	M18×2.5	20 or more	50 or more	5 rotations or less

Double acting/single rod

LCW LCR

LCG LCX

STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC


JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N

RCC2
RCS
PCC
SHC
MCP
GLC
MFC
BBS
RRC

RV3*
NHS
HR
LN
Hand
Chuk
MecHnd/Chuk
ShkAbs

FK SpdContr Ending

Internal structure and parts list

						With rubber cus	SNION
No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Rod nut	Steel	Nickel plating	24	Round nut	Steel	Zinc chromate
2	Piston rod	Steel	Industrial chrome plating	25	Tie rod	Steel	Zinc chromate
3	Dust wiper	Nitrile rubber		26	Piston H	φ40: Aluminum alloy	
4	Bush	Oil impregnated bearing alloy		20	FISIOITTI	$\phi 50$ to $\phi 100$: Aluminum alloy die-casting	
5	Wear ring	Acetal resin		27	Wear ring	Polyacetal resin	
6	Piston packing B	Nitrile rubber		28	Magnet	Resin	
7	Brake piston	Cast iron	Phosphate coating	29	Piston packing	Nitrile rubber	
8	Body H	Aluminum casting	Chromate	30	Piston R	φ40: Aluminum alloy	
9	Spring	Piano wire		30	PISION K	$\phi 50$ to $\phi 100$: Aluminum alloy die-casting	
10	Piston guide	Cast iron	Phosphate coating	31	Piston gasket	Nitrile rubber	
11	Phillips pan head machine screw/captive washer	Steel	Zinc chromate	32	Hexagon socket head cap screw	Alloy steel	Black finish
12	Dust cover	Aluminum alloy	Alumite	33	Thrust washer		
13	Gasket	Nitrile rubber		34	Bush	Dry bearing	
14	Joint plate	Aluminum alloy	Alumite	35	Body R	Aluminum casting	Chromate
15	Rod packing	Nitrile rubber		36	Body F	Aluminum casting	Chromate
16	Bush	Oil impregnated bearing alloy		37	Cushion rubber	Urethane rubber	
17	Rod cover	Aluminum alloy die-casting	Paint	38	Bearing		
18	Cylinder gasket	Nitrile rubber		39	Pin	Alloy steel	
19	Cushion packing	Nitrile rubber, steel	Zinc chromate	40	Brake shoe metal	Cast iron	Nickel plating
20	Cylinder tube	Aluminum alloy	Hard alumite	41	Spring	Piano wire	
21	Cushion needle	Copper alloy	Nickel plating	42	Hexagon socket head cap screw	Alloy steel	Black finish
22	Needle gasket	Nitrile rubber		43	Hexagon socket head cap screw	Alloy steel	Black finish
23	Head cover	Aluminum alloy die-casting	Paint	44	Cushion rubber	Urethane rubber	

Note: Never disassemble the brake section, as the powerful spring installed can be dangerous.

Repair parts list

With air cushion

Bore size (mm)	Kit No.	Repair parts No.
φ40	JSG-40BK	
φ50	JSG-50BK	3 1 1 3
φ63	JSG-63BK	19 29 29
φ80	JSG-80BK	29
φ100	JSG-100BK	

Note: Specify the kit No. when placing an order.

Material of mounting bracket

Mounting	Material	Remarks
LB	Steel	Nickel plating
FA/FB	Steel	Paint
CA/CB	Cast iron	Paint
TA/TB/TC	Cast iron	Paint

With rubber cushion

Bore size (mm)	Kit No.	Repair parts No.
φ40	JSG-40DK	
φ50	JSG-50DK	3 (5 (8
φ63	JSG-63DK	22 27 29
φ80	JSG-80DK	44
φ100	JSG-100DK	7

Note: Specify the kit No. when placing an order.

Dimensions

LCW

LCR LCG

LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD

UFCD

USC

JSB3

LMB

LML

НСМ

HCA LBC

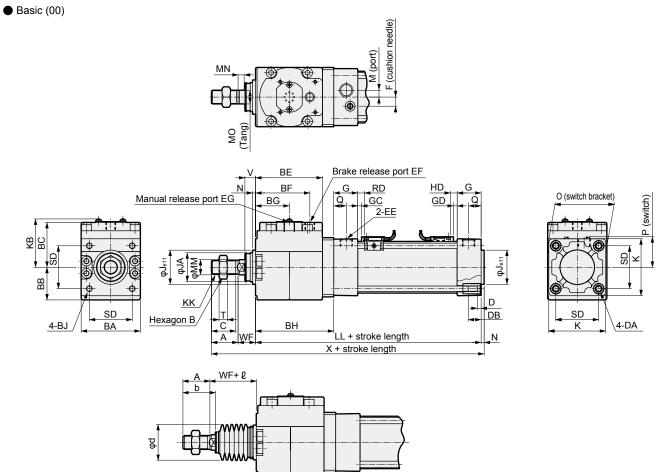
CAC4 UCAC2

CAC-N

UCAC-N

RCC2

RCS PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HR


LN

Hand

Chuk

MecHnd/Chuk

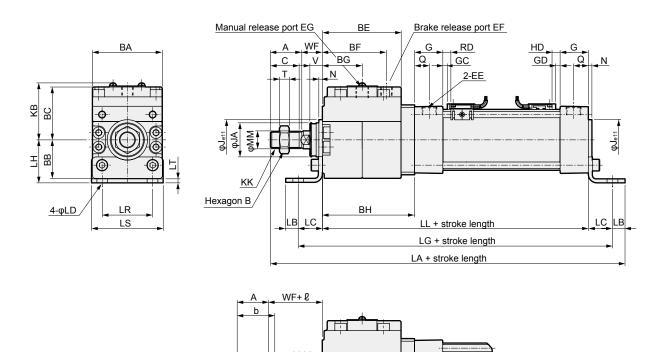
ShkAbs FJ FK SpdContr Ending

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (φ40: +6mm, φ50/φ63: +8mm, φ80/φ100: +10mm)
- *2 : RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).
- *4 : Refer to page 748 for HD, RD and protruding dimensions of other switches.

4 . Neiei to pa	ige /·	+0 101	ווט, ו	\D all	u pio	uuiii	y uiiii	CHSIOI	15 01 1	Julei	SWILCI	165.											
Code	Basi	c (00)) basi	c dim	ensid	ons																	
Bore size (mm)	А	В	ВА	вв	вс	ВЕ	BF	ВG	вн	В	J	С	DA	DВ	DC	E	E	E	F	EG	F	G	J
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	M6 de	pth 12	27	M6	16	5	Rc	1/4	Ro	:1/8	M12	9	27	35
φ50	35	27	68	38	54	74	59	39	89	M8 de	pth 12	32	M8	16	5	Rc	1/4	Ro	:1/8	M12	10.5	31.5	40
φ63	35	27	78	43	59	88	71.5	44.5	103	03 M8 depth 14		32	M8	16	5	Rc	3/8	Ro	:1/4	M14	12	31.5	45
φ80	40	32	98	53	72.5			54.5	131	M10 depth 16		37	M10	16	5	Rc3/8		Ro	:1/4	M16	14	38	45
φ100	40	41	118	63	80.5	0.5 129		65.5	151	M10 depth 18		37	M10	16	5	Rc1/2		Rc3/8		M18	15	38	55
Code																							
Bore size (mm)	JA	к	КВ	K	K	* L	1 L	М	ММ	MN	МО	N	o	Q	SD	т	v	WF	*	1 (
φ40	31	52	51.1	M14	×1.5	161(167)	4	16	6	14	4	57	14	38	8	13	21	216(222)			
φ50	38	65	58.6	M183	×1.5	183(191)	5	20	7 17		4	68	15.5	46.5	11	14	23	245(253)			
φ63	38	75	63.6	M18	×1.5	197(205)	9	20	7	17	4	78	16.5	56.5	11	14	23	259(267)			
φ80	43	95	77.1	M22	×1.5	245(255)	11.5	25	10	22	4	95	19	72	13	20	32	321((331)			
φ100	51	114	85.1	M26	×1.5	265(275)	17	30	10	27	4	114	19	89	16 20		32	341(351)			
Code	With	bello	ws												With	swit	ch (T	0∜, Tŧ	5∜, T2	[∦] , T3 [!]	∜, T3F	P∜)	
Bore size	Α	ь	d	WF						2					*	1	*	1	*	1	*	1	Р
(mm)	\^		_ u	VVI	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300	Over 300 to 400	Over 400 to 500	Over 500 to 600	Over 600 to 700	Over 700 to 750	G	С	G	D	R	D	Н	D	
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1((4)	5(8)	5(8)	29
φ50	35	42	47	23	31	31 44 56		69	94	119	144	169	-	-	2.5(6.5)	1((5)	6.5(1	10.5)	5(9)	34
φ63	35	42	47	23	31	31 44 56			94	119	144	169	-	-	2.5(6.5)	1((5)	6.5(1	10.5)	5(9)	40
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	2((7)	12.5(17.5)	6(1	l1)	-
φ100	40	52.5	61	32	29				92	117	142	167	192	204	8(13)	2.5((7.5)	12(17)	6.5(1	11.5)	-

Double acting/single rod

Dimensions


Axial foot (LB)

φ100

61

40 52.5 32

29 42 54

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (φ40: +6mm, φ50/φ63: +8mm, φ80/φ100: +10mm)
- *2 : RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3: Refer to page 747 for dimensions of the type with valves (JSG-V).

	*4 : Refer to page 747 for dimensions of the type with valves (566-7). *4 : Refer to page 748 for HD, RD and protruding dimensions of other switches. Code Axial foot (LB) basic dimensions																					
Code	Axia	l foot	(LB)	basic	dime	ensio	ns															
Bore size (mm)	A	В	ВА	вв	вс	ВЕ	BF	ВG	вн	С	E	E	E	F	EG	G	J	JA	КВ	KK		'1 .L
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc	1/4	Rc	1/8	M12	27	35	31	51.1	M14×1.5	161	(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc	1/4	Rc	1/8	M12	31.5	40	38	58.6	M18×1.5	183	(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc	3/8	Rc	1/4	M14	31.5	45	38	63.6	M18×1.5	197	(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc		Rc		M16	38	45	43	77.1	M22×1.5		(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc	1/2	Rc	3/8	M18	38	55	51	85.1	M26×1.5	265	(275)
Code						Mounting dimensions *1																
Bore size (mm)	ММ	N	Q	т	٧	WF		1 A	LB	LC	LD		'1 ₋G	LH	LR	LS	LT					
φ40	16	4	14	8	13	21	247(253)	11	24	9	209	(215)	33	38	55	3.2	_				
φ50	20	4	15.5	11	14	23	279(287)	11	27	9	237	(245)	40	46	70	3.2					
φ63	20	4	16.5	11	14	23	296(304)	14	27	12	251	(259)	48	56	80	4.5	_				
φ80	25	4	19	13	20	32	361(371)	14	30	12	305	(315)	55	72	95	4.5					
φ100	30	4	19	16	20	32	385(395)	16	32	14	329	(339)	65	89	114	6					
Code	With	bello	ws												With	swite	ch (T	D∜, Tŧ	5∜, T2∖	[∤] , T3∜, T	BP∜)	
Bore size \	Α	b	d	WF			-			2					*	-	*		*1		*1	Р
(mm)	, · ·				50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300	Over 300 to 400	Over 400 to 500	Over 500 to 600	Over 600 to 700	Over 700 to 750	G	С	G	D	RI	D	HD	
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1(4)	5(8	3)	5(8)	29
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)			5)	6.5(1	,	5(9)	34
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	6.5)	1(6.5(1		5(9)	40		
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5) 2			7)	12.5(1	17.5) 6	(11)	-

> 117 142 167

192 204

67 92

FK SpdContr Ending

LCW LCR LCG

LCX LCM STM STG

STS/STI

STR2

UCA2

ULK*

6.5(11.5)

12(17)

2.5(7.5)

8(13)

Dimensions

LCW

LCR LCG

LCX LCM

STM

STG

ULK*

USC

JSB3

LMB

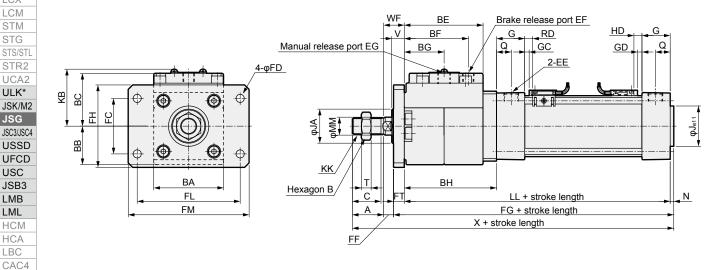
 LML

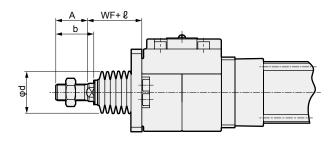
НСМ **HCA** LBC

UCAC2 CAC-N UCAC-N

RCC2 **RCS** PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HR

LN


Hand


Chuk

MecHnd/Chuk ShkAbs FJ FK SpdContr Ending

Rod side flange (FA)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (φ40: +6mm, φ50/φ63: +8mm, φ80/φ100: +10mm)
- *2 : RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).

*4 : Refer to pa	age 7	'48 fo	HD, I	RD an	d pro	trudin	g dim	ensio	ns of o	other	switch	ies.										
Code	Ro	l side	flang	e (FA) basi	c dim	ensi	ons														
Bore size (mm)	А	В	ВА	вв	вс	ВЕ	BF	ВG	вн	С	E	E	E	F	EG	G	J	JA	КВ	KK		*1 LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc	1/4	Rc	1/8	M12	27	35	31	51.1	M14×1	.5 161	(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc	1/4	Rc	1/8	M12	31.5	40	38	58.6	M18×1	.5 183	3(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc	3/8	Rc	1/4	M14	31.5	45	38	63.6	M18×1	.5 197	(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc	3/8	Rc	1/4	M16	38	45	43	77.1	M22×1	.5 245	5(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc	1/2	Rc	3/8	M18	38	55	51	85.1	M26×1	.5 265	(275)
Code									Mou	nting	dime	nsio	ns									
Bore size (mm)	MN	N	Q	т	v	WF	*	1 (FC	FD	FF		1 G	FH	FL	FM	FT					
φ40	16	4	14	8	13	21	216(222)	46	9	11	175	(181)	65	83	101	10					
φ50	20	4	15.5	11	14	23	245(253)	52	9	11	199	(207)	77	100	120	12					
φ63	20	4	16.5	11	14	23	259(267)	62	9	11	213	(221)	92	115	135	12					
φ80	25	4	19	13	20	32	321(331)	63	12	16	265	(275)	100	126	153	16					
φ100	30	4	19	16	20	32	341(351)	75	14	16	285	(295)	120	150	178	16					
Code	Wit	h bell	ows												With	swite	ch (T	o∜, Tŧ	[₩] , T2	∜, T3∜, ˙	Г3Р∜)	
Bore size	Α	b	d	WF						2					*	1	*	1	*	1	*1	P
(mm) \	_^		L	W	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300					Over 700 to 750	G	С	G	D	R	D	HD	
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1(4)	5(8)	5(8)	29

142 167 192 204

> 192 204

117 142 167 2.5(6.5)

2.5(6.5)

8.5(13.5)

8(13)

1(5)

1(5)

2(7)

2.5(7.5)

6.5(10.5)

6.5(10.5)

12.5(17.5)

12(17)

34

40

5(9)

5(9)

6(11)

6.5(11.5)

φ50

φ63

φ80

φ100

42 47

52.5 61

35

35 42 47

40 50 53 32 29 42 54 67

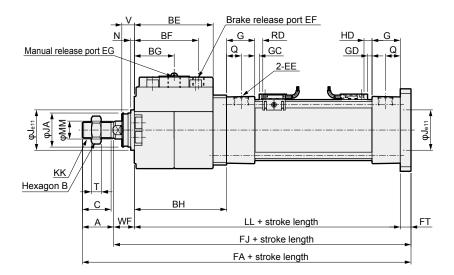
40

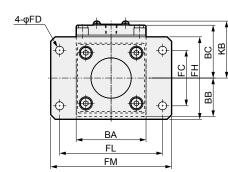
23 31 44

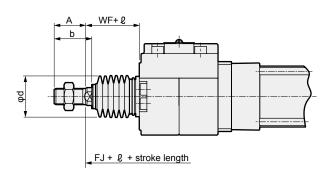
23 31 44 56 69 94 119 144 169

32 29 42 54 67 92

56 69 94 119 144 169


> 92 117


Double acting/single rod


Dimensions

Head side flange (FB)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (ϕ 40: +6mm, ϕ 50/ ϕ 63: +8mm, ϕ 80/ ϕ 100: +10mm)
- *2 : RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).
- *4 : Refer to page 748 for HD, RD and protruding dimensions of other switches.

Code	Head	l side	flanç	ge (FE	3) bas	sic di	mens	ions											
Bore size (mm)	A	В	ВА	вв	вс	ВЕ	BF	ВG	вн	С	EE	EF	EG	G	J	JA	КВ	KK	*1 LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc1/4	Rc1/8	M12	27	35	31	51.1	M14×1.5	161(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc1/4	Rc1/8	M12	31.5	40	38	58.6	M18×1.5	183(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc3/8	Rc1/4	M14	31.5	45	38	63.6	M18×1.5	197(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc3/8	Rc1/4	M16	38	45	43	77.1	M22×1.5	245(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc1/2	Rc3/8	M18	38	55	51	85.1	M26×1.5	265(275)

Code							Mounting	dime	nsior	ıs				
Bore size (mm)	мм	N	Q	т	v	WF	*1 FA	FC	FD	FH	*1 FJ	FL	FM	FT
φ40	16	4	14	8	13	21	222(228)	46	9	65	192(198)	83	101	10
φ50	20	4	15.5	11	14	23	253(261)	52	9	77	218(226)	100	120	12
φ63	20	4	16.5	11	14	23	267(275)	62	9	92	232(240)	115	135	12
φ80	25	4	19	13	20	32	333(343)	63	12	100	293(303)	126	153	16
ω100	30	4	19	16	20	32	353(363)	75	14	120	313(323)	150	178	16

With	bello	ws												With swite	ch (T0∜, Tŧ	5∜, T2∜, T3	⁷ , T3P∜)	
	L .		NA/E					į.	6					*1	*1	*1	*1	Р
\ ^	"	O.	WF	50 or less				Over 200 to 300						GC	GD	RD	HD	P
30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1(4)	5(8)	5(8)	29
35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(10.5)	5(9)	34
35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(10.5)	5(9)	40
40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	2(7)	12.5(17.5)	6(11)	-
40	52.5	61	32	29	42	54	67	92	117	142	167	192	204	8(13)	2.5(7.5)	12(17)	6.5(11.5)	-
	30 35 35 40	A b 30 35 35 42 35 42 40 50	30 35 40 35 42 47 35 42 47 40 50 53	A b d WF 30 35 40 21 35 42 47 23 35 42 47 23 40 50 53 32	A b d WF 50 or 685 30 35 40 21 30 35 42 47 23 31 35 42 47 23 31 40 50 53 32 29	A b d WF 50 or 100 to 1	A b d WF 50 or 100 0 to 150 0	A b d WF	A b d WF	A b d WF Cover 50 (sss) Cover 50 (sss) Cover 100 (sss) Cover 300 (sss) C	A b d WF Cover 50 (ess to 10 100) Cover 100 (to 150) Cover 100 (to 200) Cover 400 (to 200) Cover 300 (to 400) Cover 400 (to 200) Cover 400 (to 300) Cover 400 (to 400) Cover 400 (to 400)	A b d WF	A b d WF	A b d WF Cover 50 (ess) Over 100 (b 150) Over 150 (b 200) Over 200 (b 200) Over 300 (b 200) Over 400 (b 200) Over 400 (b 200) Over 400 (b 200) Over 500 (b 200) Over 700 (b 200) Over 400 (b 200) Over 500 (A b d WF Cover 500 (100 (100 (100 (100 (100 (100 (100	A b d WF Cover 50 (loss) Over 100 (loss) Over 150 (los 200) Over 400 (los 400) Over 500 (los 600) Over 500 (los 600) Over 500 (los 600) Over 600 (los 700) Over 700 (los 700) Over 500 (los 700) Over 600 (los 700) Over 700	A b d WF Cover 50 (loss) Cover 50 (loss) Cover 100 (loss) Cover 200 (loss) Cover 400 (loss) Cover 500	A b d WF

LCW

MecHnd/Chuk

ShkAbs

Dimensions

LCW

LCR LCG

LCX LCM

STM

STG

STS/STL

STR2

UCA2

JSK/M2 JSG JSC3/JSC4 USSD

UFCD USC

JSB3

LMB

 LML

НСМ

HCA LBC

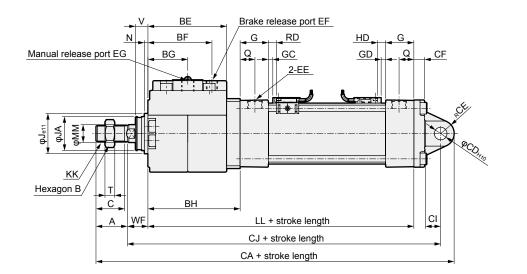
CAC4 UCAC2 CAC-N UCAC-N

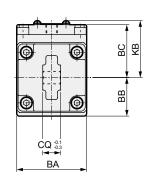
RCC2
RCS
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC

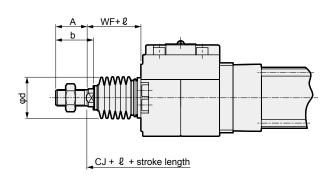
RV3* NHS HR

LN

Hand


Chuk


MecHnd/Chuk

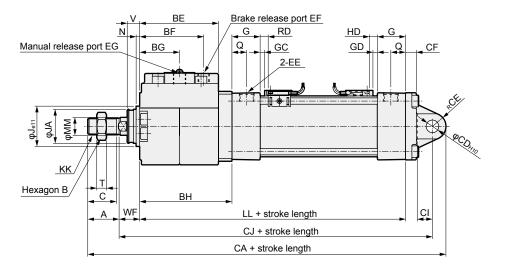

ShkAbs FJ FK SpdContr Ending

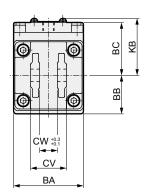
Eye bracket (CA)

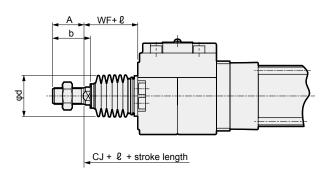
- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (ϕ 40: +6mm, ϕ 50/ ϕ 63: +8mm, ϕ 80/ ϕ 100: +10mm)
- *2 : RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).
- *4 : Refer to page 748 for HD, RD and protruding dimensions of other switches.

1 . I tolol to pt	ago .		, .	(D u	u p.o.		9	0110101		J. 1. 1. 1.	0111101	.00.								
Code	Eye	brack	cet (C	A) ba	sic di	mens	sions													
Bore size (mm)	А	В	ВА	вв	вс	BE	BF	ВG	вн	С	Е	E	EF	EG	G	J	JA	КВ	кк	*1 LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc	1/4	Rc1/8	M12	27	35	31	51.1	M14×1.5	161(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc	1/4	Rc1/8	M12	31.5	40	38	58.6	M18×1.5	183(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc	3/8	Rc1/4	M14	31.5	45	38	63.6	M18×1.5	197(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc	3/8	Rc1/4	M16	38	45	43	77.1	M22×1.5	245(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc	1/2	Rc3/8	M18	38	55	51	85.1	M26×1.5	265(275)
Code							Mou	nting	dime	ensio	ns									
Bore size	DADA	NI		_	V	VA/E	*	1	CD	CE	CE	CI	*1	<u></u>						

Code							Mounting	dime	nsior	าร			
Bore size (mm)	ММ	N	Q	т	v	WF	*1 CA	CD	CE	CF	CI	*1 CJ	cq
φ40	16	4	14	8	13	21	246(252)	10	11	9	13	205(211)	14
φ50	20	4	15.5	11	14	23	286(294)	14	15	12	17	236(244)	20
φ63	20	4	16.5	11	14	23	300(308)	14	15	12	17	250(258)	20
φ80	25	4	19	13	20	32	382(392)	22	23	15	26	319(329)	30
φ100	30	4	19	16	20	32	402(412)	22	23	15	26	339(349)	30


Code	With	bello	ws												With swite	ch (T0∜, Tŧ	5∜, T2∜, T3	[†] , T3P∜)	
Bore size	_	L	al	WF					1	2					*1	*1	*1	*1	Ь
(mm)	_ A	מ	d	WF	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200		Over 300 to 400				Over 700 to 750	GC	GD	RD	HD	P
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1(4)	5(8)	5(8)	29
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(10.5)	5(9)	34
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	1	2.5(6.5)	1(5)	6.5(10.5)	5(9)	40
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	2(7)	12.5(17.5)	6(11)	-
φ100	40	52.5	61	32	29	42	54	67	92	117	142	167	192	204	8(13)	2.5(7.5)	12(17)	6.5(11.5)	-


Double acting/single rod


Dimensions

Clevis bracket (CB)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (ϕ 40: +6mm, ϕ 50/ ϕ 63: +8mm, ϕ 80/ ϕ 100: +10mm)
- *2 : RD and HD dimensions in dimension figures indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).
- *4 : Refer to page 748 for HD, RD and protruding dimensions of other switches.
- *5 : Pin, split pin and plain washer are attached.

, -11-																			
Code	Clev	is bra	cket	(CB)	basic	dime	ensio	ns											
Bore size	_	В	ВА	вв	BC.	BE	DE	ВG	вн	С	EE	EF	EG	G		IA	КВ	KK	*1
(mm)	A	▎▘	DA	ББ	ВС	DE	БГ	В	БП		EE	EF	EG	G	J	JA	VD	ΛΛ	LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc1/4	Rc1/8	M12	27	35	31	51.1	M14×1.5	161(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc1/4	Rc1/8	M12	31.5	40	38	58.6	M18×1.5	183(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc3/8	Rc1/4	M14	31.5	45	38	63.6	M18×1.5	197(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc3/8	Rc1/4	M16	38	45	43	77.1	M22×1.5	245(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc1/2	Rc3/8	M18	38	55	51	85.1	M26×1.5	265(275)

Code							Mounting	dime	nsio	าร				
Bore size (mm)	мм	N	Q	т	v	WF	*1 CA	CD	CE	CF	CI	*1 CJ	cv	cw
φ40	16	4	14	8	13	21	246(252)	10	11	9	13	205(211)	28	14
φ50	20	4	15.5	11	14	23	286(294)	14	15	12	17	236(244)	40	20
φ63	20	4	16.5	11	14	23	300(308)	14	15	12	17	250(258)	40	20
φ80	25	4	19	13	20	32	382(392)	22	23	15	26	319(329)	60	30
ω100	30	4	19	16	20	32	402(412)	22	23	15	26	339(349)	60	30

With	bello	ws												With swite	ch (T0∜, Tŧ	5∜, T2∜, T3	∜, T3P∜)	
	h	al	WE					ı	e					*1	*1	*1	*1	Р
\ ^	D	u	***	50 or less		Over 100 to 150	Over 150 to 200	Over 200 to 300						GC	GD	RD	HD	
30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	1(4)	5(8)	5(8)	29
35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(10.5)	5(9)	34
35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(10.5)	5(9)	40
40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	2(7)	12.5(17.5)	6(11)	-
40	52.5	61	32	29	42	54	67	92	117	142	167	192	204	8(13)	2.5(7.5)	12(17)	6.5(11.5)	-
	30 35 35 40	A b 30 35 35 42 35 42 40 50	30 35 40 35 42 47 35 42 47 40 50 53	A b d WF 30 35 40 21 35 42 47 23 35 42 47 23 40 50 53 32	A b d WF 50 or 1655 or	A b d WF 50 or 100 to 1	A b d WF 50 or 100 0 to 150 0	A b d WF	A b d WF	A b d WF Cover 50 (sss) Cover 50 (sss) Cover 100 (sss) Cover 300 (sss) C	A b d WF	A b d WF	A b d WF	A b d WF Cover 50 (ess) Over 50 (10 150) Over 100 (b 150) Over 150 (b 200) Over 200 (b 200) Over 300 (b 200) Over 400 (b 200) Over 400 (b 200) Over 500 (b 200) Over 700 (b 200) Over 400 (b 200) Over 500 (A b d WF Cover 50 (1658) Over 50 (1658) Over 100 (1658) Over 400 (1658) Over 500 (1658)	A b d WF	A b d WF	A b d WF

LCG LCX LCM STM STG STS/STI STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD **UFCD** USC JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 **RCS** PCC SHC MCP GLC MFC BBS RRC GRC RV3 NHS ${\sf HR}$ LN Hand Chuk MecHnd/Chuk ShkAbs FJ

FK SpdContr Ending

LCW LCR

Dimensions

LCW

LCR LCG

LCX

LCM

STM

STG

STS/STL

STR2 UCA2 ULK*

JSK/M2 JSG

JSC3/JSC4 USSD

UFCD USC

JSB3

LMB

 LML

НСМ

HCA

LBC

CAC4 UCAC2 CAC-N

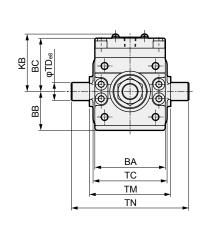
UCAC-N

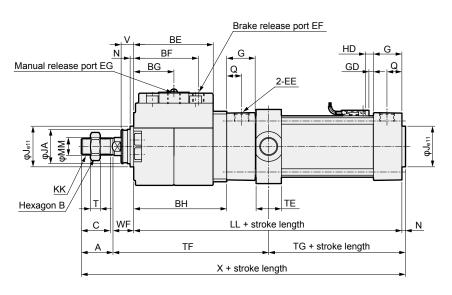
RCC2 **RCS** PCC SHC MCP GLC MFC BBS RRC GRC

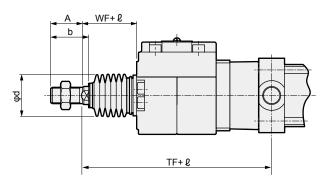
RV3* NHS

HR

LN


Hand


Chuk


MecHnd/Chuk ShkAbs FJ FK SpdContr Ending

Rod side trunnion (TA)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. $(\phi 40: +6mm, \phi 50/\phi 63: +8mm, \phi 80/\phi 100: +10mm)$
- *2 : A switch cannot be installed on the rod side.
- *3: HD in the dimensions indicates the position of switch end, and GD indicates the position of switch rail end.
- *4 : Refer to page 747 for dimensions of the type with valves (JSG-V).

11 14 23

259(267)

*5 : Refer to pa	age 74	18 for	HD a	nd pro	otrudir	ng din	nensi	ons of	other	switc	hes.									
Code	Rod	side	trunn	ion (T	A) ba	isic d	imen	sions												
Bore size (mm)	А	В	ВА	вв	вс	ВЕ	BF	ВG	вн	С	E	E	EF	EG	G	J	JA	КВ	кк	*1 LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc′	1/4	Rc1/8	M12	27	35	31	51.1	M14×1.5	161(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc′	1/4	Rc1/8	M12	31.5	40	38	58.6	M18×1.5	183(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc	3/8	Rc1/4	M14	31.5	45	38	63.6	M18×1.5	197(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc3	3/8	Rc1/4	M16	38	45	43	77.1	M22×1.5	245(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc′	1/2	Rc3/8	M18	38	55	51	85.1	M26×1.5	265(275)
Code									Mou	nting	dime	nsio	าร							
Bore size (mm)	мм	N	Q	Т	v	WF		'1 X	тс	TD	TE	TF	*1 TG	ТМ	TN					
φ40	16	4	14	8	13	21	216	(222)	57	16	22	137	49(55)	63	95	•				
φ50	20	4	15.5	11	14	23	245	(253)	67	16	22	155.5	54.5(62.5)	75	107					

28 172.5

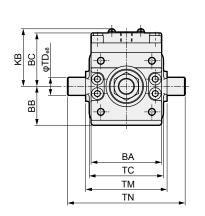
51.5(59.5)

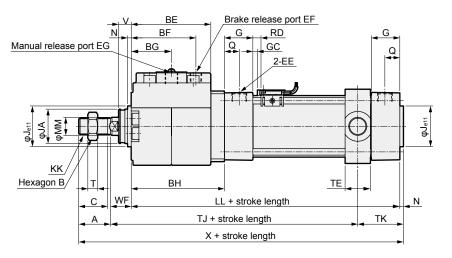
90 130

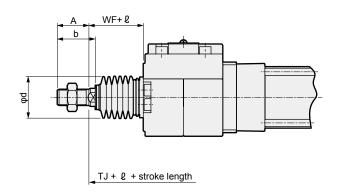
φ80	25	4	19	13	20	32	321	(331)	100	20	34	219	62	(72)	110	150	
φ100	30	4	19	16	20	32	341	(351)	121	25	40	242	59	(69)	132	182	
Code	With	bello	ws												With s	witch (T0	^H _v , T5 ^H _v , T2 ^H _v , T3 ^H _v , T3P ^H _v)
Bore size	Α	b	d	WF					1	2						*1	*1
(mm)	^	D	u	VVF	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300	Over 300 to 400		Over 500 to 600		Over 700 to 750		GD	HD
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-		1(4)	5(8)
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-		1(5)	5(9)
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	-		1(5)	5(9)
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204		2(7)	6(11)
φ100	40	52.5	61	32	29	42	54	67	92	117	142	167	192	204	2.	5(7.5)	6.5(11.5)

82 20

20 4 16.5


φ63


Double acting/single rod


Dimensions

Head side trunnion (TB)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (φ40: +6mm, φ50/φ63: +8mm, φ80/φ100: +10mm)
- *2 : Switch cannot be installed on the head side.
- *3 : RD in the dimensions indicates the position of switch end, and GC indicates the position of switch rail end.
- *4 : Refer to page 747 for dimensions of the type with valves (JSG-V).
- *5 : Refer to page 748 for RD dimensions and protruding dimensions of other switches.

	5							5											
Code	Rod	side	trunn	ion (T	B) ba	asic d	limen	sions	;										
Bore size	A	В	ВА	вв	BC	BE	DE	ВG	вн	С	EE	EF	EG	G	J	IA	КВ	KK	*1
(mm)	\ ^		ВА	ВВ	ВС	BE	БГ	ВС	БП					G	_ J	JA	KD	KK	LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc1/4	Rc1/8	M12	27	35	31	51.1	M14×1.5	161(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc1/4	Rc1/8	M12	31.5	40	38	58.6	M18×1.5	183(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc3/8	Rc1/4	M14	31.5	45	38	63.6	M18×1.5	197(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc3/8	Rc1/4	M16	38	45	43	77.1	M22×1.5	245(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc1/2	Rc3/8	M18	38	55	51	85.1	M26×1.5	265(275)

Code								Mou	nting	dime	nsions			
Bore size (mm)	мм	N	Q	т	v	WF	*1 X	тс	TD	TE	*1 TJ	тк	тм	TN
φ40	16	4	14	8	13	21	216(222)	57	16	22	143(149)	43	63	95
φ50	20	4	15.5	11	14	23	245(253)	67	16	22	162.5(170.5)	47.5	75	107
φ63	20	4	16.5	11	14	23	259(267)	82	20	28	173.5(181.5)	50.5	90	130
φ80	25	4	19	13	20	32	321(331)	100	20	34	221(231)	60	110	150
φ100	30	4	19	16	20	32	341(351)	121	25	40	238(248)	63	132	182

Code	With	bello	ws												With switch (T0 ^H , T	75 ^H , T2 ^H , T3 ^H , T3P ^H)
Bore size		L	اما	WF						2					*1	*1
(mm)	A	b	d	VVF	50 or less	Over 50 to 100	Over 100 to 150		Over 200 to 300	Over 300 to 400				Over 700 to 750	GC	RD
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-	1(4)	5(8)
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	6.5(10.5)
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	6.5(10.5)
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	12.5(17.5)
φ100	40	52.5	61	32	29	42	54	67	92	117	142	167	192	204	8(13)	12(17)

FK SpdContr Ending

LCW LCR

Dimensions

LCW

LCR LCG

LCX

LCM

STM

STG

STS/STL STR2 UCA2

ULK* JSK/M2 JSG

JSC3/JSC4

USSD

UFCD

USC

JSB3

LMB

 LML

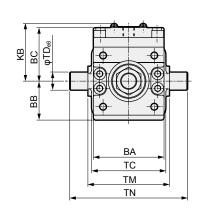
HCM HCA

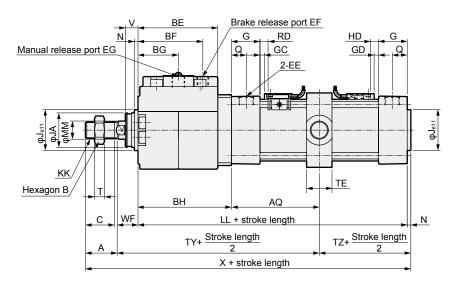
LBC CAC4 UCAC2 CAC-N UCAC-N

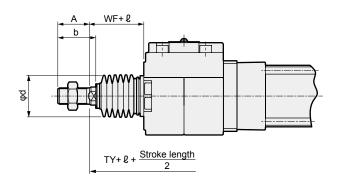
RCC2
RCS
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC

RV3* NHS HR

LN


Hand


Chuk


MecHnd/Chuk
ShkAbs
FJ
FK
SpdContr
Ending

Intermediate trunnion (TC)

- *1 : Dimensions in () are for the rubber cushion. The entire length is longer compared with the air cushion. (φ40: +6mm, φ50/φ63: +8mm, φ80/φ100: +10mm)
- *2 : RD and HD dimensions in dimension figures indicate the position of switch end, and GC and GD indicate the position of switch rail end.
- *3 : Refer to page 747 for dimensions of the type with valves (JSG-V).

*4 : Refer to pa											switch	nes.										
Code	Inter	medi	ate tr	unnic	n (TC	c) bas	ic di	nensi	ions													
Bore size (mm)	A	В	ВА	вв	вс	ВЕ	BF	ВG	вн	С	E	E	E	F	EG	G	J	JA	КВ	KK		*1 LL
φ40	30	22	57	31.5	46.5	63	52.5	32.5	77	27	Rc	1/4	Rc	1/8	M12	27	35	31	51.1	M14×1.	5 16 ⁻	1(167)
φ50	35	27	68	38	54	74	59	39	89	32	Rc	1/4	Rc	1/8	M12	31.5	40	38	58.6	M18×1.	5 183	3(191)
φ63	35	27	78	43	59	88	71.5	44.5	103	32	Rc	3/8	Rc	1/4	M14	31.5	45	38	63.6	M18×1.	5 19	7(205)
φ80	40	32	98	53	72.5	108	81.5	54.5	131	37	Rc	3/8	Rc	1/4	M16	38	45	43	77.1	M22×1.	5 24	5(255)
φ100	40	41	118	63	80.5	129	101	65.5	151	37	Rc	1/2	Rc	3/8	M18	38	55	51	85.1	M26×1.	5 26	5(275)
Code			ļ.		,	Mounting dimensions																
Bore size (mm)	мм	N	Q	т	v	V WF *1 TC TD TE TM TN *1 *1 *1 AQ																
φ40	16	4	14	8	13	21	216	(222)	57	16	22	63	95	140	(143)	46	(49)	42	(45)+ ^S	troke length 2	_	
φ50	20	4	15.5	11	14	23	245	(253)	67	16	22	75	107	159	(163)	51	(55)	47	(51)+ ^S	troke length 2		
φ63	20	4	16.5	11	14	23	259	(267)	82	20	28	90	130	173	(177)	51	(55)			troke length 2		
φ80	25	4	19	13	20	32	321	(331)	100	20	34	110	150	220	(225)	61	(66)			troke length 2		
φ100	30	4	19	16	20	32	341	(351)	121	25	40	132	182	240	(245)	61	(66)	57	(62)+ ^S	troke length 2	_	
Code	With	bello	ows												With	swit	ch (T	o∜, Tŧ	5∜, T2	∜, T3∜, T	3P∜)	
Bore size	A	b	d	WF						2					*	1	*	1	**	1	*1	P
(mm)	<u> </u>	, i	L u	VVI	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300	Over 300 to 400	Over 400 to 500	Over 500 to 600	Over 600 to 700	Over 700 to 750	G	С	G	D	RI	D	HD	
φ40	30	35	40	21	30													5(8)	29			
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(1	0.5)	5(9)	34
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	-	2.5(6.5)	1(5)	6.5(1	0.5)	5(9)	40
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204	8.5(13.5)	2(7)	12.5(17.5)	6(11)	-

192 | 204

8(13)

2.5(7.5)

12(17)

6.5(11.5)

92 | 117 | 142 | 167

52.5 61

32 29 42 54 67

φ100

Double acting/single rod

LCW LCR

LCG LCX LCM

STM

STG

STS/STI

STR2

UCA2

ULK* JSK/M2 JSG

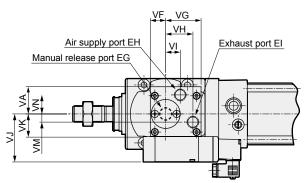
JSC3/JSC4

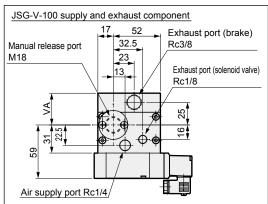
USSD UFCD USC JSB3

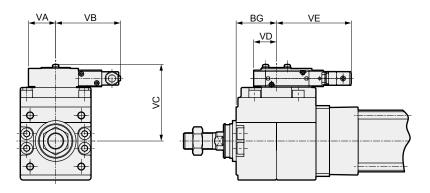
LMB LML HCM HCA LBC

CAC4 UCAC2 CAC-N UCAC-N RCC2 RCS

PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HR


LN
Hand
Chuk
MecHnd/Chuk
ShkAbs


FK SpdContr Ending


Dimensions



● JSG-V (with valve for brake release)

*1: The shape of the JSG-V-100 supply and exhaust port differs from that of other sizes. Refer to the dimensions of JSG-V-100 supply and exhaust components in the upper right figure.

Code	With	valve	for brake	release (J	SG-V) basi	ic dim	ensi	ons								
Bore size (mm)	ВG	EG	EH	EI	VA	VB	vc	VD	VE	VF	VG	VH	VI	۷J	VK	VM	VN
φ40	32.5	M12	Rc1/8	Rc1/8	26	62.5	72	24	83.5	19	38	30	12.5	44	16	4	16
φ50	39	M12	Rc1/8	Rc1/8	26	62.5	79.5	24	83.5	19	38	30	12.5	44	16	4	16
φ63	44.5	M14	Rc1/4	Rc1/4	30	71.5	84.5	25	82.5	17	39	30	16	53	25	9	21
φ80	54.5	M16	Rc1/4	Rc1/4	30	71.5	98	25	82.5	17	39	30	16	53	25	9	21
φ100	65.5	M18	*	*1			113	21	86.5				*	1			

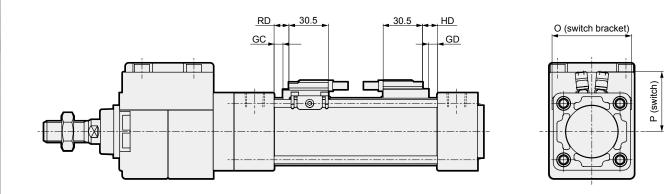
<u> </u>														
Code	With	bello	ws											
Bore size \	Α	b	d	WF					Ą	3				
(mm) \	A	D	u	VVF	50 or less	Over 50 to 100	Over 100 to 150	Over 150 to 200	Over 200 to 300		Over 400 to 500			Over 700 to 750
φ40	30	35	40	21	30	43	55	68	93	118	143	-	-	-
φ50	35	42	47	23	31	44	56	69	94	119	144	169	-	-
φ63	35	42	47	23	31	44	56	69	94	119	144	169	-	-
φ80	40	50	53	32	29	42	54	67	92	117	142	167	192	204
φ100	40	52.5	61	32	29	42	54	67	92	117	142	167	192	204

^{*} Dimensions other than those listed above are the same as those of double acting/single rod. Refer to pages 738 to 746.

LCW
LCR
LCG
LCX
LCM
STM
STG
STS/STL
STR2
UCA2
ULK*

JSK/M2

JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML НСМ **HCA** LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 RCS PCC


SHC MCP GLC MFC BBS RRC GRC RV3* NHS HR

Hand

Chuk MecHnd/Chuk ShkAbs

FK SpdContr Ending JSG Series common (with T1, T₃²Y, T2J, T2YD/T, T8, T₃²W switches) dimensions

T1, T₃²Y, T2J, T2YD/T, T8, T₃²W switch installation dimensions

С	ode	T1, T2\	Y, T3Y, T	² J, T2YD/	T *2		T8 *2	2			T2W, T3W	1		
В	ore size	Р		00	GD	В	GC	GD	P	GC	GD	RD	HD	0
(r	nm) \	T1, T2YD/T	Others	GC	GD		GC	GD	Р	GC	GD	KD	טח	
	φ40	40	35	4(7)	4(7)	35	0(2)	0(2)	29	3.5(6.5)	3.5(6.5)	7.5(10.5)	7.5(10.5)	58
4 🗆	φ50	44	39	5.5(9.5)	4(8)	39	0.5(4.5)	0(3)	33	5(9)	3(7)	9(13)	7(11)	68
1	φ63	50	45	5.5(9.5)	4(8)	45	0.5(4.5)	0(3)	39	5(9)	3(7)	9(13)	7(11)	78
1 🗆	φ80	57	52	11.5(16.5)	5(10)	52	6.5(11.5)	0(5)	47	11(16)	4(9)	15(20)	8(13)	95
	φ100	64	59	11(16)	5.5(10.5)	59	6(11)	0.5(5.5)	54	10.5(15.5)	4.5(9.5)	14.5(19.5)	8.5(13.5)	114

^{*1:} RD and HD dimensions in dimension drawings indicate the position of switch end, and GC and GD indicate the position of switch rail end.

^{*2:} The switch tip position is at the switch rail end (RD = GC/HD = GD).

^{*3:} Dimensions in () are for the rubber cushion.

Accessory dimensions

JSG Series common accessory dimensions (rod eye, clevis, bracket)

CAD

● Rod eye (I)

Material: Steel Painting Rod clevis (Y)

Material: Cast iron Painting LCW LCR

LCG

LCX LCM STM STG

STR2

UCA2

ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD

USC JSB3

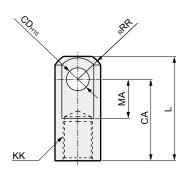
LMB LML HCM

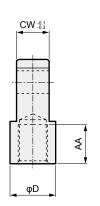
HCA

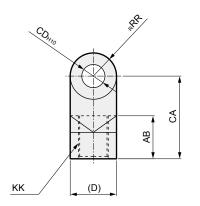
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCC2
RCS
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC

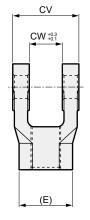
RV3³ NHS

HR


LN Hand Chuk MecHnd/Chuk

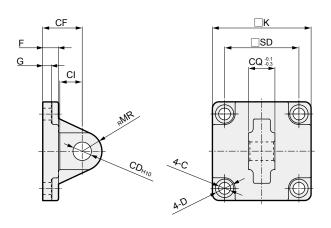

ShkAbs

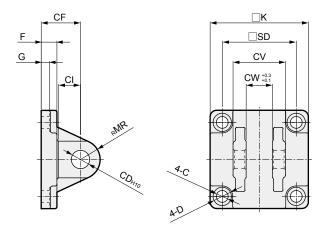

SpdContr


Ending

FK

Model No.	Bore size (mm)	AA	CA	CD	cw	D	KK	L	MA	RR	Wt (kg)
SCG-I-40	40	19	40	10	14	22	M14×1.5	50	19	12.5	0.07
SCG-I-50	50,63	24	50	14	20	28	M18×1.5	64	24	16.5	0.20
SCG-I-80	80	26	60	22	30	40	M22×1.5	80	34	23.5	0.52
SCG-I-100	100	26	60	22	30	40	M26×1.5	80	34	23.5	0.48


Model No.	Bore size (mm)	ΑВ	СА	CD	cv	cw	D	E	KK	RR	Wt (kg)
SCG-Y-40	40	21	40	10	28	14	22	25.4	M14×1.5	11	0.13
SCG-Y-50	50,63	26	50	14	40	20	28	32.3	M18×1.5	14	0.30
SCG-Y-80	80	31	65	22	60	30	40	46.2	M22×1.5	20	0.94
SCG-Y-100	100	31	65	22	60	30	40	46.2	M26×1.5	20	0.92


Note: A pin, a split pin and a plain washer are attached.

• Eye bracket (B1)

Material: Cast iron Painting Clevis bracket (B2)

Material: Cast iron Painting

Model No.	Bore size (mm)	С	CD	CF	CI	CQ	D	F	G	ĸ	MR	SD	Wt (kg)
SCG-B1-40	40	6.6	10	23	13	14	11	9	4.5	52	11	38	0.16
SCG-B1-50	50	9	14	30	17	20	14	12	6.5	65	15	46.5	0.38
SCG-B1-63	63	9	14	30	17	20	14	12	6.5	75	15	56.5	0.48
SCG-B1-80	80	11	22	42	26	30	17	15	8.5	95	23	72	1.19
SCG-B1-100	100	11	22	42	26	30	17	15	8.5	114	23	89	1.56

Model No.	Bore size (mm)	С	CD	CF	CI	cv	cw	D	F	G	ĸ	MR	SD	Wt (kg)
SCG-B2-40	40	6.6	10	23	13	28	14	11	9	4.5	52	11	38	0.20
SCG-B2-50	50	9	14	30	17	40	20	14	12	6.5	65	15	46.5	0.46
SCG-B2-63	63	9	14	30	17	40	20	14	12	6.5	75	15	56.5	0.58
SCG-B2-80	80	11	22	42	26	60	30	17	15	8.5	95	23	72	1.52
SCG-B2-100	100	11	22	42	26	60	30	17	15	8.5	114	23	89	1.91

Note: A pin, a split pin and a plain washer are attached.

Accessory dimensions

CAD

• Eye bracket (B3)

LCW

LCR LCG

LCX

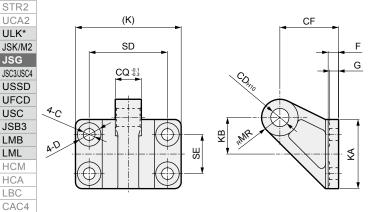
LCM STM STG STS/STL

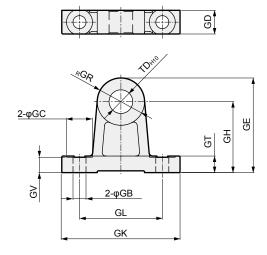
LBC

UCAC2

CAC-N UCAC-N RCC2 RCS PCC SHC MCP GLC MFC BBS RRC

GRC RV3* NHS


HR LN


Hand Chuk MecHnd/Chuk ShkAbs

FK SpdContr Material: Cast iron Painting

Trunnion No. 2 bracket (B4)

Material: Cast iron Painting

Model No.	Bore size (mm)	С	CD	CF	СQ	D	F	G	K	KA	КВ	MR	SD	SE	Wt (kg)
SCG-B3-32	40	6.6	10	33	14	15	7	6	62	42	21	10	44	22	0.21
SCG-B3-50	50,63	9	14	45	20	18	8	7	81	53	28	14	60	30	0.45
SCG-B3-80	80,100	11	22	65	30	22	10	9	111	73	41.5	22	86	45	1.23

Model No.	Bore size (mm)	GВ	GС	GD	GE	GR	GH	GK	GL	GТ	G۷	TD	Wt (kg)
SCG-B4-40	40,50	9	18	17	60	30	45	80	60	12	11	16	0.43
SCG-B4-63	63,80	11	22	20	80	40	60	100	70	14	13	20	0.87
SCG-B4-100	100	13.5	24	26	100	50	75	120	90	17	16	25	1.75

Note: The bracket is provided as 2 pcs./set.

•	Pin	(P)

Material: Steel

Zinc chromate treatment

Model No.	Applicable bore size (mm)	Α	В	CD	d	Weight (kg)
SCG-P-32	40	44	36	10	3	0.04
SCG-P-50	50,63	60	51	14	4	0.10
SCG-P-80	80,100	82	72	22	4	0.34

Note: Split pin and plain washer are attached.

Technical data

LCW

LCR LCG

LCX LCM

STM

STR2 UCA2

ULK*

JSK/M2 JSG

JSC3/JSC4

USSD

UFCD

USC JSB3

LMB LML HCM

HCA LBC

CAC4

UCAC2

CAC-N

UCAC-N RCC2 RCS

PCC

SHC MCP

GLC MFC BBS

RRC GRC RV3' NHS

HR LN

Hand

Chuk

MecHnd/Chuk

ShkAbs

FK

SpdConti

Ending

Applications

This product can be used with devices and equipment requiring the following functions.

1 When multipoint positioning is required (transfer/positioning)

The equipment can be accurately stopped at several required positions.

2 When position locking is required

The brakes can be applied and held instantly when the air source or power is turned OFF (during power failure or accident), preventing equipment damage and securing safety.

3 When emergency stop is required

The cylinder can be immediately stopped with electric signals, etc., when a worker enters a hazardous area.

4 Workpiece lock

When locking the workpiece to the jig or mounting base, etc., it can be locked even if there is no pneumatic source or power. The workpiece can be transferred while locked to the jig.

Applications

Linear multipoint welding

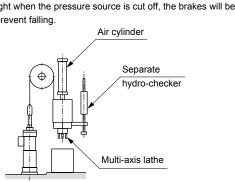
When welding steel plates, etc., linearly at several points, this cylinder can be used to move and position the slide table or welding gun.

Welding gun

Steel plate

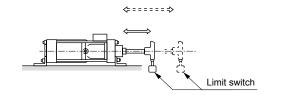
Movement to conveyor

Move products to the conveyor one at a time.


Move products to the conveyor one at a time

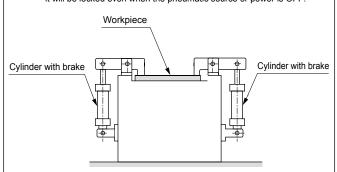
Air cylinder

Position locking

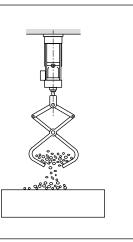

If there is a load in the vertical direction and the load could fall under its own weight when the pressure source is cut off, the brakes will be applied to prevent falling.

Air cylinder

When several cylinders with different strokes are required


When different-sized products are in motion on a conveyor, etc., in many cases the stroke length for the cylinders set there must also be changed. Using the brake cylinder, a cylinder compatible with different strokes is created electrically.

Workpiece lock


When locking the workpiece to the jig, etc., if the brake cylinder is used, it will be locked even when the pneumatic source or power is OFF.

Workpiece

6 Hopper open/close

In the case where a hopper must be closed at a specific weight in powder manufacturing, accurate measurement is obtained by stopping the hopper, measuring it accurately and then completely closing it.

LCW

LCR

LCG LCX LCM STM

STG

STR2 UCA2 ULK*

JSK/M2

JSG

JSC3/JSC4

USSD

UFCD

USC

JSB3

LMB

LML

HCM

HCA

LBC

CAC4

UCAC2

CAC-N

UCAC-N

RCC2 RCS

PCC

SHC

MCP

GLC

MFC

BBS

RRC

RV3

NHS

HR

LN

Hand

Chuk

MecHnd/Chuk

ShkAbs

SpdContr

Ending

FK

Pneumatic components

Safety Precautions

Be sure to read this section before use.

Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Product-specific cautions: Tie rod with brake JSG Series

Design/selection

AWARNING

Design a structure that prevents person(s) from coming into contact with the driven workpiece as well as the moving parts of the cylinder with brakes.

Provide a protective cover so that no human body directly touches the unit. In case of possible contact, provide safety measures such as a sensor for emergency stop before making contact and a buzzer to warn of danger.

Use a balanced circuit that accommodates the protrusion of the piston rod.

If the cylinder is stopped part-way in the stroke with the brake, etc., and air pressure is applied to one side of the cylinder, the piston rod will pop out at high speeds when the brake is released. This could cause physical harm, such as pinched hands or feet, or mechanical damage. Use a balance circuit, such as the basic circuit, to prevent popping out

- The holding force is the ability to hold static load that is not accompanied by vibration or shock, in a state where the brake is operating under no load. Take care when constantly using near the upper limit of the holding force.
- Do not apply loads with impact, strong vibration, or torque while brakes are activated.

If load is externally applied with impact, or if strong vibration or rotational force is externally applied, the holding force can be reduced, creating a dangerous situation.

Consider the stopping accuracy and overrun distance during the braking.

Because a mechanical lock is applied, the cylinder does not stop instantly when the stop signal is issued, but stops with a time-wise delay. The stroke at which the cylinder slides due to this delay is the overrun distance. The max. and min. width of the overrun distance is the stopping accuracy.

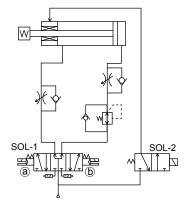
- To achieve the required stop position, move the limit switch forward by the overrun distance.
- The limit switch must have a detection length (dog length) of the overrun distance + α.
- The operating range of CKD cylinder switches is 7 to 16 mm, depending on the switch model. If overrun distance exceeds this, provide self-holding of the contact at the switch load.

- In order to improve stopping accuracy, ensure that the brake stops the cylinder as soon as possible after receiving the stop signal.
 - Use a high response DC control electricity circuit or valve, and set the valve as close to the cylinder as possible.
- The stopping accuracy is susceptible to fluctuations in piston speed.

If the piston speed changes due to load fluctuations or by some disturbance while the cylinder is moving, the stopping position may vary sharply. Make sure that the piston speed stays the same up to just before the stop position. Since the speed changes significantly in the cushioned range and in the acceleration range after starting operation, the variability of the stopping position will increase.

AWARNING

■ Basic circuit


Always adopt the following circuit even for position locking and emergency stop applications. A 2-position valve cannot be used because it affects the brake section even when the cylinder thrust is stopped.

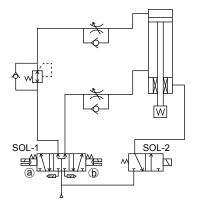
Maintain thrust and load balance with the following circuit. Brakes may not be released when load is applied to brakes.

Horizontal load

When piping is as shown in Fig. 1, equal pressure is applied to both ends of the piston when stopped to prevent the rod from popping out when the brakes are released. Install a regulator with check valve on the head side to maintain thrust balance.

Fig. 1

a so	L-1 ⓑ	SOL-2	Operational status
OFF	OFF	OFF	Stop
ON	OFF	ON	Reverse
OFF	ON	ON	Forward

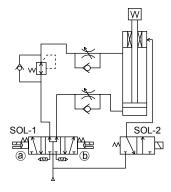

Product-specific cautions

Design/selection

For downward vertical load

If load faces downward as shown in Fig. 2, the rod malfunctions in the load direction when brakes are released. Place a regulator with a check valve on the head side to reduce thrust in the load direction and balance the load.

Fig. 2



a so	L-1 ⓑ	SOL-2	Operational status
OFF	OFF	OFF	Stop
ON	OFF	ON	Drop
OFF	ON	ON	Rise

For upward vertical load

If load faces upward as shown in Fig. 3, the rod malfunctions in the load direction when brakes are released. Place a regulator with a check valve on the rod side to reduce thrust in the load direction and balance the load.

Fig. 3

a so	L-1 ⓑ	SOL-2	Operational status
OFF	OFF	OFF	Stop
ON	OFF	ON	Drop
OFF	ON	ON	Rise

ACAUTION

Mount a speed controller on the cylinder.
 Mount the speed controller on the cylinder.
 Use within the working piston speed range of each series.

Stopping accuracy

Stopping pitch and load factor Stopping accuracy differs with stopping pitch and load factor. The load factor below is recommended for achieving specified stopping accuracy.

Stop pitch	Load factor
Stop pitch	JSG
50 mm or less	20% of thrust
50 mm to 100 mm	40% of thrust
100 mm or more	60% of thrust

Selection of valve for brake

The stopping accuracy and overrun distance will change according to the responsiveness of the brake valve. Refer to the JSG-V electrical specification for brake valve and select from the CKD pneumatic valve 4KB2 Series. Connect the valve directly to the brake port to improve stopping accuracy.

- When using a PLC (programmable controller) If a PLC (programmable controller) is used as the electrical control unit for the valve for brake, stopping accuracy drops due to scan time (computing time). When using a PLC, do not assemble the valve for brake into the PLC circuit.
- Do not make major changes in applied load when stopped with brakes, or the stopping position may change.

LCW LCR LCG LCX LCM STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD **UFCD** USC JSB3 LMB LML **HCM HCA** LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 **RCS** PCC

SHC

MCP

GLC

MFC

BBS

RRC

GRC

RV3³ NHS

HR

LN

Hand

Chuk MecHnd/Chuk

ShkAbs

FK SpdContr Ending

LCW LCR LCG LCX LCM STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 PCC SHC MCP GLC MFC BBS RRC

GRC

RV3

NHS

Hand

Chuk MecHnd/Chuk

ShkAbs

SpdContr

Ending

FK

HR LN

ACAUTION

■ As a cushion mechanism integrated in the cylinder, the rubber cushion and the air cushion are available. The purpose of the air cushion is to absorb the piston's kinetic energy by using air compressibility, avoiding collisions of piston and cover at the stroke end. Thus, the cushion is not used to decelerate the piston speed (deceleration action) near the stroke end. The following table shows the kinetic energy that can be absorbed by the cushion. If the kinetic energy exceeds these values, or if bouncing caused by the air compressibility is to be avoided, consider using another shock absorber.

Bore size	Rubber cushion	Air cushion				
	Allowable	Effective air cushion	Allowable			
(mm)	absorbed energy J	length (mm)	absorbed energy J			
φ40	0.9	8.6	3.7			
φ50	1.6	13.4	8.0			
φ63	1.6	13.4	14.4			
φ80	3.3	15.4	25.4			
φ100	5.8	15.4	45.6			

Kinetic energy (J) =
	$\frac{1}{2}$ × Weight (kg) × {Speed (m/s)} ²

(Note) Calculating kinetic energy

Average cylinder speed is obtained with $Va = \frac{L}{T}$.

Va: Average speed (m/

: Cylinder stroke length (m)

: Operating time (s)

With respect to this, the cylinder speed just before rushing into the cushion can be obtained with the following simple formula.

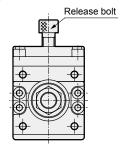
$$Vm = \frac{L}{T} \times (1+1.5 \times \frac{\omega}{100})$$

Vm: Speed just before rush-into the cushion (m/s)

ω : Cylinder load factor

(%)

Use this Vm value as speed to calculate kinetic energy.


Mounting, installation and adjustment

▲ WARNING

- Release brakes before coupling the load to the end of the rod. If coupled while brakes are applied, torque or load exceeding holding force may be applied to the piston rod and damage the brake mechanism.
- If the brake is released while air is applied to only one side of the cylinder, the piston rod can pop out at high speed, creating a dangerous situation. When releasing the brake during adjustment or other maintenance, always observe the following:
 - Check that no one is in the movable range of the load and that no problems will arise if the load moves when brakes are released.
 - When releasing the brake, perform position locking or take other measures:
 - · Place the load to the bottom end
 - · Pressurize both sides
 - · Place a strut

to prevent the load from falling.

- Confirm that air is not pressured on only one side of the cylinder when releasing brakes.
- How to manually release the brake

Note: How to release the brake

 The brakes are released by screwing the release bolt into the female threads (brake release port) on the top of the brakes. (Always remove the release bolt during normal use.)

Release bolt size

Bolt screw	Boit is	Bolt length		
diameter	JSG	JSG-V	screw-in volume	
M12×1.75	16 or more	40 or more	3 rotations or less	
M12×1.75	16 or more	40 or more	4 rotations or less	
M14×2	16 or more	40 or more	4 rotations or less	
M16×2	20 or more	40 or more	4.5 rotations or less	
M18×2.5	20 or more	50 or more	5 rotations or less	
1	diameter M12×1.75 M12×1.75 M14×2 M16×2	diameter JSG M12×1.75 16 or more M12×1.75 16 or more M14×2 16 or more M16×2 20 or more	diameter JSG JSG-V M12×1.75 16 or more 40 or more M12×1.75 16 or more 40 or more M14×2 16 or more 40 or more M16×2 20 or more 40 or more	

- Brakes are released manually or by pressurizing the brake release port. When mounting the load, the brake release operation may cause the load to fall; make sure to check that the brake is operational when the manual release operation is set to default or when there is no air in the brake release port.
- Do not apply torque to the rod when braking, as the holding force will decrease, creating hazardous conditions. Also, use this product in mechanisms in which the rod does not rotate.
- Do not apply to the cylinder any force that exceeds the brake holding force listed in the catalog.

Product-specific cautions

Mounting, installation and adjustment

A WARNING

■ With the JSG Series, the brakes can be manually released by screwing a hexagon socket head cap bolt into the brake release female thread on the top of the brakes. However, the brakes may be damaged if the bolt is screwed in too far; use the appropriate screw insertion depth for the release bolt shown in the table below.

Bore size	Suitable screw-in volume
φ40	3 rotations or less
φ50	4 rotations or less
φ63	4 rotations or less
φ80	4.5 rotations or less
φ100	5 rotations or less

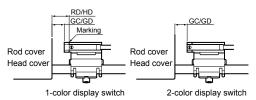
- If there is any play, such as looseness, in the brake signal dog, stopping accuracy is affected. Securely fix to eliminate play, etc.
- If the piston speed is fast, the detection dog must be long enough to match relay response time. If the dog is short, the stop signal is not output and operation does not stop.

A CAUTION

- Adjust the air balance in the cylinder. With brakes released, place a load on the cylinder and balance the load by adjusting pneumatic pressure applied to the cylinder rod side and head side. Malfunctions such as piston popping out during brake release or abnormal brake release can be prevented by accurately balancing the load.
- Adjust the installation position of the detector parts, including the cylinder switch.
 When braking, consider the overrun distance vis-a-vis the desired stop position and adjust the installation positions for

detector parts, including the cylinder switch.

- Load fluctuations during the reciprocating stroke of the cylinder can cause inconsistent piston speed, leading to greater variation in the stop position.


 Adjust the mounting of the load so as to prevent any load fluctuations during the reciprocating stroke of the cylinder, especially before the stop position.
- Since the speed changes significantly in the cushioned range and in the acceleration range after starting operation, the variability of the stopping position will increase. For this reason, the accuracy described in the specifications may not be obtained when a step just after start of the operation has a short stroke length to the next point.

Load to piston rod Limit load movement using guides so play and torsion do not occur.

Maintaining the rod sliding parts Protect the piston rod sliding surface from scratches and dents. Such scratches and dents can cause damage to packings, resulting in leakage and/or brake failure.

Caution for mounting the switch

■ When assembling the switch mounting bracket When assembling the cylinder onto the switch bracket, fit the tie rod to be installed into the bracket, and move the switch so that it is at the center of the operation range (ON range). Then tighten the fixing bolts with a tightening torque of 0.6 to 0.9 N·m. The bracket position (GC, GD) and switch positions (RD, HD) at which the max. sensitivity is attained at both stroke ends are shown in the dimensions.

■ When moving the switch position to the stroke length direction, the 1-color display switch can be finely adjusted ±3 mm from the factory default max. sensitivity position. If the adjusting range exceeds ±3 mm, or when adjusting the 2-color display switch, loosen the switch mounting bracket fixing bolt and move the bracket position.

■ Fixing the switch

For screw fixing when using T2, T3, T0, or T5, use a flathead screwdriver (clockwork screwdriver, precision screwdriver, etc.) with a grip diameter of 5 to 6 mm, a 2.4 mm or smaller tip, and a thickness of 0.3 mm or less to tighten the screws with a tightening torque of 0.1 to 0.2 N·m. When using T*C, T2J, T2Y, or T3Y, tighten the screw with a tightening torque of 0.5 to 0.7 N·m. The switch mounting bracket rail has a mark at 4 mm from the rail end. Use as a guide to the mounting position when replacing the switch. Switch rail markings are set to the default switch max. sensitivity position. The max. sensitivity position may change when the switch is changed or when the switch mounting bracket is moved. Adjust the position accordingly in this case.

LCG LCX LCM STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML **HCM** HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS **PCC** SHC MCP GLC MFC BBS RRC

GRC

RV3

NHS

HR

LN

Hand

Chuk

MecHnd/Chuk

ShkAhs

SpdContr

Ending

FK

LCW

LCR

LCW LCR LCG LCX LCM STM STG STS/STL STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCC2 **RCS** PCC SHC MCP GLC MFC BBS RRC GRC RV3*

NHS HR LN Hand Chuk MecHnd/Chuk Shk Abs

SpdContr Ending

Use/maintenance

▲ WARNING

- The brake section can be removed from the cylinder body. Do not disassemble or inspect brakes, or a hazardous situation may occur when brakes are used again.
- The required grease is applied to brakes. Avoid applying extra grease and do not wipe grease off.
- The required grease is applied when brakes are replaced, so there is no need to apply grease to rods.
- Always use the product with the dust cover on, except for when performing manual release, in order to prevent failure or malfunction.

ACAUTION

- Air supply pipes that are too narrow or too long can reduce stopping accuracy.
- Frictional resistance increases and causes the piston speed to change when the cylinder has been stopped for a long time, such as when using first thing in the morning or afternoon. This may impair stopping accuracy. Conduct conditioning operations to obtain a stable stopping accuracy.